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Industry-Specific Productivity and Spatial Spillovers through input-output linkages: 

Evidence from Asia-Pacific Value Chain 

Abstract 

Global value chains (GVCs) promote the diffusion of knowledge and technology among the 

participants in the international production network and accelerate knowledge sharing and vertical 

specialization. These technological spillovers are main drivers of technological progress and the 

long-term growth of participating countries. This paper develops an empirical growth model that 

combines spatial spillovers and productivity growth heterogeneity at the industry-level. We exploit 

the GVCs’ linkages from inter-country input-output tables to describe the spatial interdependencies 

in technology. The spillover effects from capital deepening, intermediate deepening, and technical 

change are identified using a spatial econometric specification. We use local Leontief matrices to 

decompose these effects into the domestic value chain spillovers transmitted within a country and 

the international value chain spillovers transferred across the borders. Our empirical results with 

the industry-level data of five Asia-Pacific countries find that ignoring the spatial interactions leads 

to an overestimation of China’s productivity growth, and underestimation of productivity growth 

in developed countries such as the US and Japan. The spillover effects of capital and intermediate 

inputs per capita are found to be significantly positive. Domar-weighted direct technical change 

growth rates for China, Korea, India, Japan and US are estimated to be 5.05%, 4.06%, 3.35%, 3.32% 

and 3.30%. and the spillovers received account for 31% to 34% of their total technological growth. 
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The estimated international spillovers offered suggest that US is the main contributor of 

international knowledge diffusion, and the Electrical and Optical Equipment sector of the US has 

the fastest productivity growth and offers the most spillovers. These finding provide a better 

understanding of how technical changes are distributed and diffused within the GVCs network.  

Keywords: Industry-specific productivity, Spatial panel model, Technological spillovers, Global 

value chain, Asia-Pacific trade, World KLEMS database 

JEL classification codes: C23, C51, C67, D24, O47, R15  
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Highlights 

 

 

 This study analyzes the distribution and diffusion of industry-level technical change within the 

GVCs network. 

 A spatial production model with heterogeneity in technical progress and spatial 

interdependency is developed. 

 Capital-deepening and intermediate deepening in neighbor industries have positive spillover 

effects. 

 The spillover effect occupies a considerable proportion of the impact of Hicks-neutral 

technical change. 

 These results have implications for countries in their choice of strategies to participant in the 

global value chain. 
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1 Introduction 

Over the past two decades, the world economy has evolved rapidly and the network structure of 

global specialization has been dramatically transformed. The growth and structure of individual 

national economies appear to depend critically on the growth rates of other countries. Through the 

increasingly enhanced linkages of the production network, a shock in one country can trigger 

misallocations of resources in other countries. However, the way in which and the extent to which 

this complex and sophisticated network of domestic and cross-border production-sharing activities 

impacts national growth largely has been missing in the empirical economic growth literature.  

Global value chains (GVCs) are the most important drivers of globalization (World Bank et al., 

2017). Currently nearly 70% of world trade in goods is composed of intermediate inputs such as 

raw materials and capital components that are used to produce finished products.1. The linkages 

among major economies in the Asia-Pacific area, which along with the US are the foci of our 

empirical analyses, measured by value added exports based on the work of Johnson and Noguera 

(2012) are substantial and increasing. The share of domestic linkages has declined for all the five 

countries from 1995 to 2010, the period we study, while foreign value added occupies an 

increasingly larger share. The linkages between those countries and China from both the input and 

output directions has expanded, implying significant changes in the pattern of the global supply 

chain. Koopman et al. (2012, 2014) develop a detailed accounting framework to trace the value-

added flow based on a vertical specialization model and use the World Input-Output tables to 

                                                             
1 The UNSD Commodity Trade (UN Comtrade) database. 
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estimate domestic and foreign components in export. Acemoglu et al. (2016) tested the propagation 

mechanism of TFP shocks through the input-output network at the industry level. Carvalho and 

Tahbaz-Salehi (2019) present the theoretical foundations for the role of input-output linkages as a 

channel for shock propagations. Timmer et al. (2014) and Timmer and Ye (2018) summarized the 

effect that the global value chain has on the productivity of industries through these input-output 

linkages. Understanding how industries in different economies link, specialize, and grow can help 

shed light on why some lower-income countries are catching up to high-income countries, while 

others are not, during the rapid development in GVCs.  

The impact of globalization on the national economy has been widely explored in international 

and growth economics. Different from the assumptions in traditional neoclassical growth theory 

that the economies are independent and non-interactive, the growing literatures recognize that 

technological advances diffuse and are transmittable across economies. This technological spillover 

has been found to be a main driver of technological progress and thus long-term growth (Lucas and 

Moll, 2014; Acemoglu and Cao, 2015; Bondarev and Krysiakb, 2021) 

Technological spillovers have been the focus of a number of studies of economic growth 

resulting from international trade (Coe and Helpman, 1995; Eaton and Kortum, 1996), foreign 

direct investment (Caves, 1996; Demir and Duan, 2018) and geographical proximity (Keller, 2002). 

Several studies have also estimated growth models using spatial econometric techniques. Ertur and 

Koch (2007) proposed a spatial version of the Solow (1956, 1957) neoclassical growth mode and 

found significant spatial effects on economic growth. Fingleton and López-Bazo (2006) found 
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strong empirical support for the existence of externalities across economies. Fingleton (2008) used 

spatial econometric techniques to test between the standard neoclassical growth model and the new 

models of economic geography. Arbia et al. (2010) suggest that geo-institutional proximity 

outperforms pure geographical metrics in accounting for spatial interdependence. Ho et al. (2018) 

extend the Solow growth model using a spatial autoregressive specification, which they use to 

examine the international spillovers of economic growth through bilateral trade.  

However, much of the research on international spillovers is focused on national economies and 

implicitly assumes homogeneity in productivity growth among different nations or sectors within 

nations, depending on the cross-sectional unit of observation.  To investigate how 

interdependencies in the GVCs networks impact economic growth, and to also determine how 

crucial it is for world economic growth that such GVC’s are not disrupted by the current political 

climate in the US, an investigation into industry level linkages is necessary.  This is due in part to 

the fact that labor services and coordination in GVCs are facilitated by upstream-downstream 

sectoral linkages. And as discussed in Durlauf (2000, 2001) and Brock and Durlauf (2001), the 

assumption of homogenous parameters in modeling economic growth across countries also may be 

incorrect. Canova (2004), Desdoigts (1999) and Durlauf et al. (2001) find evidence of parameter 

heterogeneity using different statistical methodologies. However, a proliferation of free parameters 

in empirical modeling also may not allow one to explain the structural factors and economic 

conditions behind the long-run growth phenomenon (Durlauf and Quah, 1999, Ertur and Koch, 

2007).  Heterogeneity in productivity growth among industries should be considered, as such 
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heterogeneity is intrinsic due to techno-economical features of each distinct sector. Jorgenson et al. 

(2012) note the influential power of some key industries and reveal the predominate role of IT-

producing and IT-using industries as sources of productivity growth. Another strand of literatures 

emphasizes the spillover effect within the cross-sectional network of industries through input-

output linkages, see for example Acemoglu et al. (2012) who argue that idiosyncratic shocks may 

lead to aggregate fluctuations through inter-sectoral input–output linkages. Atalay (2017) suggests 

that industry-specific shocks account for nearly two-thirds of the volatility of aggregate output. 

Autor and Salomons (2018) consider the weighted sum of TFP growth in supplier and customer 

industries as indirect effect, and the weights are obtained from the input-output coefficients from 

the World Input-Output Database (WIOD). This industry perspective on productivity and spillovers 

is particularly valuable as it provides intuitive information for the policy design of selecting 

preferential industries and bridging the development gap through encouraging the interaction in 

GVCs in order to promote technological advances.  

A major contribution of this paper is to propose a new model for measuring the industry-specific 

productivity and spillovers based on a spatial production function that allows productivity growth 

to vary over industries. We consider a neoclassical output per worker growth model (Solow, 1956, 

1957) as augmented, for example, by Ertur and Koch (2007) to include spatial externalities in 

knowledge.  Instead of using geographical distance to construct the spatial weights matrix, we 

extract the input and output flows based on the World Input-Output tables to measure economic 

distance between industries within/across national economies.  
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We also provide more explicit insights on the spatial spillovers process in our empirical analysis 

using a flexible spatial production function. The direct, indirect and total marginal effects of the 

input factors and time trends are calculated to describe the role of spillovers from input factors as 

well as how technical changes are distributed within the GVCs network using both spatial 

autoregressive (SAR) and spatial Durbin (SDM) production functions. We follow Glass et al. (2015) 

to calculate industry-specific productivity growth spillovers by distinguishing between knowledge 

receiving and offering, which represent the two distinct directions of knowledge diffusion. 

Furthermore, in our global value chain settings, we use local Leontief matrices to identify the 

portion of indirect effects that are transmitted within a country as well as the indirect effects that 

are transferred across the borders.  Through our decomposition method, we are able to distinguish 

between domestic and international spillovers.   

This paper is organized as follows. In section 2 we set out the spatial production model with 

heterogeneity in technical progress using SAR and SDM specifications, and then explain our 

approach to measure the spatial spillovers of the inputs and Hicks-neutral technical change. We 

also provide the methodology to decompose the domestic and international spillovers using the 

local Leontief matrices. Section 3 discusses our estimation strategy.  Section 4 presents the 

industry-level data of the countries we study and the World Input-Output tables we used to construct 

the spatial weight matrix. In section 5 we estimate the production function using our methodology 

and discuss the productivity spillovers through Asia-Pacific value chain. Section 6 concludes.  

Appendices A-F contain more detailed discussions of estimation procedures, additional results, 
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specification test results for the alternative models we consider in our analyses, and a simulation of 

how the COVID-19 pandemic outbreak would impact trade based on our spatial model under 

different World Trade Organization scenarios. 

2 Model  

2.1 A production function with heterogeneity in technical progress 

Consider an aggregate Cobb–Douglas production function with Hicks-neutral technical 

change for industry i at time t exhibiting constant returns to scale in labor, capital and intermediate 

input: 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖𝛼𝛼𝑀𝑀𝑖𝑖𝑖𝑖
𝛽𝛽𝐿𝐿𝑖𝑖𝑖𝑖𝛾𝛾,   𝑖𝑖 = 1,⋯ ,𝑁𝑁,   𝑡𝑡 = 1,⋯ ,𝑇𝑇,  (1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖   is total output, 𝐾𝐾𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑖𝑖𝑖𝑖  and 𝐿𝐿𝑖𝑖𝑖𝑖  are the capital, intermediate, and labor inputs, and 

𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1. 𝐴𝐴𝑖𝑖𝑖𝑖is the aggregate level of productivity, which differs among industries and time 

periods.  

The productivity level 𝐴𝐴𝑖𝑖𝑖𝑖 is specified as  

 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑅𝑅𝑡𝑡′𝛿𝛿𝑖𝑖, (2) 

where tR is an L×1 component that affects each sector (in our empirical model we utilize a constant 

and a time trend2 so that L=2) and 𝛿𝛿𝑖𝑖 is an L×1 vector of coefficients that depend on i. Contained 

                                                             
2 Our use of time as a proxy for technical change is driven by a lack of better proxies for innovation at the sector level 

for the countries in Asian KLEMS sample.  However, our approach can be used with more precise measures of 

innovation.  For example, Kalaitzi and Chamberlain (2020) assume that total factor productivity can be expressed as a 

function of merchandise exports, imports of goods and services while Hallonsten and Ziesemer (2019) specify the growth 

rate of technology or total factor productivity by the linear function of t but also considered the public capital (B) in the 
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in the constant is the sector-specific initial technology state. This is the Solow model (Solow, 1956; 

Swan, 1956; Ertur and Koch, 2007) where the assumption of identical technical progress in all 

industries is lifted by allowing for an industry-specific time trend.  We can then write the non-

spatial production function per worker as: 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝛼𝛼𝑚𝑚𝑖𝑖𝑖𝑖
𝛽𝛽 = 𝑒𝑒𝑅𝑅𝑡𝑡′𝛿𝛿𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝛼𝛼𝑚𝑚𝑖𝑖𝑖𝑖

𝛽𝛽 , (3) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖/𝐿𝐿𝑖𝑖𝑖𝑖, 𝑘𝑘𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑖𝑖𝑖𝑖/𝐿𝐿𝑖𝑖𝑖𝑖, 𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖/𝐿𝐿𝑖𝑖𝑖𝑖.  

The coefficient iδ  is expressed in terms of deviations ( iu ) from its mean gδ and we interpret 

t gR δ′   as a global constant and technology growth term and t iR u′   as a sector-specific initial 

technology state and technology growth term.  As we have indicated, the technology growth term 

is proxied by a time trend.  Taking the logarithm of Eq. (3), we have: 

 ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼ln𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽ln𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖. (4) 

  We assume that the 𝑢𝑢𝑖𝑖 are iid zero mean random variables with covariance matrix Δ, and 𝑣𝑣𝑖𝑖𝑖𝑖 

is the usual iid zero mean disturbance term with variance σ𝑣𝑣2. Of course, if 𝑢𝑢𝑖𝑖 is constant, then the 

production function can be written in the usual form and Eq. (4) reduces to the standard panel data 

model with a time trend. 

