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Abstract

Power-law distributions have a wide range of applications including physics, eco-
nomics, and biology. We derive a new family of densities with support on the real
line which obeys a broken power law called the volcano distribution. An estimation
procedure is also outlined.

The volcano density is very flexible as it can be unbounded or bimodal. It allows
for an infinite mean or an undefined mean. The complexity of this distribution calls for
a novel semiparametric estimation approach which we apply to stock market returns
data.

1 Introduction

This paper seeks to extend the notion of the power law to a family of densities on the real
line that allow for asymmetry. In statistical applications, densities on the real line tend
to be symmetric about the mean or median. Asymmetry is reserved almost exclusively for
densities with support on the positive or negative real numbers, but even these densities can
be extended to symmetric densities on the real line. However, it is often the case that data
exhibit fundamental asymmetry. It seems reasonable that stock market returns could have
systematically different tail behavior for losses and gains. The distribution of wealth might
behave quite differently for people with negative wealth as opposed to the very rich. We
might even think that the distribution of wealth has infinite expectation which would have
interesting policy implications for income inequality.

There are numerous other process in a wide variety of fields that have shown evidence
of power laws. Gabaix (1999) gives many examples of processes that obey power laws in
economics. One of which is that a reflected geometric Brownian motion can be described
by a power law. In fact recalling that the Black-Scholes equation for a Eurpoean call option
can be written as
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The solution to this PDE implies that the underlying distribution is lognormal, however,
power-laws can also be a solution to (1). Ignoring the boundary conditions, an alternative
solution is

C(8,t) = STCe(CH)(raQﬂ)(Tt) (2)

Of course this solution doesn’t correspond to the boundary conditions implied by a Eu-
ropean call, but it does provide some intuition as to why power-laws might be relevant.

In the finance literature there is also some debate on whether stock market returns
have infinite variance. This is sometimes discussed as a choice between Gaussian or stable
distributions. While Taleb (2009) has written that this is an irrelevant issue, he does advocate
using power laws to describe daily returns.

The problem with power laws is that they are unbounded at the origin, so they are
restricted to a some domain which cannot include the origin.

In order to see the importance of power laws, consider a random variable, z, which follows
a power law distributions if it is drawn from a probability distribution that has a density
with the following property

pla) oca™7! (3)

with a > 0 and the density will be scale invariant, which is a defining property of power law
functions. In general it will not be possible to define a power law density over the entire real
line. For example, if & = 2, the integral around 0 will diverge

1
/ z7%dr = 400 (4)
0

The solution to this problem is usually to restrict the integration over some xp;, > 0
which will imply that = has a Pareto distribution. Axtell (2001) uses a discrete version of
the Pareto distribution to determine that firm size obeys a power law. A weaker form of
the power law distributions is to simply require that p(x) be asymptotically scale invariant
instead of scale invariant everywhere. Theses densities will have the form

p(x) o< @)z (5)

o L(tr)
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Where L is a slowly varying function which will preserve the asymptotic scale invariance.
This means that the density will be approximately a power law for suitable large . Grabchak
and Samorodnitsky (2010) use this approach for a symmetric Pareto density smoothed with
a Gaussian to allow for integration around 0. Of course this approach will only be scale
invariant in the tails.

If we relax the assumption of global scale invariance, then the power law can be general-
ized so that there exists a mutually disjoint collection of sets,R;, such that

plw) oc ™ (7)



For all x € R;. In general this will not be a globally scale invariant function because the
power of x can vary; however, it will be scale invariant inside any of the sets that partition
the real line. It is not immediately clear how this helps, but consider the following integrals

1
/ v 2dr = 400 (8)
0
+o0 )
/ x 2dx = 400 (9)
1

1
/ v idy =2 (10)
0
+o0
/ v 3dr =1 (11)
1

The integrals in equations (8) and (9) diverge while the integrals equations (10) and (11)
converge. This indicates that the minimum of the two functions can be integrated and we

have the simple relation
teoq 1
/0 = A \/de =3 (13)

This leads to a density that represents a power law, but the power changes over the
domain to ensure integrability. In application, power laws are often described as an effect
of the tail behavior of a distribution, but it does not describe the entire distribution. This
framework automatically allows for the tail behavior to be different than the middle part of
the distribution, so the entire distribution can be described as a power law at least locally.

For example in stock market returns data, the volcano density is flexible enough to
essentially allow for a different probability distribution when there are days with large gains
or losses.

Bounded densities are used almost exclusively in application. Many proofs in mathemat-
ical statistics require the density to be bounded, but there are already unbounded densities
lurking among us. The beta distribution with both parameters equal to .5 will be unbounded
at 0 and 1 and it will still have nice properties such as finite mean and variance.

In this paper, a family of distributions will be introduced that is unbounded or bimodal.
It can have fat-tails or heavy-tails. It can have a mean that is finite, infinite, or undefined.
The density and its distribution function can be expressed analytically. Most importantly it
is the natural family of random variables following a power law.

