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Abstract Our paper provides new methods to robustify productivity growth mea-

surement by utilizing various economic theories explaining economic growth and

productivity and the econometric model generated by that particular theory. We uti-

lize the World Productivity Database from the UNIDO to analyze productivity dur-

ing the period 1960-2010 for OECD countries. We focus on three competing mod-

els from the stochastic frontier literature, Cornwell, Schmidt, and Sickles (1990),

Kumbhakar (1990) and Battese and Coelli (1992) to estimate productivity growth

and its decomposition into technical change and efficiency change and utilize meth-

ods due to Hansen (2010) to construct optimal weights in order to model average

the results from these three approaches.
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1 Introduction

Proper measurement of nations’ productivity growth is essential to understand cur-

rent and future trends in world income levels, growth in per/capita income, politi-

cal stability, and international trade flows. In measuring such important economic

statistics is it also essential that a method that is robust to misspecification error is

used. This talk addresses the robustification of productivity growth measurement

by utilizing various economic theories explaining economic growth and productiv-

ity and the econometric model generated by that particular theory. We start from a

realistic assumption that all models are misspecified in one way or another. Just as

the famous quote by Box, ”essentially, all models are wrong, but some are useful”,

carefully designed procedures to approximate the underlying DGP based on all col-

lected information are needed. We address the heterogeneity problem by grouping

countries according to their geographical, cultural and development characteristics

as well as by the use of various panel data techniques. We utilize the World Produc-

tivity Database from the UNIDO to analyze productivity during the period 1960-

2010. We consolidate the empirical findings from a number of statistical treatments

consistent with the various economic models of economic growth and productiv-

ity. We discuss methodologies for averaging these various empirical findings. We

also construct consensus estimates of world productivity TFP growth and find that,

compared to efficiency catch-up, innovation plays a much more important factor in

generating TFP growth.

2 Traditional Explanations for Sources of Economic Growth

The primary sources of economic growth and development are centered on 2 basic

explanations: factor-accumulation and productivity-growth.

Rapid economic growth in East Asia in the 1970’s and 1980’s were thought by

Kim and Lau (1994), Young (1992, 1995) and Krugman (1994) to be largely ex-

plained by the mobilization of resources. An alternative explanation to the neoclas-

sical hypothesis explains economic growth in terms of intensive and extensive uti-

lization of input factors as well as governmental industrial policies and liberalization

policies. The sources of economic growth can be derived by explicitly introducing

the role of catch-up due to an increase in productivity efficiency (Hultberg, Nadiri,

and Sickles, 1999; 2004).

Introducing the role of efficiency in production means introducing some form of

frontier production process, i.e., stochastic frontier production. Total Factor Pro-

ductivity (TFP) growth is often decomposed into technological (technical innova-

tion) change and technical efficiency change. Modifications of the neoclassical

model can be found in the new growth theory. Endogenous growth models were

developed to weaken the strong neoclassical assumption that long-run productiv-

ity growth could only be explained by an exogenously driven change in technology.

Sources of productivity differences in post WWII industrialized countries can be ex-
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plained by neoclassical growth models that incorporate knowledge spillovers, tech-

nological diffusion, and convergence to a best practice production process (Smolny,

2000).

2.0.1 Classical Residual based Partial and Total Factor Productivity

Measurement

Productivity historically has been specified as the ratio of some function of outputs

(Yi) to some function of inputs (Xi), which may be further adjusted by accounting

for changing output and input mix. For a single such total factor productivity (T FP)

output is often written as:

TFP =
Y

∑aiXi

. (1)

The ai weights can be assigned as arithmetic weighted averages (Kendrick, 1961)

wherein the weights are typically based on expenditure shares, or as geometric

weighted averages (Solow, 1957). As growth in TFP is usually of primary con-

cern, geometric averages have usually been used and this leads to the Solow mea-

sure, which is adopted by most central governments and statistical agencies and

is based on the Cobb-Douglas production function with constant returns to scale,

Y = AXα
L X1−α

K :

T FP =
Y

Xα
L X1−α

K

. (2)

Assuming cost mnimization, the parameter α is the expenditure share of labor

and a measure of TFP growth is the simple time derivative of T FP:

T ḞP =
dY

Y
−

[
α

dXL

XL

+(1−α)
dXK

XK

]
(3)

and thus a total factor productivity index is simply the difference between the log

of the output index and the log of the input index. Growth in the index is thus the

first difference over a time period in the differences of the log output aggregator and

the log input aggregator (Jorgenson and Griliches, 1972). Of course index numbers

themselves have a long standing literature that has been surveyed by a number of

scholars, based on part on the pioneering work of Fisher (1927) who formulated a

number of desirable properties for index numbers. One such survey can be found

in Good, Nadiri, and Sickles (1997).