                                                             

production model. Heshmati and Rashidghalam (2020) allow TFP growth to be driven by unobservable time trend 

induced technical change, scale economies and an observable technology shifter whose components include development 

infrastructure measures, research and development expenditure, hi-tech exports, patent applications, and levels of human 

development. 
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2.2 Spatial model with technology spillover 

To account for the technology spillover through the linkage of industries, the effect of cross-

sectional dependence should be considered in the production functions. Ertur and Koch (2007) 

modeled the technology as a function of a common global time trend, per worker capital and a 

spatial lag of a country’s neighbor’s technology. Here we relax the assumption of Hicks-neutral 

technical change by allowing each industry i to have industry-specific technical progress while at 

the same time allowing the industry to absorb knowledge diffusion from its neighbors. The 

productivity growth originating in supplier industries may bring higher quality intermediates and 

know-how to downstream industries. Similarly, the productivity growth occurring in customer 

industries may increase the requirement of intermediate quality and thus stimulate learning and 

capability building to upstream industries3. We start with assuming that knowledge diffusion is 

influenced by the strength of linkage 𝑤𝑤𝑖𝑖𝑖𝑖 with neighbor-industry j and neighbor-industry j’s labor 

productivity 𝑦𝑦𝑗𝑗(𝑡𝑡). The Solow residual then can be expressed as 

 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑅𝑅𝑡𝑡′𝛿𝛿𝑖𝑖 ∏ 𝑦𝑦𝑗𝑗𝑗𝑗
𝜌𝜌𝜌𝜌𝑁𝑁

𝑗𝑗≠𝑖𝑖  (5) 

and this leads to the following per worker production function: 

( ( ) ( ) ( ).( ) ) ijt i
N wR

i jj i i i ity t e y k t m pt t ex vβρδ α′

≠
= ∏       (6) 

Taking logarithms of the expression, we obtain the Spatial Autoregressive (SAR) model 

ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑦𝑦𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + 𝛼𝛼ln𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽ln𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖,          (7) 

                                                             
3 We note that this mechanism is different from the shock propagation through the fluctuation in intermediate input that 

leads to the change in output, since that part of effect is considered in the input variable of m in our model. 
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which we can write more compactly as 

 𝑦𝑦 = 𝜌𝜌(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑦𝑦 + 𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚 +  𝑟𝑟𝑟𝑟𝑔𝑔 + Q𝑈𝑈 + 𝑉𝑉, (8) 

where 𝑦𝑦, 𝑘𝑘, 𝑚𝑚 and 𝑉𝑉 are 𝑁𝑁𝑁𝑁 × 1 vectors, WN is N×N matrix composed by wij with diagonal 

elements set to 0, 𝜄𝜄𝑁𝑁  is 𝑁𝑁  dimensional vector of ones, 𝑅𝑅 = (𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑇𝑇)′ , 𝑟𝑟 = 𝜄𝜄𝑁𝑁⨂𝑅𝑅,  𝑄𝑄 =

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜄𝜄𝑁𝑁)⨂𝑅𝑅 is 𝑁𝑁𝑁𝑁 × 𝐿𝐿𝐿𝐿 matrix, 𝛿𝛿𝑔𝑔 is 𝐿𝐿 × 1 vector, and 𝑈𝑈 is a 𝐿𝐿𝐿𝐿 × 1 vector. 

In a more general case, we can assume technical spillovers are not just influenced by other 

sectors’ labor productivity, but by the other sectors’ technology 𝐴𝐴𝑗𝑗𝑗𝑗, capital-labor ratio 𝑘𝑘𝑖𝑖𝑖𝑖, and 

intermediate-labor ratio 𝑚𝑚𝑖𝑖𝑖𝑖. The capital deepening in supplier or customer industries may increase 

aggregate social capital and thus accumulate knowledge and provide productivity improvement to 

the industry in question, which is in accordance with the Arrow-Romer’s physical capital 

externalities (Arrow,1962; Romer, 1986). Analogously, the increase in intermediate input per capita 

in supplier or customer industries may also be beneficial to productivity growth because of the 

deepening in division and specialization among industries (denoted as intermediate deepening). 

Thus the function describing the technology of industry i depends on three components. First, some 

portion of technical progress is exogenous and heterogeneous among industries : 𝛿𝛿𝑔𝑔𝑅𝑅𝑡𝑡′ + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 +

𝑣𝑣𝑖𝑖𝑖𝑖 . Second, each industry’s technology is interdependent with its neighbors, dependent on the 

relative connectivity with its neighbors and these neighbors’ technical progress: 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝐴𝐴𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 . 

Third, the technology of industry i will be increasing with the ratio of capital and intermediates to 

labor: 𝜙𝜙ln𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜑𝜑ln𝑚𝑚𝑖𝑖𝑖𝑖, and this process also increases the level of technology for all industries 
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by raising the aggregate level of capital deepening or intermediate deepening through knowledge 

spillovers. This leads to the following expression for (the log of) technology:  

 ln𝐴𝐴𝑖𝑖𝑖𝑖 = 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝐴𝐴𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + 𝜙𝜙ln𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜑𝜑ln𝑚𝑚𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑔𝑔𝑅𝑅𝑡𝑡′ + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 . (9) 

Then solving 𝐴𝐴𝑖𝑖𝑖𝑖 and rewriting 𝐴𝐴𝑖𝑖𝑖𝑖 in matrix form we have: 

  𝐴𝐴 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1�𝜙𝜙𝜙𝜙 + 𝜑𝜑𝜑𝜑 + 𝛿𝛿𝑔𝑔𝑟𝑟 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉�. (10) 

Replacing this expression in the production function and multiplying both sides of the equation 

by (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇), we obtain the production function in a Spatial Durbin form4: 

 𝑦𝑦 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1�𝜙𝜙𝜙𝜙 + 𝜑𝜑𝜑𝜑 + 𝛿𝛿𝑔𝑔𝑟𝑟 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉� + 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 

 = 𝜌𝜌(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑦𝑦 + 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛿𝛿𝑔𝑔𝑟𝑟 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉  

 +(𝜙𝜙 − 𝛼𝛼𝛼𝛼)(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑘𝑘 + (𝜑𝜑 − 𝛽𝛽𝛽𝛽)(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑚𝑚. (11) 

2.3 Technology Spillovers and Spatial Elasticities 

As demonstrated in LeSage and Pace (2009), for spatial models the usual interpretation of 𝛼𝛼 and 

𝛽𝛽  as elasticities of input factors is not valid. They instead suggest the following approach to 

calculate direct, indirect, and total marginal effects. First resolve the linear system for 𝑦𝑦, if 𝜌𝜌 ≠ 0 

and if 1/𝜌𝜌 is not an eigenvalue of 𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇, and rewrite Eq. (8) and (11) as (12) and (13): 

 𝑦𝑦 = 𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑘𝑘 + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑚𝑚 

 +(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1�𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉�, (12) 

                                                             
4 Strictly Eq. (11) is a partial spatial Durbin model, the local spatial function of Hicks-neutral technological change is 

omitted since the introduction of ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔𝑁𝑁
𝑗𝑗=1  would be perfect collinearity with 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔. 
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 𝑦𝑦 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑘𝑘 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 

 [𝛽𝛽𝛽𝛽 + (𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑚𝑚 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉�.  (13) 

Differentiating Eq. (13) with respect to per-worker capital yields the following matrix of direct 

and indirect effects for each industry, where the right-hand side of Eq. (14b) is independent of the 

time index: 

 𝐸𝐸𝑘𝑘 ≡ � 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘1

, 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘2

,⋯ , 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘𝑁𝑁

�
𝑡𝑡

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘1

     𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘2

  ⋯     𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘𝑁𝑁

𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘1

     𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘2

  ⋯     𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘𝑁𝑁

 ⋮         ⋮    ⋱      ⋮  
𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘1

     𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘2

 ⋯     𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘𝑁𝑁⎦

⎥
⎥
⎥
⎥
⎤

𝑡𝑡

 (14a) 

 = (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1 �

𝛼𝛼   𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝜌𝜌) …      
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝜌𝜌) 𝛼𝛼 …      

⋮ ⋮ ⋱      

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝜌𝜌)  𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝜌𝜌) ⋯         𝛼𝛼     

�.  

(14b) 

Then the mean direct effect of per-worker capital for all the industries, which we denote 𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷, 

is the average of the diagonal elements of the matrix in Eq. (14b) for the SDM model. The indirect 

effects of per-worker capital, which we denote 𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼, are the average row-sum of the off-diagonal 

elements of the matrix in Eq. (14b). The mean total effect of per-worker capital is 𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 +

𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 (LeSage and Pace, 2009). In the SAR model, the direct, indirect and total effects can also be 

calculated using Eq. (14b) but with the off-diagonal elements set equal to zero. Likewise, we can 

calculate the effects for per-worker intermediate 𝑒𝑒𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷, 𝑒𝑒𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑒𝑒𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇.  Under the assumption of 

constant returns to scale, the effect for 𝑘𝑘 and 𝑚𝑚 are equivalent to the elasticities of capital and 

intermediate inputs. However, in the spatial model the direct elasticity also includes feedback 
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effects when the input changes in industry 𝑖𝑖 affect a neighbor industry’s output, and this effect on 

neighbor industries rebounds and affects industry 𝑖𝑖’s output via the inter-industry linkage. The 

indirect elasticity refers to the percentage change in industry 𝑖𝑖’s output due to a percentage increase 

in the sum of the input across all the other 𝑁𝑁 − 1  industries. Finally, the calculation of total 

elasticity is based on all 𝑁𝑁 industries in the sample simultaneously changing their input, not just 

industry 𝑖𝑖 or the other 𝑁𝑁 − 1 units (Glass, et al., 2015). 

In the same way, we can describe the Hicks-neutral technical change over time and the magnitude 

of spillovers between the industries through spatial correlation. By differentiating Eq. (13) with 

respect to the time trend, this productivity change spillover can be measured by the indirect 

marginal effect from the spatial model:  

 𝑔𝑔𝑡𝑡 ≡ �𝜕𝜕ln𝑦𝑦
𝜕𝜕𝜕𝜕
�
𝑡𝑡

= (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     0       ⋯   0  

  0       𝜕𝜕𝑅𝑅𝑡𝑡
′

𝜕𝜕𝜕𝜕
𝛿𝛿2    ⋯   0  

   ⋮         ⋮       ⋱   ⋮   
  0        0      ⋯𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

𝑡𝑡

 (15a) 

 =

⎣
⎢
⎢
⎢
⎢
⎡   𝑤𝑤�11

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�12

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2   ⋯   𝑤𝑤�1𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛

  𝑤𝑤�21
𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�22

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2   ⋯   𝑤𝑤�2𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛

      ⋮              ⋮      ⋱        ⋮    
  𝑤𝑤�𝑛𝑛1

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�𝑛𝑛2

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2   ⋯   𝑤𝑤�𝑛𝑛𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

𝑡𝑡

, (15b) 

where  𝑤𝑤�𝑖𝑖𝑖𝑖 is the element of (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1. The diagonal elements of the matrix in Eq. (15b), 

which we denote as 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 , are the direct effect, which represents the productivity change for 

industry 𝑖𝑖 itself at time 𝑡𝑡. However, the indirect effect has two different interpretations depending 

on which directions to sum the off-diagonal elements. The row-sum of off-diagonal elements, 
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which we denote 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟, represents the aggregate spillover that each industry received from all of 

its neighbors through the spatial linkages while the compound productivity change for industry 𝑖𝑖, 

measured by the summation of the direct effect and indirect effect received from all other industries, 

is denoted as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟 . The column-sum of off-diagonal elements, which we 

denote 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜 , represents the aggregate spillover that each industry provides its neighbors. 

Likewise, the compound productivity change for industry 𝑖𝑖 measured by the summation of direct 

effect and indirect effect provided to all other industries is denoted as 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜. 

2.4 Decomposition of technology spillovers by domestic and international effect 

In the production system of the global value chain, knowledge spillovers not only involve industries 

within a country, but knowledge spillovers also cross national borders and has been observed in 

both global value chains and regional/local value chains (Charlotte et al, 2021). Suppose there are 

two countries 𝑠𝑠 and 𝑟𝑟, with 𝑄𝑄𝑠𝑠 and 𝑄𝑄𝑟𝑟 industries, in a production system with a global value 

chain. Then the spatial weight matrix 𝑊𝑊𝑁𝑁 can be split into a block structure such as5:  

      𝑊𝑊𝑁𝑁 ≡ �𝑊𝑊𝑠𝑠𝑠𝑠 𝑊𝑊𝑠𝑠𝑠𝑠
𝑊𝑊𝑟𝑟𝑟𝑟 𝑊𝑊𝑟𝑟𝑟𝑟

�,         (16) 

                                                             
5 In the equation below, the number of industries in both countries does not have to be equal, i.e. the dimension of 𝑊𝑊𝑠𝑠𝑠𝑠  

does not need to be the same as 𝑊𝑊𝑟𝑟𝑟𝑟.  Since 𝑊𝑊𝑁𝑁 is not necessarily symmetric, the transpose of 𝑊𝑊𝑠𝑠𝑠𝑠 is different from 

𝑊𝑊𝑟𝑟𝑟𝑟. 
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where 𝑊𝑊𝑠𝑠𝑠𝑠  is 𝑄𝑄𝑠𝑠 × 𝑄𝑄𝑠𝑠  matrix, 𝑊𝑊𝑠𝑠𝑠𝑠  is 𝑄𝑄𝑠𝑠 × 𝑄𝑄𝑟𝑟  matrix, 𝑊𝑊𝑟𝑟𝑟𝑟  is 𝑄𝑄𝑟𝑟 × 𝑄𝑄𝑠𝑠  matrix and 𝑊𝑊𝑟𝑟𝑟𝑟  is 

𝑄𝑄𝑟𝑟 × 𝑄𝑄𝑟𝑟 matrix. 𝑊𝑊𝑠𝑠𝑠𝑠 and 𝑊𝑊𝑟𝑟𝑟𝑟 represent the linkages of the industries within the border of each 

country, and 𝑊𝑊𝑠𝑠𝑠𝑠 and 𝑊𝑊𝑟𝑟𝑟𝑟 represent the linkages of industries across country borders. 