2 Model

Equation (13) can be extended to a family of densities with support on the whole real line
This relationship can be exploited to define a density function. First we will restrict the
density to have fixed scale, which determines the kink in the density, and location, which
is where the density is unbounded. Then the location and scale parameters can allowed to
vary afterwards.
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Figure 1: Volcano density for different parameters
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where C' = <— + B4+ E) and min(a, 3,9,¢) > 0. The density will be unbounded
Q

whenever min(d, 5) > 1; and it will be bimodal whenever min(d, 5) < 1. If min(é, 8) = 1,
then the density will be flat on one or both sides of the 0. This fact is the impetus for
the name of the distribution because as min(d, 5) increases past unity the function has the
appearance of an exploding volcano as can be seen in Figure 1.

In order to work with this density, it will be helpful to use the Heavyside step function.
In some applications, the value of the function at the origin is defined differently or even left
undefined, so to avoid confusion we define the Heavyside step function as

0 <0
Hz)=¢ 1 z=0
1 >0

which is the integrand of the Dirac delta function. Iverson brackets will also be used: for

example,
0 <0
[x>0]:{ 1 x;O

The continuity of the volcano density, except at the origin, justifies using the Iverson
brackets interchangeably with the Heavyside step function.

This density is more difficult to work with than more standard densities that are bounded
and unimodal. It could even be the case that there is a bounded density that is arbitrarily
close to the volcano density. Any such bounded density would obviously be preferred, but
there can be no such approximation as the following demonstrates.
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Theorem 2.1. There are no continuous or bounded functions that are equal to the standard
volcano density almost everywhere.

Proof. Suppose g(x) is a continuous or bounded function that is equal to v(x) a.e., further-
more, let § = 2, which means v(z) is unbounded in a neighborhood of the origin. Clearly a
continuous function must be bounded except maybe on a set of measure zero. Without loss

of generality we can assume that the essential supremum of g(z) is M > 0. Since v(z) is

decreasing whenever z is nonnegative, then v(x) > M whenever = € |0, J\% . Since g(x) is

essentially bounded by M, it must be the case that
02

2
/ g— Mdx <0
0

However, if we integrate v(x) over the same set of positive measure, we find

c2

M2 2 C? C2
Co™® = Mdr = |20\ — ——| = — >0
/0 v * M2 M| M
which contradicts the assumption that g(z) is equal to v(x) a.e. O

While this function is unbounded, it is still an integrable function so it has an abso-
lutely continuous distribution function and we may conclude that the density represents an
absolutely continuous random variable.

Lemma 2.2. The standard volcano density can be rewritten as

v(@) = C{(=2) " H (=2 = 1) + (~0) H(=2)H(w + 1) } + .
C{ﬁ*H@ﬂﬂl—@+x*”H@—l&

Proof. Suppose that for nonnegative x, the inequality 2571 < 271 is satisfied. If we apply
the natural logarithm to both sides of the inequality and rearrange, we have

(§+g)m@)go (16)

which is satisfied precisely when x is not greater than one. Similarly 25! > z=¢-1

whenever x > 1. A similar argument will finish the result for negative x values.
O

Theorem 2.3. The distribution function of the volcano density will be given by

[—EA=D]™"

Pr(:cét):C{ +B[1—[—(t/\0)]é]ﬁ(t+1)}+

. (17)
H&}+Q;g:2H&—1%

=

C{é[t/\l]



Proof.
/t v(z)de=C {/M_l (=) Vde+ H(t+1) /MO (—a:)ﬁlf_ldx} +

-1

C{H(t) /0 o gy /1 v (x)“dw}

= C{[_ (t Aa_l)]_a +8 [1 —[- (tAO)]ﬂ H(t+1)}+

(1—t=¢
¢

=

C{é[t/\l] H(t) + H(t—l)}

]

It is a relatively simple exercise to take the derivative of the distribution function to get
back to the original density function. If location and scale parameters are added, the volcano
density is given by

f(x)zg{(N;x>_a_l[x§u—0]+(M;x)é_l[u—a<x§u]}+
g{(l;u)él <z <p+ol+ (%)Cl[x>y+a]}

where f is now our volcano density with location parameter, u, and scale parameter, o.
Of course this implies the standard properties of location scale families: namely, If z ~
V(0,1,,5,6,(), then oz +u ~ V(p,0,a,,9,().

It is important to verify that this family of distributions is identified by which we mean
for any 6 # 6y

v(x|0) # v(z|6h)

where 6 = («, 3,6, (, u,0). The location parameter,y, is identified by the spike or valley in
the density and the scaling parameter, o, changes the height and location of the kinks in
the density. The other 4 parameters uniquely determine the shape of the density in each
partition of the density.

Despite the complexity of this distribution the moments are easy to derive. It will be
easier to compute the integrals if we integrate after standardizing by the location and scale
parameters, z = (%), which leads to equation (18)

() ol s et e

=CA,

Equation (18) is not based on central moments. In fact our location parameter is neither
the mean nor the median nor the mode except under special circumstances, but it is the
relevant measure of central tendency. However, in practice the location parameter is usually
near the median.



The scale parameter will not be equal to the variance either, but it can still be interpreted
as a measure of spread. As the variance increases the density becomes wider which is a
property that the scale parameter also has, so even when the variance is infinite there is still
a meaningful measure of the spread of the density. It also marks a fundamental change in
the nature of the distribution as even in the fully symmetric case the density will have a
change in slope at a location determined by the scale parameter.