2.0.2 Modifications of the Neoclassical Model: The New Growth Theory

Endogenous growth models were developed to weaken the strong neoclassical as-

sumption that long-run productivity growth could only be explained by an exoge-
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nously driven change in technology. An alternative interpretation to the endogenous

growth literature is that it was a response to the simplistic view that the benefits of

technical change (aka ‘manna from heaven’, Scherer, 1971) were determined ’out-

side the system.’ However, technological change as result of economic factors was

discussed in Griliches’ 1957 Ph.D. dissertation and his concurrent article Griliches

(1957), wherein he pointed out that hybrid corn seed penetration followed a logistic

distribution. The diffusion of innovations and the technological change it engenders

has much in common with the penetration of seeds varieties in agricultural produc-

tion. It is thus no surprise that numerous instances of such patterns were found by

many researchers, including a productivity pioneer in his own right, Edwin Mans-

field (1961). Mansfield’s treatment of technological change and the rate of imitation

was in its own right equally prescient. The classic model put forth by Romer (1986),

which began the “new growth theory,” allowed for non-diminishing returns to cap-

ital due to external effects. For example, research and development by a firm could

spill over and affect the stock of knowledge available to all firms. In the simple

Romer model firms face constant returns to scale to all private inputs. The level of

technology A can vary depending on the stock of some privately provided input R

(such as knowledge) and the production function is formulated as

Y = A(R) f (K,L,R). (4)

In the ”new” growth theory the production frontier is shifted by factors that are

endogenous, such as “learning-by-doing” Arrow (1962) , the ”stock of research and

development” (Romer, 1986), ”human capital (Lucas, 1988), ”trade spillovers” (Coe

and Helpman, 1995; Coe, Helpman, and Hoffmaister, 1997), and ”trade openness”

(Diao, Rattsø, and Stokke, 2005). However, if the explanation for the spillover that

endogenously determines technology change is the loosening of constraints on the

utilization of the technology, then this is just a another way of saying that TFP

growth is primarily determined by the efficiency with which the existing technology

(inclusive of innovations) is utilized (Sickles, et al. 2015).

We will take a reduced form approach in much of what we discuss below. The

literature on structural modeling of productivity models is quite dense and, out-

side the scope of our study. The broader structural modeling of static and dynamic

productivity models (see for example, Olley and Pakes, 1996) speaks to other is-

sues than those we focus on herein. These issues involve, among other things, the

role of errors-in-variables, weak instrument bias, index construction, and stability in

panel data modeling of production processes. They have been taken up by a number

of researchers. The NBER is particularly well-represented. Studies by Griliches

and Hausman (1986), Stoker, Berndt, Ellerman, Schennach (2005), Griliches and

Mairesse (1990, 1998), and Griliches and Pakes (1984), Diewert (2002, 2004a,b)

are but a few in this extensive literature.
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3 Decomposition of Economic Growth-Innovation and Efficiency

Change Identified by Regression

Regression based approaches to decompose productivity growth into technical

change and catch-up (efficiency change) components can be based on the follow-

ing generic model. Assume that the multiple output / multiple input technology

can be estimated parametrically using the output distance function (Caves, Chris-

tensen and Diewert, 1982; Coelli and Perelman, 1996). We consider distance or

single output production functions that are linear in parameters, such as the linear

in logs Cobb-Douglas, translog, generalized-Leontief and quadratic. These consti-

tute the predominant functional forms used in productivity studies. We begin with

a relatively simple representation of the output distance function as an m−output,

n−input deterministic distance function Do(Y,X) given by the Young index, de-

scribed in Balk (2008):

Do(Y,X) =
∏m

j=1 Y
γ j

it

∏n
k=1 X

δk
it

≤ 1. (5)

The output-distance function Do(Y,X) is non-decreasing, homogeneous, and

convex in Y and non-increasing and quasi-convex in X . The output distance func-

tion is linearly homogeneous in outputs. Take logs, add a disturbance term vit to

account for nonsystematic error in observations, functional form, etc. and a tech-

nical efficiency term ηi(t) to reflect the nonnegative difference between the upper

bound of unity for the distance function and the observed value of the distance func-

tion for country i at time t.Then we can write the distance function as:

−y1,it =
m

∑
j=2

γ jy
∗
jit +

n

∑
k=1

δkx∗kit +ηi(t)+ uit (6)

where y∗jit, j=2,...,m = ln(Yjit/Y1it) and x∗kit = ln(Xkit).
After redefining a few variables the distance function can be written as

yit = xitβ +ηi(t)+ vit . (7)

The Cobb-Douglas specification of the distance function (Klein, 1953) has been

criticized for its assumption of separability of outputs and inputs and for incorrect

curvature as the production possibility frontier is convex instead of concave. How-

ever, as pointed out by Coelli (2000), the Cobb-Douglas remains a reasonable and

parsimonious first-order local approximation to the true function.

The translog output distance function introduces second-order terms that allow

for greater flexibility without sacrificing the possibility of proper local curvature and

lifts the assumption that outputs and inputs are separable. The translog output dis-

tance function also can be framed in this canonical model representation of a linear

panel model with country-specific and time-varying heterogeneity. If the translog

technology is applied, the distance function takes the form:
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−y1it =
m

∑
j=2

γ jy
∗
jit +

1

2

m

∑
j=2

m

∑
l=1

γ jly
∗
jity

∗
lit +

n

∑
k=1

δkx∗kit

+
1

2

n

∑
k=1

n

∑
p=1

δkpx∗kitx
∗
pit +

m

∑
j=2

n

∑
k=1

θ jky∗jitx
∗
lit +ηit + uit (8)

Since the model is linear in parameters then after redefining a few variables the

translog distance function also can be written as yit = xitβ +ηi(t)+ vit .
A similar transparent reparametrization of any distance function that is linear

in parameters can be used to estimate other linear in parameters distance or pro-

duction functions such as the generalized Leontief or quadratic. If the technology

involves multiple outputs, then the right hand side endogenous variables must be

instrumented. Whether or not the effects need to be instrumented depends on their

orthogonality with all or a subset of the regressors. This is the generic model for es-

timating efficiency change using panel data (frontier) methods that we will explore

below. If we assume that innovations are available to all firms and that country-

or firm-specific idiosyncratic errors are due to relative inefficiencies, then we can

decompose sources of TFP growth in a variety of ways. The overall level of inno-

vation change (innovation is assumed to be equally appropriable by all countries)

can be measured directly by such factors as a distributed lag of R&D expenditures,

or patent activity, or some such direct measure of innovation. The overall level of

innovation change also can be proxied by the time index approach of Baltagi and

Griffin (1988), linear time trends, or some other type of time variable. Innovation

measured in any of these ways would be identified in most empirical settings. Direct

measures are identified of course by the assumption that the matrix of regressors has

full column rank, and the indirect measures by functional form assumptions. For

example, the index number approach used in Baltagi and Griffin is identified by its

nonlinear construction. Innovation also is often proxied by exogenous or stochastic

linear time trends (Bai, Kao, and Ng, 2009).

3.1 What is the Correct Model?

One can explore a number of regression-based methods introduced into the literature

to measure productivity growth and its decomposition into innovation and catch-

up, or efficiency change (Sickles, et al, 2015). We will examine estimates from

these various specifications using the generic linear panel data model with time-

varying and cross-sectionally varying effects that is given above. The generic panel

data model yit = xitβ +ηi(t)+ vit nests all multi-output/multi-input panel models

that are linear in parameters and can be used to estimate productivity growth and

decompose it into innovation and catch-up. We assume that we have a balanced

panel although this is done more for notational convenience than for substantive

reasons. The generic model of course nests all models that we introduce below for

which there is no temporal change in technical efficiency, that is, the usual fixed or
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random effects stochastic panel frontier models introduced by Pitt and Lee (1981)

and Schmidt and Sickles (1984).

We first discuss the most common estimators in use and those that have been

introduced rather recently and how they can be implemented in empirical applica-

tions. We then show how these methods can be used in a model averaging exercise

to evaluate world productivity trends.

3.1.1 The Cornwell Schmidt and Sickles (1990) Panel Stochastic Frontier

Model

Extensions of the panel data model by Cornwell, Schmidt, and Sickles (CSS) (1990)

generalized the model in which heterogeneity was only allowed in the interecept by

allowing for heterogeneity in slopes as well and this permitted researchers to esti-

mate productivity change that was specific to the cross-sectional unit (firms, indus-

tries, countries) that could change over time.