In order to decompose the different spillover effects into portion involving the domestic value 

chain and a portion involving the international value chain, we define the left multiplier in Eq.(14b) 

as the global multiplier 𝐺𝐺 ≡ (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1, which represents the global interactions that include 

the feedbacks through higher order of linkages though neighbors, and define the local multiplier of 

country 𝑠𝑠 as 𝐻𝐻𝑠𝑠𝑠𝑠 ≡ (𝛪𝛪𝑠𝑠 − 𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠)−1.  This latter term we call the local multiplier of a country and 

it represents the domestic interactions of industries within the border of country 𝑠𝑠.  We can define 

the local multiplier of country 𝑟𝑟 as 𝐻𝐻𝑟𝑟𝑟𝑟 in the same way. Then the global multiplier  𝐺𝐺 can be 

decomposed into6:  

 𝐺𝐺 ≡ �𝐺𝐺𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝐺𝐺𝑟𝑟𝑟𝑟

� = �𝐻𝐻𝑠𝑠𝑠𝑠 0
0 𝐻𝐻𝑟𝑟𝑟𝑟

� + �𝜌𝜌𝐺𝐺𝑠𝑠𝑠𝑠𝑊𝑊𝑟𝑟𝑟𝑟𝐻𝐻𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝜌𝜌𝑊𝑊𝑟𝑟𝑟𝑟𝐺𝐺𝑠𝑠𝑠𝑠𝐻𝐻𝑟𝑟𝑟𝑟

�, (17) 

where the first matrix composed by 𝐻𝐻𝑠𝑠𝑠𝑠  and 𝐻𝐻𝑟𝑟𝑟𝑟  in the diagonal in the right of Eq. (17) 

corresponds to the domestic multiplier, and the second matrix corresponds to the international 

multiplier which captures the international spillover processes: the off-diagonal blocks represent 

the diffusions between the two countries and the diagonal blocks represent the country’s diffusion 

firstly go aboard and then feedback to itself.  That is, the sub-matrix of 𝜌𝜌𝐺𝐺𝑠𝑠𝑠𝑠𝑊𝑊𝑟𝑟𝑠𝑠𝐻𝐻𝑠𝑠𝑠𝑠 corresponds 

                                                             

6 With the definition of 𝐺𝐺, we have: 𝐺𝐺(𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)  = �𝐺𝐺𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝐺𝐺𝑟𝑟𝑟𝑟

� �𝛪𝛪𝑠𝑠 − 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠 𝑊𝑊𝑠𝑠𝑠𝑠
𝑊𝑊𝑟𝑟𝑟𝑟 𝛪𝛪𝑟𝑟 − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟

� = �𝛪𝛪𝑠𝑠 0
0 𝛪𝛪𝑟𝑟

�.  Thus we can 

express the relationship between 𝐺𝐺𝑠𝑠𝑠𝑠 and 𝐻𝐻𝑠𝑠𝑠𝑠 as (𝛪𝛪𝑠𝑠 + 𝜌𝜌𝐺𝐺𝑠𝑠𝑠𝑠𝑊𝑊𝑟𝑟𝑟𝑟)𝐻𝐻𝑠𝑠𝑠𝑠 = 𝐺𝐺𝑠𝑠𝑠𝑠 and the relationship between 𝐺𝐺𝑟𝑟𝑟𝑟 and 𝐻𝐻𝑟𝑟𝑟𝑟 

as (𝛪𝛪𝑟𝑟 + 𝜌𝜌𝐺𝐺𝑟𝑟𝑟𝑟𝑊𝑊𝑠𝑠𝑠𝑠)𝐻𝐻𝑟𝑟𝑟𝑟 = 𝐺𝐺𝑟𝑟𝑟𝑟. 
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to the process of the technology firstly transmitted from country 𝑠𝑠  to country 𝑟𝑟  and then 

retransmitted back to country 𝑠𝑠 and diffused among the industries within country 𝑠𝑠.  

Following Eq.(14b), the matrix 𝐸𝐸𝑘𝑘  measuring the direct and indirect effects of per-worker 

capital can be decomposed into a domestic effect, 𝐸𝐸𝐸𝐸𝑘𝑘, and an international effect, 𝐸𝐸𝐸𝐸𝑘𝑘. 

 𝐸𝐸𝐸𝐸𝑘𝑘 ≡ �𝐻𝐻𝑠𝑠𝑠𝑠 0
0 𝐻𝐻𝑟𝑟𝑟𝑟

� �

𝛼𝛼   𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝜌𝜌) …    
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝜌𝜌) 𝛼𝛼 …    

⋮ ⋮ ⋱    

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝜌𝜌) 𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝜌𝜌) ⋯        𝛼𝛼      

�, (18) 

𝐸𝐸𝐸𝐸𝑘𝑘 ≡ �𝜌𝜌𝐺𝐺𝑠𝑠𝑠𝑠𝑊𝑊𝑟𝑟𝑟𝑟𝐻𝐻𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝜌𝜌𝐺𝐺𝑟𝑟𝑟𝑟𝑊𝑊𝑠𝑠𝑠𝑠𝐻𝐻𝑟𝑟𝑟𝑟

� �

𝛼𝛼 𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝜌𝜌) … 
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝜌𝜌) 𝛼𝛼 … 

⋮ ⋮ ⋱ 

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝜌𝜌)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝜌𝜌) 𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝜌𝜌) ⋯      𝛼𝛼     

�. 

(19) 

With the matrices of 𝐸𝐸𝐸𝐸𝑘𝑘 and 𝐸𝐸𝐸𝐸𝑘𝑘, we can calculate the mean direct, indirect and total domestic 

effects of per-worker capital expressed as 𝑒𝑒𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷, 𝑒𝑒𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑒𝑒𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, and direct, indirect and total 

international effects of per-worker capital expressed as 𝑒𝑒𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷, 𝑒𝑒𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑒𝑒𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. Correspondingly, 

we can get the decomposition results for other inputs and the time trend of productivity.  

This two-country setting easily can be extended to a multi-country scenario by setting 𝐸𝐸𝐸𝐸𝑘𝑘 as 

a block diagonal matrix composed of any given number of country blocks.  With 𝐸𝐸𝐸𝐸𝑘𝑘 = 𝐸𝐸𝑘𝑘 −

𝐸𝐸𝐸𝐸𝑘𝑘, one can calculate the corresponding effects for the capital input. 

3 Estimation 

The non-spatial model given in Eq. (4) can be estimated via three linear techniques: within 

(dummy variables), generalized least squares, and efficient instrumental variables if one adopts a 
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modification of the Hausman and Taylor (1981) approach based on selective orthogonality 

conditions imposed on a subset of the regressors with which the effects ( )iu are uncorrelated.  

However, when either a SAR or SDM are considered (Eqs. 8 and 11) we need to turn to an 

alternative estimator.  We adopt a variant of the quasi-maximum likelihood estimation (QMLE) 

procedure discussed in Glass et al. (2016).  QMLE enables us to minimize the number of 

parameters to be estimated via the concentrated likelihood function instead of using the full 

likelihood function. We can find closed-form solutions for the parameters, except for the spatial 

autoregressive parameter ρ by using the first-order conditions of the likelihood functions of Eqs. 

(8) and (11). The spatial parameters of (𝜙𝜙 − 𝜌𝜌𝜌𝜌)  and (𝜙𝜙 − 𝜌𝜌𝜌𝜌)  are the coefficients of the 

spatially weighted independent variables. We treat the spatially weighted independent variables as 

additional regressors. The substitution of the closed-form solutions into the likelihood functions 

gives the concentrated likelihood functions with ρ  as the only unknown variable. However, ρ̂

can be obtained by maximizing the concentrated likelihood function.  Hence, all other parameter 

estimates of , 2, , , , ,g vα β γ ρ φ δ σ can be found once we have an estimate of ρ̂ .  A more detail 

discussion of the algorithm is presented in Appendix A and is based on Han (2016).     
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4 Data 

The countries in our sample include the United States, China, Japan, Korea and India, which are 

the main economies in the Asia & Pacific area7. The international production network has rapidly 

developed among these countries since the 1980’s. International comparisons of the patterns of 

output, input and productivity are very challenging (Jorgenson, et al., 2012). We integrate several 

databases for the empirical analysis of the productivities under the global value chain labor-division 

network. We extract the output measures of gross output and input measures of capital service, 

labor service and intermediate input from the KLEMS database, which provides the quantity and 

price indices data for the United States, Japan, Korea and India. Data for China are collected from 

the China Industrial Productivity (CIP) Database, which provided the real and nominal gross output 

and intermediate input by reconstructing China’s input-output table (Wu and Keiko, 2015; Wu, 

2015; Wu, et al, 2015). We calculate the growth rates for gross output and intermediate input in 

constant prices by single deflation. CIP also provided the capital and labor input indices which are 

consistent with the KLEMS database. We use 2005 as the base year for the countries in our study.   

                                                             
7Although the five countries are important and closely linked economies in the world, our sample setting here implies a 

restrictive assumption that the knowledge spillovers considered occur primarily among these five countries at the 

exclusion of other countries in the world. We acknowledge this data limitation issue as a potential future research topic 

when data covering a broader range of countries is available. 
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The inter-country input-output data are drawn from the WIOD database 8 . We match and 

aggregate some of the industries due to differences in the industry classification across the 

databases of KLEMS, WIOD and CIP, although they are broadly consistent with the ISIC revision 

3. The nominal volumes for each index are used to generate the weights for calculating the input 

and output indices of the aggregated industries. We omitted non-market economy industries, which 

are mostly local public services that include Housing, Public Administration and Defense, 

Education, Health and Social Work, Other Community, Social and Personal Services9. The industry 

classifications we use are listed in Table 1. The sample period is 1980-2010. We extract industry-

level linkages among the five countries from the input-output table for 1995, which is the mid-year 

of the sample period.  

TABLE 1 

Industry Classifications and Codes 

No.  Industry ISIC Rev. 3 

1 Agriculture, Hunting, Forestry and Fishing AtB 

2 Mining and Quarrying C 

3 Food , Beverages and Tobacco 15t16 

4 Textiles and Textile, Leather, Leather and 

Footwear 

17t19 

5 Wood and of Wood and Cork 20 

6 Pulp, Paper, Paper , Printing and Publishing 21t22 

                                                             
8 In this data it is assumed that the input mix for domestic and export product in each industry is homogenous. 

9 We also remove the whole and retail trade, Renting of Machine and Equipment and Other Business Activities in India 

for the data are missing. 
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7 Coke, Refined Petroleum and Nuclear Fuel 23 

8 Chemicals and Chemical 24 

9 Rubber and Plastics 25 

10 Other Non-Metallic Mineral 26 

11 Basic Metals and Fabricated Metal 27t28 

12 Machinery, Not Elsewhere Classified 

(NEC) 
29 

13 Electrical and Optical Equipment 30t33 

14 Transport Equipment 34t35 

15 Manufacturing NEC and Recycling 36t37 

16 Electricity, Gas and Water Supply E 

17 Construction F 

18 Wholesale and Retail Trade 50to52 

19 Hotels and Restaurants H 

20 Transport, Storage & Post Services 60t64 

21 Financial Intermediation J 

22 Renting of Machine and Equipment and Other 

Business Activities 
71t74 

 

International trade has been an important channel for transmitting growth across countries (Ho, 

et al., 2013). Coe and Helpman (1995) show that domestic productivity depends on the import share 

of a weighted sum of R&D expenditure in other countries. Ertur and Koch (2011) use the average 

bilateral trade flow as spatial weight matrix in the technological interdependence study of economic 

growth. Hulten (1978) suggests that the input-output structure may act as the channel for 

technology shock transmission among industries. Correlations between intermediate inputs and 
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technology shocks are also discussed in Nishioka and Ripoll (2012).  Foster-McGregor et al. 

(2017) found that R&D spillovers through intermediate inputs are present and economically 

important. Lee (2020) suggests that importing and exporting in intermediate inputs can be an 

important conduit for technology spillovers across borders. 

We use the inter-industry intermediate flows in the World Input-Output table to construct the 

spatial weight matrix on an industry level. Then the matrix of the input-output table can reflect the 

channel of spillovers that comes from producing for the users of the intermediate product, which is 

consistent with the theory of “learning-by-doing” in the endogenous economic growth literature. 

The spatial weights matrix is expressed as 𝑊𝑊1  with elements of 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖  for ∀𝑖𝑖 ≠ 𝑗𝑗 , 

indicating intermediate inputs from industry i to industry j in nominal US dollar values. We can 

also obtain a symmetric spatial weight matrix by summing the original and transposed matrix of 

the input-output table, where the matrix represents the channel of spillover that comes from not 

only producing for downstream users but also absorbing technical know-how embodied in 

intermediates from upstream suppliers10 . The spatial weights matrix is expressed as 𝑊𝑊2  with 

elements of 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗, ∀𝑗𝑗 ≠ 𝑖𝑖. The diagonal elements of 𝑊𝑊1 and 𝑊𝑊2 are all 0. 