One might consider using equation (18) to derive the moments of the volcano distribution.
For example if the mean of the volcano distribution is finite, then we might consider a moment
generating function of the type in equation (19).

[an]—-1 m m m
YR (t) o B(=1) 1 (1)
Mt)y=C o {1+m5+1+m5+4_m+a_m (19)

m=0

Obviously equation (19) is insufficient as a moment generating function because it is
possible to have an infinite mean for certain sets of parameters, but the moment generating
can be considered as limit of (19).

Theorem 2.4. The characteristic function of the volcano distribution is given by

¢ (t) = e C [(m't)ar (—a, oit) + (ait) 5y (% git)} +

et {(—m‘t)%y (% —ait) + (—it)°T (=, —az’t)}

I
aC
i
=
v
|
=

Proof. Suppose we partition the sample space with Ry = [=F < —1],...,Ry
then the law of total expectation can be applied

¢1 and ¢4 will correspond to the characteristic functions of a Pareto distribution. It’s also
clear that ¢, and ¢3 will have similar characteristic functions except the upper incomplete
gamma function is replaced with the lower incomplete gamma function. O]

The first thing to notice about this characteristic function is that it is split into partitions
just like the density. There is a split at 0 and then the gamma function has been split into its
lower and upper components. The characteristic function really shows the Pareto like nature
of this distribution. The left and right tail are Pareto distributed. The two middle parts
of the distribution are an inverted Pareto distributions that have the property of a Pareto
density that is rotated up and scaled to the center to give the volcano like appearance. This
is where one can see why this is the natural family for power law distributions as everything
seems to just fit together nicely.

The moment generating function can easily by recovered from the characteristic function
due to the identity, ¢(t) = M (—it) which is given by



M (t) = e''C {(at)al“ (—a,0t) + (at) " Fy (% atﬂ it > 0]

ekt {(—Jt);fy (%, —at) + (—ot)°T (=, —crt)} [t < 0] -

Unfortunately the function is somewhat erratic around the origin as its behavior is shown

below.
limt%0+ M (t) =C (i + ﬁ)

limy o~ M () = C (% + 5)
M (0) = limyo M(t) [t > 0] 4+ limyo M(2) [t < 0] =1
The moment generating function will not be continuous at the origin and hence not

differentiable. The moment generating function derived from (21) is consistent with (19) as
can be seen from the power series below.

1 (1 =" p(=1)™
£ By (B,t) :%%ﬁ (22)

However this issue will not be the case for the characteristic function. This is similar to
the Pareto distribution which also has a discontinuity in the moment generating function,
but a differentiable characteristic function.

For two middle parts of the distribution, the derivative of the characteristic function will

have the following form

. d[z (s, x)] -1
1 = 23
220 dx s+1 (23)

For our purposes equation (23) would be used to evaluate ¢o and ¢3. Since I'(s,z) =
['(s) — (s, x), then it follows for the tails of the distribution

d[z*y(=s, z)]
dx

d[z°T(=s, )]

o = 52" '(—s) —

(24)

The first term of the sum is negligible as long as s > 1 which corresponds to the case of
finite expectation; However if s < 1,then the first term dominates and diverges to infinity.
The rate of convergence will be given by 2°~! because the gamma function will be finite
for non-integer values which means that the smaller of o and ¢ will determine whether the
expectation is negative or positive infinity.

However this is not just a mathematical technicality; we took the sample mean of 100000
observations drawn from a V(0,1,1,1,1,.5) and the minimum of a 1000 different sample
means was on the order of 107 implying that the sample mean really is diverging to positive
infinity due to the heavier right tail. The only remaining case to consider is the symmetric
case where o = ¢ < 1.

Unfortunately the order of convergence is the same for both parameters and, at least in
simulations, it appears that the sample mean converges to a distribution function of a non-
degenerate random variable, so we interpret this behavior as undefined expectation. The



results on the first moment are compiled in Equation 25.

u+oCA min(a,) > 1
- +00 min(o,() < 1,{ <«
Elx] = —00 min (o,() <1, >« (25)
undefined (=a <1

Equation (19) can be used to compute the first two moments which can be used to find
the variance which is computed after standardizing by the shadow parameters

o?C (Ay — A%) min(a,() > 2

Var (z) = { oo min (. ¢) < 2 (26)

3 Estimation

Estimating the parameters of this density is nontrivial, but the volcano density can be
estimated by nonparametric methods. Since the density is not differentiable, it is hardly
guaranteed that MLE approaches that rely on differentiation can be used. In order to
estimate the parameters it is necessary to exploit specific features of the volcano density
with nonparametric methods.

The first step will be to generating random samples from the volcano density which can
be a bit tricky. Each partition has Pareto like properties, so a vector, X, of N random draws
from a standard volcano distribution will have the form

X = (Ula,Uf,U;f,U;C)

Where U; is a vector of uniformly distributed random variable with the length of each
vector given by the probability of being in a partition multiplied by the total number of
draws. This way each random variable has its own distribution, but there will be a different
number of observations in each partition. However, it may be the case that for a given IV,
one may not be able to evenly divide N for each partition. If this is the case, then we add
an extra observation for that partition. Suppose for example that all partitions require a
correction, then the probability of being in the first partition is

LN§J+1_C+[N%}—LN%J—AL%_CJFO 1
N+4  «a N +4 Ca

N

This will produce a sample size with four extra observations, but these extra observations
can be randomly removed.