A particular parameterization of the CSS model that accomplishes this objective

is based on the assumption that in the generic model above (yit = xitβ +ηi(t)+ vit )
the heterogeneity term ηi(t) is given by

ηi(t) =Witδi + vit .

The coefficients in the vector δi depend on the different cross-sectional units i and

represent heterogeneity in slopes. In their application to the US commercial airline

industry CSS specified Wit = (1, t, t2) although this was just a parsimonious param-

eterization useful for their application. The CSS estimator does not in general limit

the effects to be quadratic in time but does restrict the effects to be linear in the

parameters of the variables whose slopes vary by cross-sectional units. Three dif-

ferent estimators were derived based on differing assumptions made in regard to

the correlation of the efficiency effects and the regressors, specifically relating to

the correlation between the error term u and regressors X and W. These estimators

are the within (FE) estimator, which allows for correlation between all of the re-

gressors and the effects, the gls estimator, which is consistent when no correlation

exists between the technical efficiency term and the regressors (Pitt and Lee, 1981;

Kumbhakar, 1990), and the efficient instrumental variables estimator, which can be

obtained by assuming orthogonality of some of the regressors with the technical ef-

ficiency effects. The explicit formulas for deriving each estimator and methods for

estimating the δi parameters are provided in the Cornwell et al. (1990). Relative

efficiencies, normalized by the consistent estimate of the order statistics identifying

the most efficient cross-sectional unit, are calculated as:

η̂(t) = max
j
[η̂ j(t)]

and

REi(t) = η̂(t)− η̂i(t).
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Here REi(t) is the relative efficiency of the ith cross-sectional unit at time t. For

this class of models the regressors X contain a time trend interpreted as the overall

level of innovation. When it is combined with the efficiency term η̂ j(t) we have a

decomposition of T FP into innovation and catch-up. When the time trend and the

efficiency term both enter the model linearly then the decomposition is not identified

using the within estimator. The composition is identified for the gls and for selected

variants of the efficient IV model, such as those used in the Cornwell et al. (1990)

airline study. In our empirical illustration using the UNIDO data to estimate world

productivity growth that follows, we utilize the gls version of the CSS estimator

(labelled CSSG) and the efficiency IV estimator (labelled EIV).

3.1.2 The Kumbhakar (1990) Panel Stochastic Frontier Model

Consider the linear in log production function:

yit = xitβ +ηi(t)+ vit

ηi(t) = γ(t)τi,where vit is assumed i.i.d. with distribution N(0,σ2
v ). ηi(t) is the

inefficiency term with a time-varying factor γ(t) and time-invariant characteristics

τi. τi is assumed to be distributed as i.i.d. half-normal and γ(t) is specified as the

logistic function

γ(t) = (1+ exp(bt + ct2))−1.

Here γ(t) is bounded between (0,1) and accommodates increasing, decreasing or

time-invariant inefficiency behavior as the parameters b and c vary. Although the

Kumbhakar model also estimates allocative efficiency from side conditions implied

by cost-minimization (Schmidt and Lovell, 1979) we will only examine the portion

of his model that directly pertains to the technical inefficiency/innovation decom-

position of productivity change. Parametric maximum likelihood is used for esti-

mation of the main parameters of the model. The inefficiency term is estimated by

analogue methods based on the population first moment of τi|θi.The best predictor

of technical efficiency is then given by E(exp{γ(t)τi|θi}) and efficiency for each

unit is given by η̂i(t) = γ(t)τ̂i.

3.1.3 The Battese and Coelli Model (1992, 1995)

The production function is given by the generic model

yit = xitβ +ηi(t)+ vit . (9)

The effects are specified as

ηi(t) =−{exp[−η(t −T )]}ui,
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where vit is assumed to be an i.i.d. N(0,σ2
v ) random variable, uit is assumed to

follow an i.i.d. non-negative truncated N(µ ,σ2) distribution, η is a scalar and the

temporal movement of the technical efficiency effects depends on the sign of η .

Time invariant technical efficiency corresponds to η = 0. A richer temporal path

for firm efficiency effects can be obtained by specifying η(t −T ) as

ηt(t −T ) = 1+ a(t−T )+ b(t −T)2.