Elhorst (2001) propose a normalization method by dividing the matrix by the maximum eigenvalue 

when row normalization may cause the matrix to lose its economic interpretation of distance decay. 

                                                             
10 Likewise, we can also use the transposed input-output table as the spatial weight matrix to simulate the spillover by 

using the intermediate from upstream suppliers. The estimations result is almost equal to the result of spatial weight 

matrix with W2. 
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However, in this paper, we assume that the productivity spillover is dependent on the share 

weighted sum of the productivity of their intermediate partners11 , which is consistent with the 

seminal article of Coe and Helpman (1995). Therefore, 𝑊𝑊1  and 𝑊𝑊2  are row normalized to 

generate the spatial weight matrix.  

5 Empirical results 

We model the industry-specific productivity growth with 𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑡𝑡 and country dummies to 

control for different technology states in different countries. To avoid possible endogeneity 

problems between input factor levels and productivity, we lag the inputs one period (Ackerberg, et 

al., 2015).  In order to control for possible endogeneity between spatial linkages and output, we 

use the input-output table in the mid-year of the sample period (i.e. 1995) to construct the spatial 

weight matrices following the spatial literature that address the constructions of socioeconomic 

weight matrices (Case, et al., 1993; Cohen and Paul, 2004). 

5.1 Estimations of Production Functions 

In Table 2, we provide non-spatial estimates of the Solow-type production function Eq. (4) of 

the industries in our selected countries.  The dependent variable is the gross-output per capita. All 

                                                             
11 This is more intuitive than assuming spillover to be proportional to the value of linkage, by normalizing the weight 

matrix by maximum eigenvalue, i.e. small enterprise may be more influenced by its major supplier than big enterprise, 

although big company may use more products from the same supplier than the small company.  
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coefficient estimates for the factor inputs are statistically significant. The coefficients of inputs can 

be interpreted as output elasticities. The elasticity of intermediate input per capita is the largest, 

while capital per capita is the smallest. We also can estimate the parameters for the time trend of 

productivity in the random effects model.  Year dummy variables are included to address any 

macro shocks these countries face during the 30 years of the sample period.  Hausman-Wu statistic 

for the time-varying fixed effects v. time-varying random effects specification has a p-value of 

0.803 and thus we do not reject the time-varying random effects specification for the non-spatial 

specification.  The coefficient on the Time variable is about 0.009 which implies the average 

productivity growth rate of the economy is about 0.9% in this period. This is consistent with the 

findings of Miyagawa, et al. (2017) and Wu et al. (2017).   

TABLE 2 

Estimate of Non-spatial Cobb-Douglas Production Function 

 (1) (2) 

Variables Time-Varying FE (T-V FE) 

Estimates and Standard Errors 

Time-Varying RE Estimates 

(T-V RE) and Standard Errors 

lnk(α) .110*** 

(.012) 

.108*** 

(.011) 

lnm(β) .576*** 

(.011) 

.591*** 

(.010) 

Country-dummy No Yes 

Year-dummy Yes Yes 

Intercept  -0.084* 
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(.044) 

# of industries 108 108 

# of obs. 3132 3132 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

 

The first and last four columns of Table 3 provide estimates of the SAR and SDM specified 

production functions with spatial spillovers based on Eq. (8) and Eq. (11). All of the coefficients 

for the factor inputs in the SAR and SDM specifications are statistically significant at the 1% 

significance level. The coefficient of the spatially lagged dependent variableρ is estimated in a 

range of 0.241 to 0.284 for SAR and 0.320 to 0.378 for SDM. The parameters ϕ and φ, which 

represent the local spatial relationships of factor inputs, and their standard errors can be calculated 

based on the expressions in Eq. (11). In the SDM-Downstream model, estimates of ϕ and φ and 

their standard errors are 0.018 (0.026) and 0.045 (0.038) for the T-V FE specification while they 

are 0.005 (0.24) and 0.074 (0.36) for the T-V RE specification.  In the SDM-Down+Upstream 

model, parameter estimates and their standard errors are 0.009 (0.031) and 0.063 (0.044) for the T-

V FE specification and -0.010 (0.027) and 0.103 (0.041) for the T-V RE specification. Across the 

different specifications these estimates are relatively small and the first is not significant at usual 

nominal levels.  However, we should note that these parameters in our spatial model represent only 

a portion of spillovers channeled directly through the spatial correlation in the capital and 

intermediate inputs. The other part of the input spillovers is channeled through the spatial 

correlation of output. It is the sum of these two parts that makes up the indirect effect, which is 
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highly significant (Tables 3) and it is this total indirect effect that we are interested in capturing in 

our model. For a further discussion of these two components that make up the total indirect spillover 

see LeSage and Pace (2009). Our results suggest that the neighbour’s intermediate inputs have a 

positive effect on the productivity of an industry. The intuitive implication for the role of the inputs 

is related to the direct and indirect effect that we more fully explain in Section 5.2 below.  

TABLE 3 

Estimates of SAR and SDM Production Functions 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 SAR Estimates and Standard Errors SDM Estimates and Standard Errors 

 Downstream Down+Upstream Downstream Down+Upstream 

 T-VFE T-VRE T-VFE T-VRE T-VFE T-VRE T-VFE T-VRE 

lnk .100*** .099*** .097*** .096*** .106*** .103*** .103*** .101*** 

(.011) (.011) (.011) (.011) (.011) (.011) (.011) (.011) 

lnm .567*** .581*** .564*** .579*** .570*** .584*** .570*** .582*** 

 (.011) (.010) (.011) (.010) (.011) (.010) (.011) (.010) 

W•lnk     -.022 -.028 -.029 -.042 

     (.026) (.024) (.031) (.028) 

W•lnm     -.170*** -.112*** -.145*** -.083** 

     (.038) (.037) (.044) (.042) 

Country-

dummy 
No Yes No Yes No Yes No Yes 

Year- 

dummy 
Yes Yes Yes Yes Yes Yes Yes Yes 

Intercept  .008  .014  -.029  -.024 

  (.043)  (.043)  (.045)  (.046) 
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Time  .002  .001  .004*  .004* 

  (.002)  (.002)  (.002)  (.002) 

W•lny(ρ) .259*** .241*** .284*** .254*** .378*** .320*** .366*** .320*** 

 (.024) (.018) (.024) (.018) (.029) (.029) (.029) (.029) 

         

         

Adjusted R2 .803 .807 .802 .806 .799 .803 .798 .803 

LL 2985.40 2895.15 2992.37 2902.04 2998.95 2906.24 3002.67 2910.89 

         

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

The intercept terms estimated with the time-varying RE model are positive in the SAR model 

and negative in SDM model but insignificantly different from zero. In the SAR model, the 

coefficients for linear time trends for both specifications of spatial weight matrices are small and 

insignificant from zero. However, in the SDM models, the estimated parameters for the time trend 

are both 0.004 which is significantly different from zero.  

Additional specification tests for correlated random effects and the potential presence of spatial 

autocorrelation still present in the error term are provided in Appendix D.  Results indicate that 

the time-varying RE model SAR and SDM models cannot be rejected vis-à-vis other specifications 

we consider, such as the time-varying FE SAR and SDM model as well as Spatial Error models.   

In Figure 1 we calculate aggregate productivity growth for the five countries based on the time-

varying RE estimation of the non-spatial, SAR and SDM models. Domar weights are used for the 

aggregation of economy-wide productivity growth that was introduced and developed by Domar 

(1961) and Hulten (1978).  The weights account for the effects of productivity changes of an 
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individual industry on those downstream industries that benefit from more efficiently produced 

intermediate inputs12. The weighted average growth in the non-spatial model is higher than the 

SAR models and is close to the SDM models. We can compare the goodness-of-fit of the SAR and 

SDM model using the likelihood ratio test as SAR is nested in SDM. The LR test statistics are 

22.18 and 17.71 for the intermediate and output spatial weight matrices, which suggests that the 

SDM specification is more statistically significant than SAR specification, which in turn implies 

that there may exist capital and intermediate externalities in the growth process. Therefore, the 

models with spatial weighted independent variables are the appropriate specification for the 

samples13. Furthermore, we choose the partial Spatial Durbin model with the spatial weight matrix 

based on bidirectional linkages of upstream and downstream as our baseline model as it yields the 

highest log likelihood values. We also test for correlated random effects in our SDM specification 

and find no evidence of such effects at nominal significance levels.  Moreover, we have also 

examined a factor model specification based on the work of Kneip, et al. (2016) to address any 

                                                             
12 To be consistent with general practices in the growth literature, we follow the methodology suggested by OECD (2001) 

to calculate the Domar weights by considering each country as a closed economy.  This does not take account of the 

productivity change effect that comes from the imported intermediate inputs during our aggregation process on the 

country level. The imported intermediates and intra-industry flows are removed from the gross output for the calculation 

of Domar weights. We also provide the aggregation result with Domar weights that consider each country as an open 

economy and incorporate the influence of productivity change of imported intermediate inputs and simple gross output 

weighted average productivity change on country level in Appendix C. 

13 The unrealistic assumption of a common ratio of the direct and indirect elasticities for all production factors in the 

SAR model, as discussed by Elhorst (2014) and Glass et al. (2015), may lead to misspecification in empirical studies of 

economic growth. 
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spatial correlation in the disturbance term.  Moran tests of the whitened residuals do not reject the 

null hypothesis of no spatial effects in the disturbance at nominal significant levels. Results are 

robust to these additional empirical treatments. Thus, the remainder of our discussion of results is 

based on the time-varying random effects estimator.  The estimated technical change in the SDM-

Up+Downstream model suggests that China has the fastest aggregate productivity growth of 1.99%. 

But comparing this with the value of 3.86% in the non-spatial model, ignoring the spatial 

interactions appears to leads to an overestimation of China’s productivity growth. However, for the 

developed countries, such as the US and Japan, the non-spatial model results indicate a lower level 

of TFP growth rates. They are 0.87% and 0.61% in the non-spatial model and 0.97% and 0.92% in 

the SDM-Up+Downstream model. 

 

FIGURE 1 

Aggregate Productivity Growth of Each Country by Model 
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The results for productivity levels and growth of each industry for the SDM-Up+Downstream 

model indicate that Electrical and Optical Equipment exhibits the most rapid productivity growth, 

not only in US but also in the industries of our sample, with an average growth rate of 6.37%.  On 

the other hand, Construction is the lowest in the US and falls at the rate of -1.38%. Electrical and 

Optical Equipment is also the fastest growing industry in both Japan and Korea, with a 2.4% and 

3.95% growth rate. Manufacturing NEC and Recycling in China and the Transport Equipment in 

India show the most rapid growth at 6.18% and 2.9%. In Figure 2 we list the industries that exhibit 

the highest productivity growth in the five countries based on our preferred SDM model.  

 

 

 

 

(a) Productivity Level 

FIGURE 2 

Highest Productivity Growth Industries in Five Countries 

(b) Productivity Growth 
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5.2 The elasticity of input factors and spatial spillovers 

The coefficients of the independent variables represent the output elasticities of input factors in 

a non-spatial production function setting. However, when cross-sectional interactions exist, the 

output change of one industry due to the adjustment of the factor input is complemented by induced 

changes in its neighbor’s inputs. We diagonalize the coefficients of independent variables and add 

the local interactions from their neighbor’s inputs, then multiply the inverse matrix, (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝜌𝜌)−1 

in order to derive the expressions for the matrix-formed output elasticity of input factors given in 

Eq. (14) (LeSage and Pace, 2009). Hence, an elasticity in a spatial setting includes two parts: the 

internal elasticity expressed by the direct effect, which is the average along the diagonal, and the 

external elasticity measured by the indirect effect, which is the average of the row (or column) sums 

of the off-diagonal elements. Average total output elasticity is expressed by the sum of the direct 

and indirect effects.  We calculate the direct, indirect and total effects. To test for the significance 

of these effects, we follow the algorithms LeSage and Pace (2009) suggested by drawing parameter 

estimates 1000 times based on the variance-covariance matrix of the parameters to get the 

corresponding distribution of these effects, and then we compute their means and standard 

deviations based on the simulation. 

The top row of Table 4 shows the internal, external and total output elasticity of each factor input 

in the SDM-Up+Down model. The internal elasticities of capital per capita and intermediate inputs 

per capita are 0.102 and 0.589 and both are statistically significant, which is approximately 

consistent with the results in the non-spatial model. The external elasticities reflect the spillover 
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effects of the capital and intermediate deepening from neighbor industries. The external elasticity 

of capital deepening in Table 2 is 0.051, which suggests that an industry’s technological upgrading 

may benefit from an increase in the average organic composition of capital of the neighbor 

industries. The external elasticity of intermediate deepening is 0.230, which suggests that 

productivity of the industry may be improved when its neighbor industries are expanding the share 

of intermediate inputs to facilitate the vertical specialization of the production network. We can 

further infer that the industries in the Asia-Pacific value chain on the whole may experience a 

capital-augmenting and intermediate-augmenting technical progress during this period, since the 

marginal output of capital and intermediate are increased when the spillover effects of inputs are 

incorporated. 