Once random draws can be taken from the volcano distribution, it will be necessary to
use a nonparametric kernel density to estimate the parameters in the model.

For any continuity point of the volcano density, the kernel density estimate will be con-
sistent !, so the only point of concern would be at the origin.

I This follows from Pagan and Ullah (1999), pg. 362.
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Figure 2: Kernel density estimate of volcano distribution with o« = =0 =( =4

Lemma 3.1. Suppose K is the Bartlett kernel and © is the corresponding kernel density
estimate for a standard volcano distribution with bandwidth, h o< n™> with 0 < X\ < .5, then
the kernel density estimate is asymptotically unbiased and consistent at the origin.

Proof. For the first part, the expectation of the kernel density estimate is

+o0
Bl = [ K@)o(h)dy
Chi' [ | Chit [0 1
e e I e

_ 3OS (28 3ChiT! [ 28
4 1+ 20 4 1+ 28

where ¢ = x/h. Since lim,,_,., h = 0 and either 0 or /3 is greater than unity in the unbounded
case, then we must have
—+o00

lim K()v(hp)dyp = +o00 = v(0)

n—oo [ o
it will converge to 0 if both § and [ is less than unity, so the estimator is asymptotically
unbiased. Even though the expectation may be infinite at the origin, it will be finite in all
finite samples, so the variance may converge to 0. Since that data is i.i.d, the variance of
the estimator is given by



The second term will converge to zero because

(BR(O) B2y 12/
n n

o p2MOHA1 ) p=2/M20-1
because A <= .5. Similarly for the second term,
1 +o0 hl/é—? Vi hl/,B—Q
— K (¢)*v(hp)dip o
nh J_
o pMIFAL =2/ A+23-1

Since the estimator is asymptotically unbiased with variance going to 0, then consistency

follows.
O]

Using the Bartlet kernel and bandwidth equal to n='/® the density estimate of the
volcano distribution is shown in Figure 22. The estimate seems to be a good fit except in a
neighborhood of 0 which makes sense due to the spike at 0.

The volcano density will fail to have a continuous derivative at x = +1 because of the
kink in the density. The kink seems to pose little difficulty for the kernel density estimate,
but it will still not fit well in a small neighborhood about x = +1 even with a relatively
large number of observations. This is not to say that estimation can’t be done with fewer
observations, but data from a volcano distribution may not exhibit the kinks at p + o and
i — o on the horizontal axis in finite samples.

Figure 3 shows the nature of the convergence for the nonparametric estimate of the
density around 0. It does seem to be the case that the peak of the estimate is approaching
infinity and the neighborhood of poor fit is getting smaller, albeit very slowly.

Instead of using the optimally smoothed bandwidth of n=®, we will use an under-
smoothed kernel density estimate in order to reduce the finite sample bias of the kernel
density estimate. Horowitz (2001) recommends using h oc n~/? in order to maximize the
coverage probability of bootstrapped confidence intervals which we will be utilizing.

In Figure 4, one can see that the fit is improved around zero by using the under-smoothed
estimate and it necessary to have a decent fit around 0 for estimation purposes. Even with
an under-smoothed density estimate, it is noticeably different around the singularity even
with 34000 observations.

Since it is not obvious that the regularity assumptions of maximum likelihood will hold,
we will demonstrate the consistency of the estimators directly. We will demonstrate that
the MLE estimators, conditional on the location ans scale parameters, are consistent but
biased,so an analogue estimator is also presented that is consistent and conditionally unbiased
which is our preferred approach.

2The choice of 3400 observations was made to ensure there would be an even number of observations in
each of the four partitions, so there would be no need for the correction previously described

11
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Figure 3: Kernel density estimate of volcano distribution with « = =0 =( =4

Suppose consistent estimates of ;1 and o were in hand, the data could be standardized to
allow for the concentrated log-likelihood to be written as

L:Z —(a+1D)In(—z) [z < -1+ <%—1> In(—z)[-1<z <0]+

(%—1) In(z) 0<2z<1—=(C+1)n(z)[z>1+hC

This might seem like an incorrect application of the logarithm, but one must remember
that the logarithm only applies in each of the four disjoint regions of the sample space. For
example if the function is analytic then all of the cross terms are zero due to the partition,

so the function will be applied on each partition. The first order conditions (FOC) can be
rearranged to provide the following estimating equations.

A2 = %Zln(—zi) < —1] = % (27)

B? = %Z —zln (—2)[-1 < z < 0] = CB? (28)
D= %Z Cn(z) [0< <1 = C (29)
7% = % Zln (z) [1 < z]= % (30)

12
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Figure 4: Kernel density estimate of volcano distribution with o« = =0 =( =4

The solution to the FOC is given by

a'=(A+B+D+2Z)A (31)
B=(A+B+D+Z)B (32)
d=(A+B+D+2Z)D (33)
('=(A+B+D+2)Z (34)
which is the maximum likelihood estimator conditional on the location and scale param-

eters.
Our preferred estimators conditional on the location and scale parameters are given by

41— Sy In(=2) [z < 1]

) SRR %
sy —In(=z) [-1 <z <O
p= L3 [l <2 <0 (36)
o ayi—In(z) [0< 2 <]
S A (S o
sy %ZZ In(z) [1< z] (38)

Even though this is not conditional MLE,these estimators are the MLE conditional on

13



being in any of the four regions. For example the estimator in equation (38) is the MLE of
a Pareto distribution.