This permits the temporal pattern of technical efficiency effects to be convex or

concave rather than simply increasing or decreasing at a constant rate. The model

is estimated by parametric mle and the minimum-mean-squared-error predictor of

the efficiency for unit i at time t is

E[exp(−uit)|εi] = {
1−Φ[ηitσ

∗
i − (µ∗

i )/σ∗
i ]

1−Φ(−µ∗
i /σ∗

i )
}exp[−ηit µ

∗
i +

1

2
η2

it σ
∗2
i ].

Estimates of technical change due to innovation are based on the coefficient of

a time trend in the regression. The effect of innovation as distinct from catch-up

is identified by the nonlinear time effects in the linear technical efficiency term and

thus the decomposition of T FP growth into a technological change and efficiency

change component is quite natural with this estimator. Cuesta (2000) generalized

Battese and Coelli (1992) by allowing each country (firm, etc.) to have its own time

path of technical inefficiency. Extensions of the Battese and Coelli model that al-

low for technical inefficiency to be determined by a set of environmental factors

that differ from those that determine the frontier itself are given in Battese and

Coelli (1995). These were also addressed by Reifschneider and Stevenson (1991)

and by Good, Roeller, and Sickles (1995). Environmental factors that were allowed

to partially determine the level of inefficiency and productivity were introduced in

Cornwell et al. (1990) and in Good, Nadiri, Roeller, and Sickles (1993).

3.1.4 Alternatives to the Classical Parametric Stochastic Panel Frontier

Approaches

Many other variations in the basic panel model treatment of inefficiency have been

considered in the literature. We do not pursue those in this here but direct the reader

to the work of Park, Sickles and Simar (PSS; 1998, 2003, 2006), who considered

linear stochastic frontier panel models in which the distribution of country specific

technical efficiency effects is estimated nonparametrically. The latent class mod-

els of Orea and Kumbhakar (2004), Tsionas and Kumbhakar (2004), and Greene

(2005b) relate to work on production heterogeneity by Mundlak (1961, 1978) and

Griliches (1979), among others. Kneip, Sickles, and Song (2012) assume a lin-

ear semiparametric panel frontier that allows for an arbitrary pattern of technical

change ηi(t) based on a general factor model set-up. Their specification of the ef-

fects is more flexible than parametric methods and the multiplicative effects models
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of Lee and Schmidt (1993), Ahn, Lee, and Schmidt (2007), Bai (2009), and Bai and

Ng (2011). Ahn, Lee and Schmidt (2013) generalize Ahn, Lee, and Schmidt (2007)

and consider a panel data model with multiple individual effects that also change

over time and focus on large N and finite T asymptotics. Addtional estimators that

have been proposed for panel stochastic frontiers and that are also quite appropri-

ate for general panel data problems are the Bayesian Stochastic Frontier Model (Liu,

Sickles, and Tsionas, 2013), which builds on earlier work by Van den Broeck, Koop,

Osiewalski, and Steel (1994) and Tsionas (2006), the Bounded Inefficiency Model

of Almanidis, Qian, and Sickles (2013) and related models of Lee (1996), Lee and

Lee (2012), and Orea and Steinbuks (2012) as well as the ”True” Fixed Effects

Model of Greene (2005a,b). Kumbhakar, Parmeter, and Tsionas (2013) considered

a semiparametric smooth coefficient model to estimate the TFP growth of certain

production technologies that addresses the Skewness Problem in classical SFA mod-

eling considered by Feng, Horrace and Wu (2013), Almanidis and Sickles (2012)

and Almanidis et al. (2013). The Spatial Stochastic Frontier shows great promise

and has been pursued in recent work by Glass, Kenjegalieva, and Sickles (2013 a,b)

based on the original contribution by Druska and Horrace (2004). Work on produc-

tivity measurement in the presence of spatial heterogeneity has also recently been

pursued Mastromarco and Shin (2013), Entur and Musolesi (2013), and Demetrescu

and Homm (2013). These are alternatives to less structured approaches to address

cross-sectional dependence in panel data models using methods such as those de-

veloped by Pesaran (2007). Factor Models continue to be pursued in the context of

productivity modeling in panel data contexts and the space for such approaches is

getting quite dense as pointed out by Kneip and Sickles (2012).

4 Can We Combine Model Estimates Instead of Choosing the

Best?