 

TABLE 4 

Internal, External and Total Elasticity of Input Factors 

SDM-Up+ 

Downstream 

 Internal External Total 

 Elasticity asy.t-stat Elasticity asy.t-stat Elasticity asy.t-stat 

overall 
k 0.102*** 9.290 0.051*** 2.813 0.153*** 6.359 

m 0.589*** 55.041 0.230*** 5.766 0.820*** 18.510 

domestic 
k 0.102*** 9.290 0.047*** 2.819 0.149*** 6.528 

m 0.589*** 55.048 0.214*** 5.857 0.803*** 19.601 

international 
k 0.000*** 2.608 0.004*** 2.712 0.004*** 2.712 

m 0.000*** 4.147 0.016*** 4.766 0.016*** 4.764 

Notes: Significant at: *5, * *1 and * * * 0.1 percent. 
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We next decompose the elasticities based on Eq. (18) and Eq. (19) in order to measure the 

spillovers that spread among domestic and international industries separately. As shown in the last 

2 rows of Table 4, for the internal elasticity, the international part is negligible because only a small 

part of the feedback component in the direct effect can be attributed to the international linkage. 

From the decomposition of the external elasticity, however, we find that international spillovers 

constitute between 7% and 8% of the external elasticity for each of the factor inputs. Since the 

calculation is based on a time-invariant specification of the spatial weight matrix in 1995, and the 

growth of international intermediate trade has been much higher than the growth of world GDP 

since then, we may expect an increasing trend for the international part in the overall spillover14.  

5.3 Hicks-neutral technical change and spatial spillovers 

One advantage of our spatial model with heterogeneous technical change is that we can estimate 

the industry-specific Hicks-neutral technical change and its direct and indirect effect in the global 

value chain setting. Complete empirical results of Hicks-neutral technical change in the SDM-

Up+Downstream model for all cross-sectional samples are listed as Table E.1 in Appendix E.  The 

Domar-weighted aggregate of the five countries are shown in Figure 3. The direct and indirect 

effects, and their decompositions into domestic and international spillovers, are constructed from 

                                                             
14  We estimate the model with spatial weight matrix constructed by the world input-output table of 2010. The 

international spillovers constitute about 11.3% of the external elasticity of each factor inputs. The elasticity results are 

given in Appendix B. 
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Eq. (15b) and Eq. (19). Standard errors for the direct and indirect effects are based on simulations 

wherein we bootstrap 1000 times to calculate the variance-covariance matrix for 𝛿𝛿𝑖𝑖  and other 

parameters in the SDM model, following the same process as in LeSage and Pace (2009).  

The left side of Figure 3 represents the technological growth measured by the direct and indirect 

effects from the receiving perspective. The direct effect represents the technological growth by the 

industry itself that mostly comes from the independent innovation or improvement within the 

industry. On a country level, China exhibits the most rapid internal technological growth measured 

by the direct effect at 5.05%, while the growth rates for Korea, India, Japan and US are 4.06%, 

3.35%, 3.32% and 3.30%. The indirect effects represent the Hicks-neutral technology spillovers 

that industries receive through producing intermediate inputs for their user industries. The weighted 

average indirect effects for China, Korea, India, US and Japan are 2.57%, 1.86%, 1.67%, 1.56% 

and 1.53%. The spillovers received account for 31% to 34% of the total technological growth of 

the countries in our sample.   

By decomposing the indirect effects into domestic and international spillovers, Korea is found 

to have benefited most from international spillovers, with an international indirect effect of 4.42‰, 

which constitutes 23.8% of the total spillovers that Korea’s industries received. China and Japan 

have international effects of 1.72‰ and 0.88‰ respectively, which constitutes 6.70% and 5.79% 

of the total spillover received by the industries of China and Japan. The international parts are 

relatively small for the US and India, with 3.67% and 4.77% in total received spillovers.  
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The right side of Figure 3 represents the technological growth of each country from the offering 

perspective. The direct effects are comparable to values on the left side of Figure 3. The aggregated 

indirect effects for Japan, China, US, India and Korea are 2.72%, 2.67%, 2.51%, 2.04% and 1.94%. 

However, the international spillovers that each country offers are different from those that they 

receive. Japan and US contribute the most international spillovers with a growth impact of 2.84‰ 

and 2.60‰, which accounts for 10.46% and 10.36% of their total offered spillovers. The 

international spillovers for China, Korea and India are 1.90‰, 1.25‰ and 0.16‰. Our results 

suggest that while China is the most rapidly growing economy in the world, the developed countries, 

such as US and Japan, still contribute the most to international knowledge diffusion. Combined 

with the results of the international spillovers received by each country, we can find that US and 

Japan made the most net contributions with net international spillovers at 2.03‰ and 1.96‰, 

followed by China at 0.18‰. Korea benefits most with net international spillovers at -3.17‰. 

The relatively small role for India in terms of international spillovers is mirrored by its relatively 

small international indirect effect of 0.16‰, which is only 2% of its indirect effect, suggesting the 

outward international technology linkages of Indian industries are still under-developed compared 

to other countries in our sample.15 

 

                                                             
15 The international direct effect is negligible since the international feedback part of direct effect is quite small. 
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Figure 4 displays the matrices based on the indirect effects of technical change for each country 

in our sample. The dots represent the receiving and offering spillovers for each industry. The 

position on the horizontal axis indicates the indirect effect offered to other industries and the 

position on vertical axis indicates the indirect effect received from other industries. The sequence 

number of the industry is labeled near the dot. 

 

FIGURE 3 

Direct and Indirect Effect of Hicks-neutral Technological Change 



40 

 

 

 

 

 

Figure 4 clearly indicates the different distributions of spillovers measured by the direction of 

spillovers received and offered. The spillover received is measured by average growth weighted by 

the linkages defined by the spatial weight matrix. The spillover offered is measured by the growth 

of the industry itself augmented by the linkages with other industries. Thus, the spillover measured 

by offering is more disperse than the spillover measured by receiving. The top 5 industries (listed 

in Table 1) that have the largest spillovers offered on average are Electrical and Optical Equipment 

(industry 13), Wholesale and Retail trade (industry 18), Basic Metals and Fabricated Metal 

(industry 11), Machinery, NEC (industry 12), and Chemicals and Chemical (industry 8) with 

FIGURE 4 

Spillover Offered and Received for All Industries 
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indirect effects of 0.025, 0.021, 0.016, 0.015 and 0.013. The industry with the most spillover 

received on average is Machinery, NEC (industry 12), with an indirect effect of 0.014. The other 

industries are relatively concentrated in distribution. 

We also measure the direct and indirect effects of time trends in value of gross output from the 

perspective of the receiving spillover by decomposing the increment of gross output into a direct 

increment and an indirect increment (Table 6). From Eq. (6) and Eq. (15b) we have the total 

increment of gross output, ∆𝑌𝑌𝑡𝑡+1𝑟𝑟 = 𝑒𝑒𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑟𝑟𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡 , from the perspective of the receiving spillover. 

Since there is an interactive influence from the direct and indirect effect, to qualify the explanation 

from both, we follow the two-polar-averaging decomposition method of Dietzenbacher and Los 

(1998) to calculate the contributions of each component. The direct and indirect increment of output 

in 2010 for the US is 274,797 and 128,016 million US dollars, which contributed 68% and 32% of 

total output increment of the industries in our sample16. The industries in China benefit most from 

the spillovers since the increment of gross output from indirect effect is 168,170 million US dollars, 

which contributed 29% of total output increment. 

TABLE 6 

Increment of Gross Output Decomposed by Direct and Indirect Effect 

(in million US dollars) 

 Direct effect Indirect effect Total effect 

                                                             
16 We remove the non-market industries from our sample. These industries in the US account for 43% of total gross 

output and this ratio is much smaller than the ratio in other countries. Therefore, the total increment of gross output seems 

relatively smaller than China. 
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US 274,797 128,016 402,813 

CHN 411,240 168,170 579,410 

JPN 124,590 56,657 181,247 

KOR 47,667 19,810 67,478 

IND 42,405 20,612 63,017 

 

5.4 Productivity level and change for selected industries: electrical and optical equipment 

The information and communication technology (ICT) industry is one of the fastest growing 

industries in the world and highlights the increasingly important role of the global production 

system in the past 30 years. Jorgenson et al. (2012) note the important role of ICT-producing 

industries, including software and hardware manufacturing and services, and they found a 

substantial contribution of these industries to economic growth. Due to the importance of ICT as a 

main industry in which innovation takes places and provides an engine for long-run growth in an 

economy, we next examine the Electrical and Optical Equipment industry, which contains the 

important ICT sector, in the five countries we study and the way in which spillovers are diffused 

through domestic and international supply chains for this strategic sector. 
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Productivity change and spillovers in the electrical and optical equipment industry measured in 

our models are shown in Figure 5. Panel (a) and (b) are the total factor productivity estimates of 

Electrical and Optical Equipment in each country based on the estimation results of the non-spatial 

model and SDM-Up+Downstream model. The estimated productivity levels from the two models 

are comparable, with an increasing trend for US, China, Korea and Japan and a decreasing trend 

for India. The direct effect, which represents the technical progress of each industry, suggests that 

the US, with a growth rate of 7.67%, is the most successful country in developing the ICT industry, 

although the gross output in that industry in China has soared 30% during this period (by 1,734,075 

FIGURE 5 

Productivity Level, Growth and Spillover of Electrical and Optical Equipment 
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million US$), while increasing by less than 10% in the US (by 519,011 million US$).  The Korean, 

Chinese, and Japanese annual growth rates were of 5.22%, 4.71% and 3.67%, while productivity 

in the Indian sector falls during this period. The gross output of electrical and optical equipment 

industry in India in 2010 is $72,824 million US$, which is only 4.2% of the gross output in China, 

suggesting a large gap in scale exists with other countries in our sample.  

The technological spillovers offered and received can help us understand the role of an industry 

in technological diffusion within the global value chain. Panel (c) and (d) of Figure 5 provide more 

detailed comparisons for productivity growth spillovers from the perspective of receiving and 

offering. In panel (c), the estimates of spillovers received show that China and Korea benefit most 

from the production network with the almost same indirect effect of 1.17%. However, the domestic 

indirect effect of China is 0.94%, indicating the spillovers mostly are coming from the domestic 

industrial linkages within China. The ICT of Korea is the industry that absorbs the largest 

international spillover with an international indirect effect of 0.76%.  

As shown in panel (d), the spillover of productivity growth offered by US Electrical and Optical 

Equipment is 4.94%, which is the highest of all industries in our sample, suggesting that the US 

ICT industry is in the position of an innovation hub in the global value chain. Korea, China and 

Japan follow in descending order with indirect effects of 2.73%, 2.29% and 2.26%. Compared with 

the sample average indirect effect of 0.89%, ICT in these countries seems to be an important engine 

for regional economic development. The Electrical and Optical Equipment sector in the US also 

has the highest international growth spillover at 1.39%, followed by Japan, Korea and China at 
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0.72%, 0.31% and 0.22%. Therefore, although China have the fastest growth measured by the 

output of the ICT sector, the US and Japan still have the largest contributions measured by the 

productivity growth spillover offered to other sectors and countries.  

6 Conclusions 

In this paper, we develop a growth model which allows for technological interdependence on an 

industry-level with heterogeneous productivity growth in the GVCs. The World Input-output tables 

are used to construct the spatial weight matrix, which describes the spatial linkages between any 

pair of industries. We also propose a method to measure technology spillovers by capital deepening, 

intermdediate deepening as well as Hicks-neutral technical change. These spillovers are then 

decomposed into a domestic and international effect by separating out the local multipliers from 

the global multiplier of the spatial effect. We estimate the model using non-spatial, SAR and SDM 

specifications.  

The SDM specification is preferred over the SAR specification based on standard statistical 

criteria. Results from the SDM-Up+Downstream model suggest that the internal elasticities of 

factor inputs measured by direct effects are comparable to those from the non-spatial model. 

However, with the spatial model we are able to estimate the indirect effect, and we found positive 

external elasticities for the capital and intermediate input per capita. The international indirect effect 

accounts for about 7.1% of the external elasticity for each factor. The Domar-weighted direct 

technical change growth rates for China, Korea, India, Japan and US are estimated to be 5.05%, 
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4.06%, 3.35%, 3.32% and 3.30%. The spillovers received account for 31% to 34% of their total 

technological growth and its international portion varies across the countries, with the highest, 

Korea, at 24% and lowest, US, at 3.67%. The developed countries such as US and Japan are the 

highest in net international spillovers offered. The important Electrical and Optical Equipment 

sector of the US has the fastest productivity growth and offers the most spillovers in our sample, 

although China has predominance in scale in this industry. Our model also provides a tool for 

evaluating the impact of supply chain disruption for emergent event like the outbreak of COVID-

19 pandemic in appendix F. Based on the scenarios according to WTO, we simulate the impact of 

pandemic on the output of each country in our sample through three channels with the SDM-

Up+Downstream model, i.e. reduced labor supply, intermediate shortage and the blockage of 

international technology spillovers. 