Lemma 3.2. The conditional estimators defined by equations (35)-(38) are consistent and
unbiased.

Proof. 1t is enough to show é ~1 is consistent as the other parameters are similar. First note
that

Pr(z<t,z>1 !
Pr(z<tlz>1)= r(lirZZ ;Zl) ) = §/1 2z

So the expectation of the estimator is
1
Elln(z)|z>1]=¢ In(z) 27" dz

“+oo
—¢ 1>® 00 —(—1
i I
1

It is sufficient to verify that the variance of the estimate is finite, so

1

E[(In (2))? |z > 1] =¢ (In(2))* 25"t dz

+oo
L 2¢ 1% 0o (-1 2
— =] v [T e

so Chebyshev’s inequality can be applied and we have

1 2in(z) [1 <z
> [1 <z

¢ —p ¢

]

However it follows from Jensesn’s inequality that the conditional MLE estimators will
be biased. Of course even the conditional estimates are not feasible unless they remain
consistent after the location and scale parameters are replaced with estimates.

In general unbiasedness will not be preserved. The four different regions are being esti-
mated, so at least two of the estimates will have some finite sample bias caused by obser-
vations from the "wrong” region being included in the estimate; however, consistency will

hold.

Theorem 3.3. Suppose consistent estimates of p and o are available, then conditional es-
timators defined by equations (35)-(38) are consistent if, for each i, z; is replaced by it’s
estimate Z;.

Proof. Tt will be helpful to rewrite the estimated standardizations as

A_xi—ﬂ_<o>( u—ﬂ)
Zi=—=  =\z)\% -
o o o




It follows from the consistency of fi and & that 2, —, 2; Again we will demonstrate the
consistency of (7! as the other estimators are similar. First let’s prove the consistency of
the denominator

1 n ~ o
—Z[i’l_l]—g < Pr( Zz_,u M) Pr(z>1)’
n < ¢ o o
1 ¢ G p—f G p—fi
- > Pr{z>2—
+nizl{z_g > } r(z .

o
1 n

—Z  <t]—Pr(z<1)
n

<|Pr(z<1)— Pr(z<g—L)‘+sup
o

Since the probability function is continuous, the first term becomes negligible. The second
term after the first inequality is a measure of the distance between the empirical cdf and the
actual cdf conditional on the estimates, but this may be bounded be the maximum distance
which also becomes arbitrarily small.

Next we need to demonstrate the consistency of the numerator

Zln |Z:i]) [ > 1] —

1 ~
ngln(lzz-Dleiz 1= [z > 1]+
=1
1 & 1
2| — 1 ; 1
) (nZ‘““z’”) w,
Z |ZZ ZZZ]- -

The first term is negligible because the first two moments of the of the natural logarithm
of a volcano random variate is finite. As for the second term, consistency of the conditional
estimator follows from the previous lemma. As for the third term, we may apply the con-
tinuous mapping theorem because the logarithm of the absolute value is discontinuous only
at 0, a set of measure zero, so it follows |In (|2;]) — In (|2;])| —, 0 for each ¢ which means the
average also converges to zero.

Z\ln 1) — In (Jz])| [2 > 1] +

Zln |2i]) >1]—%

n

Y lm<t]-Pr(z<t)

=1

len |2i]) = In (Jz:])] [ = 1]

3I*—‘

[
Theorem 3.4. The MLE estimators defined by equations (31)-(34) are consistent.

Proof. 1t is enough to show é’ ~1 is consistent as the other parameters are similar.
A S P
n < ’

Since Z2 is simply the numerator of é ~1. then by the continuous mapping theorem it follows
that

15
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The same argument holds for A, B, and D, so again by the continuous mapping theorem.

- 1 1 c 1

= (A+B+D+Z)Z—>p\/5<—+6+5+—> ve_1
a ¢/ ¢ ¢

By a similar arguments, the estimators defined by equations (31)-(34) are all consistent.

[

All of these estimators are distributed normally even when the mean of the volcano
distribution doesn’t exist or is infinite. The asymptotic variance could be worked out in
principle, but it will be much simpler to use the bootstrap for inference.

Since the location parameter and variance of the volcano distribution do not correspond
to standard notions of mean and variance, the volcano distribution is of little use in empirical
applications unless the location and scale parameters can be estimated.

If the density is unimodal, then the location parameter could be based on the mode of
the estimated density.

fi = argmax [lnf(:c)} (39)

where f (x) is a nonparametric density evaluated at x and the domain of f is restricted to the
observed data. The reason for such a restriction is because an arbitrary search grid may not
be able to identify irrational parameters, but as the sample size grows there will be observed
data points that are arbitrarily close to u and 4+ 0. While it seems unlikely, equation (39)
may return a set instead of a point in finite samples. In this case I would suggest taking the
median of the observations in the set.

Theorem 3.5. Suppose the volcano density is unimodal and the assumptions of lemma 3.1
are satisfied, then the estimator defined by equation (39) is consistent.

Proof. it is clear that i = argmax [ln f (a:)} = argmax [ f (x)} , so we may work directly with

the kernel density estimate. It follows from lemma 3.1 that f (1) 2 f (1), but the following
also holds

~

F) < f()<fn

so it must also be the case that f (1) 2 f (11). It also follows from lemma 3.1 that the kernel

density estimate is consistent for all z which means i = z. By assumption the volcano
density is unimodal, so we must have z = y [

While this is certainly a non-standard estimator, it is still found by maximizing an em-
pirical log likelihood function.
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In the bimodal case, the density will be 0 at the location parameter. It seems reasonable
to use this property for estimation as well.

[i = argmax [— lnf(x)] (40)

lz|<C

where C' > 0 determines the interval to search over. In the unimodal case, the domain was
restricted to the observed data points, but in the bimodal case the domain must be restricted
further to avoid the effect of the tails of the density.

Theorem 3.6. Suppose the volcano density is bimodal and the assumptions of lemma 3.1
are satisfied and C < o then for the estimator defined by equation (40) is consistent.

Proof. it is clear that fi = argmax [— lnf(m)] = argmin [f (x)}, so we may work directly

with the kernel density estimate. It follows from lemma 3.1 that f (11) & 0, but the following
also holds as long as C' < o

0< f(i)<fw

so it must also be the case that f (1) 2 0. Tt also follows from lemma 3.1 that the kernel
density estimate is consistent for all z which means fi & z. If C' < o, then the kernel density
will be unimodal over the relevant domain, so we must have z = p ]

Finally when the density is flat there will be an infinite number of modes. Previously
we took advantage of the peakedness of the density at i, so now we must take advantage of
the flatness. Since the density is increasing at an increasing rate whenever © < p — o and
decreasing at an increasing rate whenever x > u + o, then the derivative of the density will
reach its maximum at x = y — ¢ and it’s minimum at x = p + ¢ which implies the following
estimators.

a=.5 (argmax [f’ (x)] + argmax [—f’ (:L‘)]) (41)

The conistency of this estimator follows along similar lines as the other two estimators
of the location parameter.

It may be obvious which one of the estimators in (39)-(41) to use by looking at a plot of
the kernel density estimate. However, one may pretest the density for the number of modes,
see Silverman (1986), and use this test to determine which of the three estimators to use.
In the bimodal case, the domain of the minimization problem must be suitably close to the
location parameter. If one were to use the approach of Silverman (1986), then C' could be
chosen to be one half of the range of the two modes.

The most difficult parameter to estimate is the scale parameter, o, which represents
the distance from the location parameter that corresponds to a change in the shape of the
density. In the unimodal case, the points p + o and g — o correspond to the coordinates of
largest circumscribed rectangle under the density.

From Figure 5 it is clear that for any ¢ > 0, |f(u+0o+¢€) — f(p+0)| < € and
|f (w—0—¢€)— f(u—o0)| < e which means that the points p + o and p — o correspond
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Figure 5: Largest circumscribed rectangle with parameters a = =0 = =4

to an area that is a local maximum. Since the volcano density is integrable, then any cir-
cumscribed rectangle with width converging to infinity must have a height that converges to
zero faster than the width meaning the area of the rectangles converges to 0. It is obvious
that the sequence of rectangles will have an area that monotonically converges to zero. A
similar argument applies to rectangles converging to an infinite height and zero width and
it follows that the area of the rectangle will be monotonically increasing until it reaches
the points p+ o and p — o on the horizontal axis and monotonically decreasing after those
points showing that it is in fact a global maximum. In the bimodal case, the circumscribed
rectangle argument doesn’t apply, but a similar argument can be used to get to the same
result.

It is not necessary to restrict ourselves to a single circumscribed rectangle. The same
argument could be applied to the rectangle formed to the left and to the right of the location
parameter. The volcano density is restricted so that the change in the shape of the density
occurs at points that are equally far away from the location parameter, but it is not a
necessary restriction. One could use the rectangle to the left of the location parameter to
estimate the change in the density on the left side; and use the corresponding rectangle on
the right side of the location parameter to estimate the change on the right side. In practice,
I use the maximum of the two rectangles as my estimate for the scale parameter which is
given in equation (44).

61, = i — argmasx (f (2) |z — ] (42)
<L
on = argmax ( f (x) [z = i) — f (43)
>0
0=065V0p (44)
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where we again restrict the domain to the observed data points.

Theorem 3.7. Suppose [i is a consistent estimator, then the estimator defined by equation
(44) is consistent

Proof. The first thing to notice is that if the expectation of a volcano random variable is
finite then

)
‘x—ﬂ|v(/ﬁ>070€aﬁ>57() =0ov (u,a,a - 17%7m7<_ 1)
Since 1 > % > 0, the transformed volcano density will be bimodal for all parameters and
the two modes will be at 4+ 0 and even when the expectation is not finite the resulting
improper density will still be bimodal which means

argmax (f (z) |x — pl) ={p+o,n— o}

So it will be possible to back out ¢ if wither of the modes are identified. let’s consider 65

@) le=al == @z —pl+p < Flle =il = o= pll + lu -
+‘f—f‘|x—u!
< (F+1)lu—al+|f=f|le—nl