Our paper also speaks to anxieties felt by both rich and poor countries as trade and supply chains 

become increasingly global. Developed countries worry that technology is imitated by developing 

countries, which may shake their dominate position in the global value chain and induce a series of 

problems such as industry hollowing-out and unemployment. Developing countries worry that they 

are locked in the low value-added activities of GVCs and have limited options to be engaged in 

higher value-added activities such as design, R&D, and marketing. Our results suggest that China, 

as a representative of a developing country, has experienced high productivity growth in the 

globalization, but the spillovers received are mostly from domestic linkages, which may benefit 

from the great varieties of industrial categories in China. The international spillovers are more 
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likely to occur between countries at similar stages of development. Further research oriented 

towards developing a spatial weight matrix that may better depict the network of knowledge 

transfers among industries and estimation techniques for endogenous time-varying social-

economic spatial weight matrices may also allow us to better uncover the mechanism of technology 

interaction among countries and sectors within them and thus provide more insight into the sources 

of the dynamic spillover process.  
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Industry-Specific Productivity and Spatial Spillovers through input-

output linkages: Evidence from Asia-Pacific Value Chain 

 

Abstract 

Global value chains (GVCs) promote the diffusion of knowledge and technology among 

the participants in the production network, where the domestic and cross-border 

intermediate flow among the industries linked the production segments and thus accelerate 

the knowledge sharing and vertical specialization. This technological spillover is a main 

driver of technological progress and long-term growth of participating countries. This 

paper develops an empirical growth model that combines spatial spillovers and 

productivity growth heterogeneity at the industry-level. We exploit the GVCs linkages 

from inter-country input-output tables to describe the spatial interdependencies in 

technology. The spillover effects from capital deepening, intermediate deepening and 

Hicks-neutral technical change are identified using a spatial econometric specification. 

Furthermore, we use local Leontief matrices to decompose these effects into the domestic 

value chain spillovers transmitted within a country and the international value chain 

spillovers transferred across the borders. Our empirical results with the industry-level data 

of five Asia-Pacific countries find that ignoring the spatial interactions appears to leads to 

an overestimation of China’s productivity growth, and underestimation of the developed 

countries, such as the US and Japan. The spillover effects of capital and intermediate inputs 



 

 

per capita are found to be significantly positive. The Domar-weighted direct technical 

change growth rates for China, Korea, India, Japan and US are estimated to be 5.05%, 

4.06%, 3.35%, 3.32% and 3.30%. and the spillovers received account for 31% to 34% of 

their total technological growth. The estimated international spillover offered suggest that 

US is the main contributor of international knowledge diffusion, and the Electrical and 

Optical Equipment sector of the US has the fastest productivity growth and offers the most 

spillovers. These finding provide a better understanding of how technical changes are 

distributed and diffused within the GVCs network.  

 

Keywords: Industry-specific productivity, Spatial panel model, Technological spillovers, 

Global value chain, Asia-Pacific 
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Supplemental Material-Appendices 

A. Quasi-maximum likelihood estimation procedure 

The Quasi-Maximum Likelihood Estimator (QMLE) is shown here for the SAR model for 

both the Time-Varying FE and the Time-Varying RE specification.  The extension to the 

SDM specification is straightforward.  Let 2( , , , )vψ β γ ρ σ ′= . The log-likelihood function 

for Eq. (7), which we rewrite here 

 ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑦𝑦𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + αln𝑘𝑘𝑖𝑖𝑖𝑖 + βln𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖,  

is given by:  
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  (A.1) 

where the vector itX contains the regressors lnkit and lnmit and any other additional 

conditioning variables and the vector β contains the coefficients for these variables. 

The first order condition of maximizing Eq. (A.1) with respect to iδ  is  

 
2

1 1 1

log 1 0.
N T N
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L R y w y X Rρ β δ
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By solving for (A.2), we can obtain  
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Substituting (A.3) into the log-likelihood function (A.1), we obtain the concentrated 

likelihood function  

 2 2
2

1log ( ; , , ) log(2 ) log | |
2 2v v N

v

NTL y T I W V Vβ ρ σ πσ ρ
σ

′= − + − −   , (A.4) 

where 1( ' ) 'Q NTM I Q Q Q Q−= − , and ( )Q Q N T QV M y M W I y M Xρ β= − ⊗ − . 

 

Time-Varying FE Estimator 

Suppose that the true value of ρ  is known, and is ρ∗ .  The within-transformed model 

is 

 ( )Q Q N T QM y M W I y M X Vρ β∗= ⊗ + +   (A.5) 

Estimates of ( )β ρ∗  and 2 ( )vσ ρ∗  are derived as   
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X M X X M y W I y

e e
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=
− −

 

(A.6-A.7) 

where ˆ( ) ( ) ( )N T We y W I y Xρ ρ β ρ∗ ∗ ∗= − ⊗ − . By substituting the closed form solutions 

for the parameters ( )β ρ∗ and 2 ( )vσ ρ∗  into Eq. (A.4), we can concentrate out β  and 2
vσ

and write the concentrated log-likelihood function with single parameter ρ  as:  

 [ ]ln ( ; ) constant log ( ) ( ) log | |
2C N

NTL y e e T I Wρ ρ ρ ρ′= − + − , (A.8) 

By maximizing the concentrated log-likelihood function Eq. (A.8) with respect to ρ , 

we can obtain the optimal solution for ρ . Even if there is no closed-form solution for ρ , 
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we can find a numerical solution because the equation is concave in ρ . Finally, the 

estimators for β  and 2σ  can be calculated by substituting in ˆρ ρ∗ =  into Eq. (A.6) and 

Eq. (A.7). Of course the time-varying fixed effects spatial model cannot identify 

separately all of the global and sector-specific productivity terms and growth rates and 

thus growth results would need to be normalized by an omitted sector. 

Time-Varying Random Effects Estimator 

Alternatively, we can estimate Eq. (7) by generalized least squares (GLS). Denote the 

variance-covariance matrix of the composite error QU Vε = +  as cov( )ε = Ω .  The 

GLS estimator is the SAR estimator applied to the following transformed equation:  

 
1/2 1/2 1/2

1/2 1/2
0

( )
,

v v N T v

v v

y W I y Xσ ρσ σ β

σ δ σ ε

− − −

− −

Ω = Ω ⊗ + Ω

+ Ω + ΩR
 (A.9) 

where QU Vε = + , 2cov( ) ( )v NT NI Q I Qε σ ′Ω = = + ⊗∆ . The estimation procedure for Eq. 

(A.9) is comparable to the procedure for within-estimation.  

 

B. Estimation with spatial weight matrix based on the 2010 input-output tables 

TABLE B.1 

Estimate of SDM Production Function with Spatial Weight Matrix of 2010 

 (1) (2) 

 SDM-Up+Downstream 

 Time-Varying FE Time-Varying RE 

Lnk .103*** .101*** 
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(.011) (.011) 

Lnm .571*** .583*** 

 (.011) (.010) 

W•lnk -.041 -.054** 

 (.030) (.027) 

W•lnm -.175*** -.122*** 

 (.043) (.040) 

Country-Dummy No Yes 

Intercept   -.003 

   (.045) 

Time  .002 

  (.002) 

W•lny(ρ) .427*** .389*** 

 (.027) (.027) 

σv
2 .009 .009 

R2 .825 .829 

Adjusted R2 .811 .814 

LL 3034.411 2944.378 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

 

TABLE B.2 

Elasticity of Input Factors by Estimation with Spatial Weight Matrix of 2010 

SDM-

Up+Downstream 

 Internal External Total 

 Elasticity asy.t-stat Elasticity asy.t-stat Elasticity asy.t-stat 

overall 
Capital 0.103*** 9.031 0.077*** 3.552 0.180*** 6.512 

Intermediate 0.594*** 55.019 0.334*** 6.940 0.928*** 17.712 
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domestic 
Capital 0.103*** 9.031 -0.068*** 3.579 0.171*** 6.772 

Intermediate 0.593*** 55.036 0.296*** 7.177 0.890*** 19.470 

international 
Capital 0.000*** 3.186 -0.009** 3.323 -0.009*** 3.323 

Intermediate 0.000*** 4.892 0.038*** 5.480 0.038*** 5.479 

Notes: Significant at: *5, * *1 and * * * 0.1 percent. 

 

 
 

 

 

FIGURE B.1 

Direct and Indirect Effect of Hicks-neutral Technological Change with spatial weight 
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C. Aggregate productivity growth of each country with different weights 

 

FIGURE C.1 

Aggregate Productivity Growth with Domar Weights and Open-Economy Assumption 

 

 

 

FIGURE C.2 

Gross Output Weighted Average Productivity Growth of Each Country  
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D. Additional tests for correlated random effects and spatial autocorrelation 

specifications 

We also have examined the possible presence of unobserved heterogeneity not 

addressed by the dummies for sectors, the time trends, and the country dummies using 

correlated random effects.  We have added the means of k and m by cross section to the 

non-spatial and the SDM models. Their coefficients are quite small and not significant with 

a p-value for the F-test that they are jointly zero of about 0.50. Not surprisingly, the 

estimates and spillover effects remain relatively unchanged.  

We also carry out a set of tests to identify the most appropriate spatial specification for 

the spatial weight matrix of 𝑊𝑊2. The first row of Table D.1 is Moran I test which suggests 

the autocorrelation exist, which is also consistent with the LM joint test in row 2. Row 3 

suggests spatial autocorrelation in the form of an endogenous spatial lag variable assuming 

no SAR errors should be considered, i.e. a SAR model. Row 4 suggests spatial 

autocorrelation in the form of spatially autocorrelated errors assuming no spatial lag should 

be considered, i.e. a SEM model. The Wald test in row 5 suggests SDM model cannot be 

simplified to SEM model which suggests SDM model instead of SAR or SEM model is 

suitable in our case. The Conditional LM test (Debarsy and Ertur, 2010) in row 6 suggests 

no spatial correlation present when the spatial lag is already accounted for, which suggests 

SDM model instead of SDEM model should be used. 

TABLE D.1 
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Tests for the Selection of Different Spatial Models 

  Statistic Probability 

(1) Moran I-no spatial autocorrelation .1135 0 

(2) LM joint test-no spatial lag and no spatial error 502.0564 0 

(3) LM test-no spatial lag 496.8187 0 

(4) LM test-no spatial error 501.9829 0 

(5) Wald test-spatial Durbin model simplified to spatial error 

model 
83.4370 0 

(6) Conditional LM test-no spatial error in the presence of an 

endogenous spatial lag 
.0494 .8240 

In order to further check whether any leftover spatial autocorrelation exists after we have 

addressed it with our SDM-time-varying random effects specification, we conduct a Moran 

I test on the residual of our preferred SDM model. The statistic is 0.0134 and the probability 

is 0.1122 which cannot reject the hypothesis of no spatial autocorrelation. We have also 

carried out another test on these residuals from our preferred SDM specification and re-

estimated it using a nested version of the semiparametric factor model proposed by Kneip, 

et al. (2012) to model any possible unobserved time varying and sector-specific common 

factors. Again, no significantly different findings emerged from this semiparametric factor 

model extension of our benchmark SDM specification and the Moran tests based on the 

residuals after including the common factors did not reject the null hypothesis of no spatial 

correlations for each time period in our study. 
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E. Technical change and spatial spillovers for SDM-Up+Downstream model by 

industry 

TABLE E.1 
Technical Change and Spatial Spillovers for SDM-Up+Downstream Model by 