As long as x # u, then both terms of the second inequality converge to zero in probability
as both i and f are consistent estimators. If x = pu, then it may be the case that the
first term after the second inequality doesn’t converge to 0 and or = | — fi|. However, It
follows that whenever 1 < fi, then the second inequality holds for all x > i which implies
|6r — 0| = 0, (1). Since u can only affect either 65 or 6y, then

Pr(l6 —ol =€) <Pr(lor—ol=€)[u<pl+Pr(lor—o| =€) >
+Pr(ja—p[ze) =0

so the maximum of 6 and ¢, will be consistent. O

3.1 Simulated estimation

Since this approach is a little non-standard, it would be a good idea to simulate a data set and
then see if the estimation procedure could identify the parameters correctly. In the following
simulation, an under-smoothed estimate of the density with bandwidth equal to n=/? as
previously discussed.We simulated 340 observations from the standard volcano density with
parameters a = § = § = ( = 4 and then estimated the parameters as previously outlined.
Finally percentile bootstrapped confidence intervals were computed using 1000 replications
and the results are compiled in Table 1.

Even though there are 340 observations, the confidence intervals for a and § are very
wide. But with this choice of parameters only about 6% of the data is used for the estimation
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Table 1: Simulated estimation with 340 observations
Parameter Estimate Lower Bound of 95% CI  Upper Bound of 95% CI

7 0.0014 ~0.0045 0.0094
o 0.0942 0.090 1.78
o 0.67 0.60 7.11
3 2.84 1.33 3.97
5 1.69 1.32 3.82
¢ 0.70 0.63 4.85

Table 2: Simulated estimation with 21250 observations
Parameter Estimate Lower Bound of 95% CI  Upper Bound of 95% CI

I 0.00011 -0.00019 0.00043
o 1.00 0.81 1.03
o} 4.00 3.34 4.33
6] 4.09 291 4.20
) 3.05 2.78 4.20
¢ 3.96 3.31 4.24

of a and ¢ which translates to using roughly 10 observations for each estimate of o and (,
which is very few observations for asymptotic results. Meanwhile there are roughly 160
observations used for each estimate of § and J which is reflected in the shorter confidence
intervals and both estimates are closer to their true values, but still fairly far away.

In fact with a simulation of 21250 observations, which is roughly the size of our stock
market returns data, we can see from Table 2 that the estimates are now very close to
their true values and the confidence intervals are fairly tight and they all contain the true
parameter values. This indicates that this approach requires fairly large sample sizes.

3.2 Bivariate Extension

While a bit beyond the scope of this paper, the volcano distribution can be extended
to the multivariate case. The generalization of the volcano distribution to a multivariate
setting is far from trivial. The conditions for continuity and integrability are less obvious
in the multivariate case. However, the following construction is made for the bivariate case
with an eye towards estimation. Suppose we have independent random variables

z; ~ V (i, 04, 04, Bi, 6:, Gi)

where ¢ = {1,2}. There will be a corresponding distribution function

Pr(z; <sp,29 < s9) =Pr (ml ML 2 “1 Pr( 22 2#2 < st;l)
= Pr(z <t1)P(2 S t2)

where t; ,‘“ and z; = 3”101“1. For each event corresponding to the two independent

volcano dlstrlbutlons there is an event and a pair of independent standard volcano random
variables such that the probability of both events are the same. This is important because it
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Figure 6: Estimation of o using simulated data

will simplify the construction of the multivariate density. The normalization is fairly trivial
once estimates of the marginal densities are in hand.

In the same spirit as the one dimensional case, it will be useful to define the bivariate
volcano distribution through a transformation

(2)=(0 ()

Assuming such a transformation is appropriate, the density for the bivariate case will be
given by equation (45).

1 Z
g(z1,22) = <1 _pg) v ( 1 _,Op s 061751751741)
v (1—pzl a2,62,52,¢2)
—p?

where z; = ®-F. After one has estimated the marginal densities, this transformation follows
easily. The information in the marginal densities can be used to estimate the dependency
parameter in the following way

n > 2
N . sz —j)i
P2 (9 (Ti, Z2i) — (1 — )H“( . By, J,CJ)>

J=1

(45)

where §(Zy;, 22;) is a bivariate nonparametric kernel density estimator. In this simple case,
a line search would be sufficient to solve the problem.
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The dependency parameter doesn’t necessarily represent a correlation because the co-
variance may not exist. Even when the correlation does exist, the sample correlation will be
a nonlinear function of the dependency parameter. The non-linear relationship between the
sample correlation and the dependency parameter is demonstrated in Figure 7.

Each sample correlation is based on a single draw of 12000000 observations from a stan-
dard volcano density with unit variance. This allows the functional form to be isolated more
easily. The sample correlations are roughly sinusoidal in nature and this general shape will
remain the same for alternative parameters provided there are enough finite moments. This
approach can be extended to higher dimensions, but the properties are not well known. This
construction will preserve the box-like nature of the density, but it could be just as easily be
generalized to a density in polar coordinates.