Industry 

 Direct 
Received Offered 

 Indirect  
Total 

 Indirect  
Total 

Sum Domestic Int'l Sum Domestic Int'l 
US.1 0.0272*** 0.0070*** 0.0065*** 0.0005** 0.0342*** 0.0115** 0.0094*** 0.0021** 0.0388*** 
US.2 0.0184*** 0.0084*** 0.0082*** 0.0002** 0.0268*** 0.0059** 0.0056** 0.0003* 0.0243*** 
US.3 0.0141** 0.0086*** 0.0083*** 0.0002** 0.0227*** 0.0086* 0.0077* 0.0009 0.0227** 
US.4 0.0185*** 0.0087*** 0.0082*** 0.0006** 0.0272*** 0.0034** 0.0028** 0.0007** 0.0219*** 
US.5 0.0083 0.0074*** 0.0070*** 0.0004** 0.0158** 0.0014 0.0012 0.0002 0.0097 
US.6 0.0067 0.0090*** 0.0087*** 0.0003** 0.0158** 0.0032 0.0027 0.0004 0.0099 
US.7 0.0285*** 0.0077*** 0.0075*** 0.0002** 0.0362*** 0.0081*** 0.0074*** 0.0006** 0.0365*** 
US.8 0.0128** 0.0090*** 0.0084*** 0.0006*** 0.0218*** 0.0073* 0.0060* 0.0013* 0.0201** 
US.9 0.0158*** 0.0087*** 0.0083*** 0.0004** 0.0245*** 0.0053** 0.0047** 0.0005 0.0211*** 
US.10 0.0181*** 0.0070*** 0.0067*** 0.0003** 0.0252*** 0.0027** 0.0024** 0.0003* 0.0209*** 
US.11 0.0153*** 0.0094*** 0.0089*** 0.0005** 0.0247*** 0.0098** 0.0088** 0.0011* 0.0251*** 
US.12 0.0104** 0.0096*** 0.0089*** 0.0007*** 0.0200*** 0.0037 0.0030* 0.0007 0.0141** 
US.13 0.0768*** 0.0075*** 0.0060*** 0.0015*** 0.0843*** 0.0494*** 0.0354*** 0.0139*** 0.1262*** 
US.14 0.0148** 0.0103*** 0.0094*** 0.0009*** 0.0251*** 0.0072* 0.0057* 0.0015* 0.0220** 
US.15 0.0273*** 0.0085*** 0.0081*** 0.0004** 0.0358*** 0.0046** 0.0040** 0.0006** 0.0319*** 
US.16 0.0140** 0.0085*** 0.0084*** 0.0001 0.0225*** 0.0041* 0.0040* 0.0002 0.0181** 
US.17 -0.0017 0.0093*** 0.0090*** 0.0003** 0.0076 -0.0018 -0.0016 -0.0002 -0.0035 
US.18 0.0299*** 0.0075*** 0.0073*** 0.0002** 0.0374*** 0.0359*** 0.0334*** 0.0024* 0.0657*** 
US.19 0.0115** 0.0079*** 0.0078*** 0.0002* 0.0194*** 0.0040* 0.0037* 0.0003 0.0154** 
US.20 0.0224*** 0.0080*** 0.0078*** 0.0003** 0.0305*** 0.0185** 0.0169*** 0.0016* 0.0409*** 
US.21 0.0167*** 0.0075*** 0.0074*** 0.0002* 0.0243*** 0.0083* 0.0077* 0.0006 0.0250*** 
US.22 0.0048 0.0096*** 0.0094*** 0.0002* 0.0144** 0.0058 0.0055 0.0004 0.0106 
CN.1 -0.0035 0.0132*** 0.0128*** 0.0004** 0.0097 -0.0034 -0.0032 -0.0002 -0.0069 
CN.2 -0.0221*** 0.0115*** 0.0110*** 0.0005** -0.0106 -0.0114** -0.0109** -0.0005* -0.0335*** 
CN.3 0.0442*** 0.0035* 0.0032* 0.0003* 0.0477*** 0.0250*** 0.0241*** 0.0009* 0.0692*** 
CN.4 0.0389*** 0.0089*** 0.0075*** 0.0013** 0.0478*** 0.0215*** 0.0165*** 0.0049*** 0.0604*** 
CN.5 0.0610*** 0.0094*** 0.0088*** 0.0006** 0.0704*** 0.0086*** 0.0080*** 0.0006** 0.0696*** 
CN.6 0.0402*** 0.0103*** 0.0097*** 0.0005** 0.0505*** 0.0096*** 0.0089*** 0.0007** 0.0498*** 
CN.7 0.0148** 0.0060** 0.0057** 0.0003* 0.0208*** 0.0042* 0.0041* 0.0001 0.0190** 
CN.8 0.0438*** 0.0095*** 0.0090*** 0.0006** 0.0534*** 0.0267*** 0.0251*** 0.0016** 0.0705*** 
CN.9 0.0427*** 0.0127*** 0.0119*** 0.0008** 0.0554*** 0.0145*** 0.0134*** 0.0011** 0.0572*** 
CN.10 0.0456*** 0.0070*** 0.0066*** 0.0004** 0.0526*** 0.0287*** 0.0276*** 0.0011** 0.0743*** 
CN.11 0.0394*** 0.0098*** 0.0091*** 0.0007** 0.0492*** 0.0376*** 0.0357*** 0.0018** 0.0769*** 
CN.12 0.0466*** 0.0115*** 0.0108*** 0.0006** 0.0580*** 0.0217*** 0.0208*** 0.0009** 0.0683*** 
CN.13 0.0471*** 0.0117*** 0.0094*** 0.0024*** 0.0588*** 0.0226*** 0.0204*** 0.0022** 0.0698*** 
CN.14 0.0567*** 0.0114*** 0.0107*** 0.0007** 0.0681*** 0.0136*** 0.0130*** 0.0007** 0.0704*** 
CN.15 0.0739*** 0.0122*** 0.0116*** 0.0006** 0.0861*** 0.0074*** 0.0068*** 0.0006** 0.0812*** 
CN.16 0.0027 0.0096*** 0.0092*** 0.0004** 0.0123** 0.0008 0.0007 0.0000 0.0035 
CN.17 0.0025 0.0130*** 0.0126*** 0.0004** 0.0155** 0.0014 0.0014 0.0000 0.0039 
CN.18 -0.0017 0.0117*** 0.0113*** 0.0004** 0.0100 -0.0016 -0.0015 -0.0001 -0.0033 
CN.19 -0.0084 0.0088*** 0.0086*** 0.0003* 0.0005 -0.0016 -0.0015 -0.0001 -0.0099 
CN.20 0.0063 0.0099*** 0.0092*** 0.0006** 0.0162** 0.0036 0.0033 0.0002 0.0099 
CN.21 -0.0056 0.0104*** 0.0100*** 0.0004** 0.0048 -0.0020 -0.0019 -0.0001 -0.0076 
CN.22 -0.0184*** 0.0094*** 0.0083*** 0.0010*** -0.0091 -0.0040** -0.0038** -0.0002* -0.0225*** 
JP.1 0.0205*** 0.0064*** 0.0061*** 0.0003** 0.0269*** 0.0066** 0.0062** 0.0004 0.0271*** 
JP.2 0.0178*** 0.0076*** 0.0074*** 0.0002* 0.0254*** 0.0023** 0.0021** 0.0002* 0.0201*** 
JP.3 0.0112* 0.0076*** 0.0073*** 0.0003** 0.0187*** 0.0062 0.0057 0.0004 0.0173* 
JP.4 0.0048 0.0088*** 0.0077*** 0.0011*** 0.0136** 0.0009 0.0006 0.0003 0.0056 
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JP.5 0.0143** 0.0071*** 0.0067*** 0.0004** 0.0214*** 0.0026* 0.0023* 0.0003* 0.0170** 
JP.6 0.0090 0.0084*** 0.0081*** 0.0003** 0.0174*** 0.0027 0.0025 0.0003 0.0117 
JP.7 0.0091* 0.0084*** 0.0081*** 0.0003** 0.0175*** 0.0023 0.0020 0.0003 0.0114* 
JP.8 0.0206*** 0.0077*** 0.0069*** 0.0008*** 0.0283*** 0.0111** 0.0087** 0.0024** 0.0317*** 
JP.9 0.0121** 0.0087*** 0.0083*** 0.0005** 0.0208*** 0.0045* 0.0039* 0.0005 0.0165** 
JP.10 0.0192*** 0.0070*** 0.0067*** 0.0003** 0.0262*** 0.0047** 0.0040** 0.0006* 0.0239*** 
JP.11 0.0141** 0.0082*** 0.0074*** 0.0008*** 0.0223*** 0.0122* 0.0096* 0.0026* 0.0263** 
JP.12 0.0217*** 0.0092*** 0.0082*** 0.0009*** 0.0309*** 0.0083** 0.0064** 0.0018** 0.0300*** 
JP.13 0.0367*** 0.0091*** 0.0067*** 0.0024*** 0.0457*** 0.0229*** 0.0158*** 0.0072*** 0.0596*** 
JP.14 0.0169*** 0.0090*** 0.0080*** 0.0010*** 0.0259*** 0.0061* 0.0048** 0.0013* 0.0229*** 
JP.15 0.0112** 0.0080*** 0.0076*** 0.0004** 0.0192*** 0.0014 0.0012 0.0002 0.0126** 
JP.16 0.0285*** 0.0076*** 0.0074*** 0.0002* 0.0361*** 0.0124*** 0.0116*** 0.0008* 0.0409*** 
JP.17 0.0080 0.0081*** 0.0078*** 0.0003** 0.0161*** 0.0085 0.0078 0.0007 0.0165 
JP.18 0.0254*** 0.0070*** 0.0067*** 0.0002* 0.0323*** 0.0391** 0.0367** 0.0024 0.0645*** 
JP.19 0.0075 0.0082*** 0.0080*** 0.0002* 0.0157** 0.0035 0.0033 0.0002 0.0110 
JP.20 0.0183*** 0.0078*** 0.0076*** 0.0003** 0.0261*** 0.0141** 0.0128** 0.0013* 0.0324*** 
JP.21 0.0156*** 0.0079*** 0.0078*** 0.0001 0.0236*** 0.0092* 0.0087* 0.0005 0.0248** 
JP.22 0.0117** 0.0081*** 0.0079*** 0.0002* 0.0197*** 0.0083 0.0078 0.0005 0.0200* 
KR.1 0.0169*** 0.0064*** 0.0055** 0.0008** 0.0232*** 0.0068** 0.0066** 0.0002 0.0236** 
KR.2 0.0458*** 0.0088*** 0.0081*** 0.0006* 0.0546*** 0.0032*** 0.0031*** 0.0000* 0.0490*** 
KR.3 0.0135** 0.0068*** 0.0058*** 0.0011** 0.0203*** 0.0063* 0.0061* 0.0002 0.0198** 
KR.4 0.0156** 0.0099*** 0.0052*** 0.0048*** 0.0256*** 0.0049* 0.0041* 0.0009* 0.0206** 
KR.5 0.0213*** 0.0069*** 0.0059*** 0.0010** 0.0281*** 0.0019** 0.0018** 0.0000* 0.0231*** 
KR.6 0.0118** 0.0086*** 0.0070*** 0.0016** 0.0204*** 0.0025* 0.0024* 0.0001 0.0144** 
KR.7 0.0199*** 0.0090*** 0.0076*** 0.0014** 0.0289*** 0.0059** 0.0056** 0.0002* 0.0258*** 
KR.8 0.0290*** 0.0088*** 0.0062*** 0.0026*** 0.0377*** 0.0161*** 0.0149*** 0.0013** 0.0451*** 
KR.9 0.0108* 0.0102*** 0.0086*** 0.0016** 0.0210*** 0.0035 0.0033 0.0001 0.0143* 
KR.10 0.0243*** 0.0080*** 0.0070*** 0.0009* 0.0323*** 0.0103*** 0.0101*** 0.0002* 0.0346*** 
KR.11 0.0171*** 0.0090*** 0.0068*** 0.0022*** 0.0261*** 0.0116** 0.0110** 0.0006* 0.0288*** 
KR.12 0.0274*** 0.0096*** 0.0077*** 0.0019** 0.0370*** 0.0098** 0.0094** 0.0004* 0.0372*** 
KR.13 0.0523*** 0.0117*** 0.0042*** 0.0076*** 0.0640*** 0.0273*** 0.0242*** 0.0031*** 0.0796*** 
KR.14 0.0270*** 0.0098*** 0.0077*** 0.0021** 0.0368*** 0.0092** 0.0089*** 0.0004** 0.0362*** 
KR.15 0.0156*** 0.0079*** 0.0067*** 0.0012** 0.0235*** 0.0028** 0.0027** 0.0001 0.0184*** 
KR.16 0.0259*** 0.0085*** 0.0077*** 0.0008* 0.0343*** 0.0063*** 0.0062*** 0.0001* 0.0322*** 
KR.17 0.0018 0.0093*** 0.0081*** 0.0012** 0.0110* 0.0014 0.0014 0.0000 0.0032 
KR.18 0.0184*** 0.0082*** 0.0073*** 0.0010** 0.0266*** 0.0117** 0.0115** 0.0002 0.0301*** 
KR.19 0.0030 0.0082*** 0.0074*** 0.0008* 0.0112 0.0010 0.0010 0.0000 0.0040 
KR.20 0.0228*** 0.0082*** 0.0064*** 0.0018** 0.0309*** 0.0125** 0.0119** 0.0006** 0.0353*** 
KR.21 0.0164*** 0.0083*** 0.0075*** 0.0008* 0.0247*** 0.0083** 0.0082** 0.0001 0.0248*** 
KR.22 -0.0040 0.0089*** 0.0080*** 0.0009* 0.0049 -0.0023 -0.0023 -0.0000 -0.0064 
IN.2 0.0192*** 0.0083*** 0.0079*** 0.0004** 0.0275*** 0.0178** 0.0176** 0.0001* 0.0369*** 
IN.3 0.0100* 0.0081*** 0.0078*** 0.0004** 0.0181*** 0.0028 0.0028 0.0000 0.0128* 
IN.4 0.0229*** 0.0081*** 0.0079*** 0.0003** 0.0311*** 0.0115** 0.0114** 0.0001* 0.0344*** 
IN.5 0.0246*** 0.0089*** 0.0081*** 0.0008*** 0.0334*** 0.0118** 0.0115** 0.0002** 0.0364*** 
IN.6 -0.0245*** 0.0084*** 0.0081*** 0.0003** -0.0161** -0.0057** -0.0057** -0.0000* -0.0302*** 
IN.7 0.0128** 0.0089*** 0.0083*** 0.0006** 0.0217*** 0.0019* 0.0019* 0.0000* 0.0148** 
IN.8 0.0046 0.0080*** 0.0078*** 0.0002* 0.0126* 0.0020 0.0020 0.0000 0.0066 
IN.9 0.0250*** 0.0088*** 0.0081*** 0.0007** 0.0338*** 0.0129*** 0.0127*** 0.0002** 0.0379*** 
IN.10 0.0182*** 0.0095*** 0.0089*** 0.0006** 0.0277*** 0.0037** 0.0036** 0.0000* 0.0219*** 
IN.11 0.0300*** 0.0059** 0.0051** 0.0007*** 0.0358*** 0.0082** 0.0081** 0.0001** 0.0382*** 
IN.12 0.0313*** 0.0079*** 0.0075*** 0.0004** 0.0392*** 0.0309*** 0.0308*** 0.0002* 0.0623*** 
IN.13 0.0017 0.0107*** 0.0101*** 0.0006** 0.0123* 0.0005 0.0005 0.0000 0.0022 
IN.14 0.0412*** 0.0095*** 0.0083*** 0.0012*** 0.0506*** 0.0052*** 0.0051*** 0.0001** 0.0464*** 
IN.15 0.0200*** 0.0097*** 0.0091*** 0.0005** 0.0297*** 0.0079** 0.0078** 0.0001* 0.0279*** 
IN.16 0.0312*** 0.0101*** 0.0094*** 0.0007*** 0.0414*** 0.0090** 0.0088** 0.0001** 0.0402*** 
IN.17 0.0309*** 0.0081*** 0.0079*** 0.0002* 0.0390*** 0.0183*** 0.0183*** 0.0001* 0.0492*** 
IN.19 0.0027 0.0086*** 0.0083*** 0.0004** 0.0114* 0.0016 0.0016 0.0000 0.0043 
IN.20 0.0273*** 0.0087*** 0.0086*** 0.0002* 0.0360*** 0.0030** 0.0030** 0.0000 0.0303*** 
IN.21 0.0133** 0.0088*** 0.0085*** 0.0002* 0.0221*** 0.0132* 0.0131* 0.0001 0.0265** 
IN.22 0.0232*** 0.0087*** 0.0085*** 0.0002* 0.0319*** 0.0092** 0.0092** 0.0000 0.0324*** 

Notes: Significant at: *5, * *1 and * * * 0.1 percent. 
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F. Simulation of the impact of supply chain disruption: scenarios of the COVID-19 

pandemic outbreak 

   The outbreak of the COVID-19 pandemic is rapidly changing the world. Social 

distancing measures and lock-downs have changed the operation, organization, and 

functioning of the international economic system. The economic effects of COVID-19 have 

drawn more and more concern recently both from international organizations (OECD, 2020; 

ILO, 2020) and academia (Barro et al., 2020; McKibbin and Fernando, 2020). Since the 

shocks of COVID-19 to the world are unprecedented, the prediction of economic effects is 

a rather daunting task, made no less so by necessary assumptions about how the disease 

progresses.  At the present there is great uncertainty about how long countries will have 

to keep in place or transition from social distancing measures they have undertaken and 

when and how international travel and transport restrictions can be relaxed and modified. 