4 Application

4.1 Stock Market returns

It is well known that stock market returns data do not follow the normal distribution and
they have heavy tails, but many finance models rely on finite variance assumptions. Schao
et al. (2001) proposes a test statistic for finite variance in daily stock market returns, but it
requires a parametric specification of the null hypothesis, finite variance, with finite fourth
moments which is rather restrictive as there maybe finite second moments, but infinite third
or fourth moments. One of the benefits of modeling heavy tailed data with the volcano
distribution is that it is very easy to test whether or not a certain moment is finite because
min(a, () determines the finiteness of any given moment. In order to test the assumption of
finite variance, we use the daily data set from Schwert (1990). It has 22474 daily observations
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Table 3: Stock market returns data
Parameter Estimate Lower bound of 95% CI  Upper bound of 95% CI

W 0.00035 0.00023 0.00048
o 0.02079 0.02076 0.02087
o 2.63 2.47 2.81
15} 1.81 1.78 1.83
) 1.75 1.73 1.78
¢ 2.42 2.25 2.64
25 : :
- — —Kernel density estimate
— Volcano estimate
201 1
15} 1
10} 1
5 L .
O Il Il

Figure 8: Fit for daily SP 500 stock market returns

of the S&P 500 from 1885 to 1962. The results of the estimation are presented in Table 3.

The location parameter is significantly larger than the sample mean which is 0.0003.
Another implication is that the nature of stock returns is much different when the loss or
gain is greater than 2% which makes intuitive sense on the daily level as this represents
large swings in returns. The third and sixth rows provide information about the finiteness of
the moments of stock market returns data. We reject infinite variance for the data because
both & and é’ are statistically greater than two which supports the literature. Since & and
é’ are also significantly less than 3, then we reject the hypothesis that the third moment is
finite. This has important implications for models that rely on the existence of higher order
moments in stock returns data. Furthermore we may also reject the hypothesis that the
density function is square integrable. Finally the test of equality between a and ( is rejected
as is the test of § = §. This result is quite interesting because the rejection of symmetry
implies that the way stock returns lose value is different than the way stock returns increase
in value. The tails of the distribution are thicker for gains as opposed to losses.

In order to compare the fit of the volcano distribution, a random draw of 22474 was

23



taken using the estimated parameters and kernel density estimates of the data and the
random draw are presented in Figure 8. Both kernel density estimates are based on the
same number of observations. The fit of seems reasonable, but the volcano distribution
seems to underestimates peak of the density and overestimate the thickness of the tails of
the stock market resturns data.

5 Conclusions

In this paper, a new family of probability distributions is introduced which represent a
natural family for power law type distributions. However, there are many issues that remain
unresolved for the volcano distribution. It would be interesting to find the solution of the
FOC that corresponds to the global maximum of the log-likelihood function. We doubt that
the method of moments estimator presented in this paper represents the global maximum.

A natural generalization would be to allow a left scaling factor and a right scaling factor.
This would allow the bimodal volcano density to have varying heights. A more difficult
generalization would be to describe the multivariate version of the density. It seems possible,
but rather difficult especially the estimation of the scale parameter. The characteristic
function could also be investigated further with uniqueness an open question.

This family of functions can also be applied in theoretical work because it is in some
sense the largest unimodal, integrable function because careful choices of the parameters
will result in an integrable function with tails declining at nearly the rate of i It can be
used as a bounding function in cases where the dominated convergence theorem is to be
applied.

The volcano distribution is certainly an exotic distribution, but it is also very flexible.
It can have varying symmetry, modality and boundedness. It can have an expectation that
is infinity and with this can even be tested in a relatively straightforward way. It’s greatest
utility may even be as a tool for teaching because it challenges preconceived notions about
continuity, boundedness, and integrability.

References

[1] AXTELL, ROBERT L. (2001). U.S. Firms are Zipf distributed, Science 93 1818-1820.

[2] ABRAMOWITZ, MILTON and STEGUN, IRENE A. EDS. (1965). Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.

[3] GaBaAIx, X. (1999). Zipf’s Law for Cities: An Explanation. Quarterly Journal of Eco-
nomics. 114 739-767.

[4] GRABCHAK, M. and SAMORODNITSKY, G. (2010). Do financial returns have finite or
infinite variance? A paradox and an Explanation. Quantitative Finance. 10 883—-893.

[5] HorOwITZ, J. (2001). ”The Bootstrap” in Handbook of Econometrics, James J. Heck-
man and Edward Leamer (eds.). 5 3160-3228.

24



[10]

[11]

KoLMoGorov, A.N. and FOMIN, S.. (1975), Introductory real analysis. Dover Publi-
cations, New York. Translated from Russian by Richard A. Silverman.

LUuTMER, ErRzO G.J. (2007). Selection, Growth, and the Size Distribution of Firms.
The Quarterly Journal of Economics. 122 1103-1144.

PAGAN, ADRIAN and ULLAH, AMAN (1999). Nonparametric Econometrics. Cambridge
University Press, New York.

SCHWERT, WILLIAM G. (1990). Indexes of United States Stock Prices from 1802 to
1987. The Journal of Business. 63 399-426.

SHAO, Q., Yu, H. and Yu, J. (2001). Do Stock Returns Follow a Finite Variance
Distribution? Annals of Economics and Finance 2 467-486.

TALIB, N.(2009). Finiteness of Variance is Irrelevant in the Practice of Quantitative
Finance. Complexity 14 66-76.

25



	Introduction
	Model
	Estimation
	Simulated estimation
	Bivariate Extension

	Application
	Stock Market returns

	Conclusions