Thus most of the current projection and forecast studies tend to build scenarios that make 

assumptions about the duration of the pandemic, the social distancing measures employed, 

and demand and supply responses.  

Our model provides an option for estimating the compound impacts of epidemics. In 

our simulations, we assume the economy is affected through three different channels: (i) 

reduced labor supply; (ii) shortage of intermediate input supply; (iii) disruption of 

technology spillovers through international linkages2.  

                                                             
2 The sector demand and supply are not included in our model yet. 
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We follow WTO (2020) to illustrate the potential impacts of the Covid-19 pandemic 

on the economy based on two distinct scenarios.  The first is the optimistic V-shaped and 

the second is the pessimistic L-shaped recovery, which we outline in Table F.1. In the V-

shaped recovery the spread of the pandemic will be under control in a relatively short 

period because of weather conditions or medical solutions. Thus the social distancing 

measures can be relieved in three months. The percentage of reduced labor supply can be 

estimated based on Table 8, which illustrates the magnitude of influence due to the factors 

such as falling ill, death, and loss of productivity when working at home and the 

distractions that may hold, including caring for children after school closures. World 

merchandise trade is expected to fall by 13% on average forecasted by WTO. In the L-

shaped recovery the spread of the pandemic is out of control and leads to a higher 

percentage of morbidity and mortality. The social distancing measures would need to last 

for 1 year until an effective vaccine is developed. World trade is expected to fall by 32% 

on average. Given the level of uncertainties, it is worth emphasizing that these scenarios 

should be viewed as explorations of different possible trajectories for the crisis rather than 

specific predictions of future developments. 

TABLE F.1 
Prediction of Economic Shocks Under the Two Scenarios 

  V-shaped 

(optimistic) 

L-shaped 

(pessimistic) 

Labour supply Morbidity  1%  4%  
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Mortality 2% 2% 

Working from home 3 months 1 year 

School closures 3 months 3 months 

Trade flows  

international 

intermediate supply 

Exports North America -17.1% -40.9% 

Asia -13.5% -36.2% 

Imports North America -14.5% -33.8% 

Asia -11.8% -31.5% 

Notes: The fall of international intermediate input supply is assumed to be in the same percentage 

with the fall of trade flows. 

Source: “Trade set to plunge as COVID-19 pandemic upends global economy” WTO: 2020, 

https://www.wto.org/english/news_e/pres20_e/pr855_e.htm 

 

TABLE F.2 

Percent Reduction in Labor Supply and the Contribution of the Different Factors 

Regions Morbidity  Mortality School 

closure 

Work home Total 

V-shaped (optimistic) % 

United States -0.12 -0.0068 -2.51 -1.25 -3.88 

China  -0.12  -0.0068  -2.11  -1.25 -3.49 

Japan -0.12 -0.0068 -1.87 -1.25 -3.24 

Korea -0.12 -0.0068 -1.60 -1.25 -2.97 

https://www.wto.org/english/news_e/pres20_e/pr855_e.htm
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India -0.12 -0.0068 -1.79 -1.25 -3.17 

L-shaped (pessimistic) % 

United States -0.48 -0.0068 -2.51 -5 -8.00 

China  -0.48  -0.0068  -2.11  -5 -7.60 

Japan -0.48 -0.0068 -1.87 -5 -7.36 

Korea -0.48 -0.0068 -1.60 -5 -7.09 

India -0.48 -0.0068 -1.79 -5 -7.28 

Source: “Trade set to plunge as COVID-19 pandemic upends global economy” WTO: 2020, 

https://www.wto.org/english/news_e/pres20_e/pr855_e.htm 

 

The impact of the pandemic can be attributed to three aspects of our spatial production 

model. First, as shown in Table F.2, the annual reduction of labor supply in each country 

in the two scenarios is calculated based on the contribution of the four factors. Second, the 

fall in exports and imports will lead to a shortage of intermediate input supply. With the 

assumption that the domestic intermediate input is unaffected, we can estimate the 

magnitude of shortage of the intermediate input. Third, in our model, international trade 

also plays an important role as the channel of knowledge spillovers, which contributes to 

output growth. The fall in international trade will weaken the international intermediate 

linkages in the global value chain. 

From the SDM model in Eq.13, we can express the logarithm of output as: 

https://www.wto.org/english/news_e/pres20_e/pr855_e.htm
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𝑙𝑙𝑙𝑙𝑙𝑙 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑘𝑘 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛽𝛽𝛽𝛽 + (𝜑𝜑 −

𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑚𝑚 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉� + 𝑙𝑙𝑙𝑙𝑙𝑙  

= (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1�𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑄𝑄𝑄𝑄 + 𝑉𝑉 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇𝑘𝑘 + (𝜑𝜑 −

𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇𝑚𝑚 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙�. (F.1) 

For brevity, we assume that during this period the individual time trend and relative 

output elasticities of input factors are fixed, in which case 𝑌𝑌 can be expressed in terms of 

five components that represent the contribution of intermediate linkages 𝑈𝑈𝑈𝑈, capital 𝑈𝑈𝑈𝑈, 

labor 𝑈𝑈𝑈𝑈, intermediate input 𝑈𝑈𝑈𝑈 and time trend 𝑈𝑈𝑈𝑈: 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑈𝑈(𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈), (F.2) 

where 𝑈𝑈𝑈𝑈 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 , 𝑈𝑈𝑈𝑈 = [𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑈𝑈𝑈𝑈 = 𝛾𝛾𝛾𝛾 − (𝜙𝜙 +

𝜑𝜑)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙, 𝑈𝑈𝑈𝑈 = 𝛽𝛽𝛽𝛽 + (𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑈𝑈𝑈𝑈 = 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉 . 

We also assume in this baseline simulation that the capital input and Hicks-neutral 

technical change are not influenced by the disease, in which case the change in 𝑌𝑌 due to 

the shock of the pandemic can be expressed as : 

∆𝑌𝑌 = 𝑈𝑈𝑈𝑈1(𝑈𝑈𝑈𝑈1 + 𝑈𝑈𝑀𝑀1 + 𝑈𝑈𝐾𝐾 + 𝑈𝑈𝑈𝑈)−𝑈𝑈𝑈𝑈0(𝑈𝑈𝑈𝑈0 + 𝑈𝑈𝑀𝑀0 + 𝑈𝑈𝐾𝐾 + 𝑈𝑈𝑈𝑈),             (F.3) 

where the subscript 1 and 0 represent the state before and after the shock. 

 Then the contribution from each channel can be decomposed into three parts:  

∆𝑌𝑌 = ∆𝑈𝑈𝑈𝑈(𝑈𝑈𝑈𝑈1 + 𝑈𝑈𝑀𝑀1 + 𝑈𝑈𝐾𝐾 + 𝑈𝑈𝑈𝑈) + 𝑈𝑈𝑈𝑈0∆𝑈𝑈𝑈𝑈 + 𝑈𝑈𝑈𝑈0∆𝑈𝑈𝑈𝑈 

= 𝐶𝐶(∆𝑈𝑈𝑈𝑈) + 𝐶𝐶(∆𝑈𝑈𝑈𝑈) + 𝐶𝐶(∆𝑈𝑈𝑈𝑈),  (F.4) 
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where 𝐶𝐶(∆𝑈𝑈𝑈𝑈) represents the effect due to the reduction in technology diffusion because 

of the reduction in trade, 𝐶𝐶(∆𝑈𝑈𝑈𝑈) represents the reduction of labor supply, and 𝐶𝐶(∆𝑈𝑈𝑈𝑈) 

represents the effect due to a shortage of intermediate inputs. We also follow the two-polar-

averaging decomposition method of Dietzenbacher and Los (1998) to calculate the average 

contributions of each component. 

 

 

The estimated impacts of the pandemic on the total output of each country are shown 

in Figure F.1. In the V-shaped scenario, the annual average output of US, China, Japan, 

Korea and India industries will drop by 2.5%, 3.7%, 2.6%, 6.2%, and 4.9%. If we look at 

the composition of the impact by these three channels, we find that the contributions of 

reduced labor supply are similar in each country and leads to a 0.65%~0.95% drop in output. 

However, the decline due to intermediate shortage is quite different among countries. India 

and Korea, which have a high degree of dependence on foreign intermediate products, have 

an equal 3.4% output reduction due to international intermediate input supply shortages. In 

(a) Percentage of Decline in Output in Scenario 1     (b) Percentage of Decline in Output in Scenario 2 

FIGURE G.1 

 Impact of Pandemic on the Output of Each Country through Three Channels 
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the US and Japan, the decline due to a shortage of intermediate inputs only leads to 0.69% 

and 0.84% drop, while in China it leads to 1.9% drop.  Although China is the largest 

country in terms of the volume of merchandise trade, domestic intermediate inputs account 

for a relatively large proportion of intermediate input supply. From the perspective of 

international technology spillover, the decline in Korea of 2.2% is the largest, followed by 

Japan, China, US, and India at 0.96%, 0.93%, 0.83%, and 0.66%.  In the L-shaped 

scenario, as shown in Figure 6(b), the annual decline of average output in the US, China, 

Japan, Korea and India is 6.64%, 7.79%, 6.75%,10.16% and 8.88%. The contributions 

from each of the three channels expand correspondingly. 

 

References 

Barro, R. J., Ursúa, J. F., and Weng, J., 2020. The coronavirus and the great influenza 

pandemic: Lessons from the “Spanish flu” for the coronavirus’s potential effects on 

mortality and economic activity. National Bureau of Economic Research Working 

Paper No. 26866. 

Dietzenbacher, E. and Los, B., 1998. Structural decomposition techniques: Sense and 

sensitivity. Economic Systems Research, 10(4), pp.307-324. 



18 

 

ILO, 2020. ILO Monitor: COVID-19 and the world of work. Fifth edition. 

https://www.ilo.org/wcmsp5/groups/public/@dgreports/@dcomm/documents/briefing

note/wcms_749399.pdf. [accessed 9/15/2020]. 

McKibbin, Warwick and Fernando, R., 2020. The global macroeconomic impacts of 

Covid-19: seven scenarios. CAMA Working Paper No. 19. 

OECD, 2020. OECD Economic Outlook, Interim Report March 2020. Paris: OECD 

Publishing. 

WTO, 2020. Trade Statistics and Outlook-Trade set to plunge as pandemic upends global 

economy. Washington DC. 

 


	Industry specific productivity and spillovers 2_16_21
	Industry-Specific Productivity and Spatial Spillovers through input-output linkages: Evidence from Asia-Pacific Value Chain
	Industry-Specific Productivity and Spatial Spillovers through input-output linkages: Evidence from Asia-Pacific Value Chain
	1 Introduction
	2 Model
	2.1 A production function with heterogeneity in technical progress
	2.2 Spatial model with technology spillover
	2.3 Technology Spillovers and Spatial Elasticities
	2.4 Decomposition of technology spillovers by domestic and international effect

	3 Estimation
	4 Data
	5 Empirical results
	5.1 Estimations of Production Functions
	5.2 The elasticity of input factors and spatial spillovers
	5.3 Hicks-neutral technical change and spatial spillovers
	5.4 Productivity level and change for selected industries: electrical and optical equipment

	6 Conclusions
	References

	Supplemental Material and Appendices 02_16_2021
	SUPPLEMENTAL MATERIALS AND APPENDICES FOR
	Industry-Specific Productivity and Spatial Spillovers through input-output linkages: Evidence from Asia-Pacific Value Chain0F
	Industry-Specific Productivity and Spatial Spillovers through input-output linkages: Evidence from Asia-Pacific Value Chain
	Supplemental Material-Appendices
	A. Quasi-maximum likelihood estimation procedure
	B. Estimation with spatial weight matrix based on the 2010 input-output tables
	C. Aggregate productivity growth of each country with different weights
	D. Additional tests for correlated random effects and spatial autocorrelation specifications
	E. Technical change and spatial spillovers for SDM-Up+Downstream model by industry
	F. Simulation of the impact of supply chain disruption: scenarios of the COVID-19 pandemic outbreak
	References