Discovering the true model might not be possible. Statistical inference based on the

”post-model-selection estimators” (Leeb and Potscher, 2005) might lead to invalid

analysis. Different selecting criteria might give contradicted ranking orders and fo-

cusing on one model and dismissing the results of alternative specifications may

compromise the information content of the information set. As discussed in Burn-

ham and Anderson (2002), if observed data are conceptualized as random variables,

the sample variability introduces uncertain inference from the particular data set.

Model selection is a special case of weighting models in which one model is given

the entire weight. Combining model estimates and forecasts can be motivated on

the basis of economic theory based on models of majority voting and the Tullock

contest function. It can also be motivated on the basis of statistical theory via model

averaging and forecast conbination theory.

Most model averaging methods take on a Bayesian perspective, although many

recent studies have a frequentist interpretation. In the frequentist literature, the

weights are usually based on AIC or BIC criterion. What we will employ here is the
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method proposed in Hansen (2007), in which the weights are chosen by minimizing

a Mallows criterion. It was shown that the resulting estimator can asymptotically

achieve the lowest squared error among a finite number of model averaging estima-

tors. For this application our unrestricted model is

yit =
p

∑
j=1

β jxit j +
∞

∑
r=0

δirt
r + εit , i = 1, . . . ,n;t = 1, . . . ,T.

Here εit is the standard noise component assumed to be iid N(0,σ). Let zit =
(xit1, . . . ,xit p,1, t, t

2, . . .) be the vector of all regressors, and γ =(β1, . . . ,βp,δ0,δ1, . . .)
be the associated parameter vector. Then the model can be compactly expressed as

yit =
∞

∑
j=1

zit jγ j + εit , (10)

where zit j is a vector with countably infinite entries and can include regressors that

are terms of a series expansion that is linear in parameters.

Denote µit = ∑∞
j=1 zit jγ j, it is assumed E[µ2

it ]< ∞ and µit converges to the mean

square. Consider a set of M nested models, and assume the mth model uses the first

km variables, with p < k1 < k2 < · · ·< kM. Put in matrix form, the mth model is

Y = ZmΓm + ε. (11)

Let Γ̂m be the estimate of the coefficients in the mth model, and let w =
(w1, . . . ,wM) be the associated weight vector for each model, where wm ∈ [0,1]
and ∑M

m=1 wm = 1. Then the model average estimator of the coefficients for the un-

restricted model is

Γ̂ =
M

∑
m=1

wm

(
Γ̂m

0

)
. (12)

We further define k(w)≡ ∑M
m=1 wmkm, then the Mallows criterion can be stated as

C(w) = (Y −ZMΓ̂ )′(Y −ZMΓ̂ )+ 2σ2k(w) (13)

and an optimal weight is obtained by numerically minimizing C(w).
The unrestricted model we consider is from Kneip, Sickles and Song (2012) and

is specified as

yit = β0(t)+
p

∑
j=1

β jxit j + uit + εit , i = 1, . . . ,n;t = 1, . . . ,T. (14)

The uit’s are assumed to be smooth time-varying individual effects where ∑n
i uit = 0,

t = 1, . . . ,T . The individual effects are assumed to be affected by a set of underlying

factors and are model by linear combinations of some basis functions.
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uit =
L

∑
r=1

δirvr(t) i = 1, . . . ,n (15)

where β0(t) is some average function and can be eliminated by transforming the

model to the centered form:

yit − ȳt =
p

∑
j=1

β j(xit j − x̄t j)+
L

∑
r=1

δirvr(t)+ εit − ε̄i, i = 1, . . . ,n;t = 1, . . . ,T,

(16)

where ȳt =
1
n ∑i yit , x̄t j =

1
n ∑i xit j and ε̄i =

1
n ∑i εit . Denote ỹit = yit − ȳt and x̃it j =

xit j − x̄t j.
The functional form used for estimation can be written as

ỹit =
p

∑
j=1

β j x̃it j +
L

∑
r=1

δirvr(t)+ ε̃it , i = 1, . . . ,n;t = 1, . . . ,T (17)

This model nests several specifications in stochastic frontier analysis. When vr(t)=
tr−1 and L = 3 we have the Cornwell, Schmidt and Sickles (1990) model discussed

above. To show how Kumbhakar (1990) is nested in the general model consider a

translog production function that is linear in parameters and can be expressed as

yit = X ′
itβ + uit + εit , (18)

where the uit ′s represent the individual effects and given by uit = v(t)θi = (1+
exp(bt + ct2))−1θi.Taking a Taylor expansion of v(t) at t = 0, the individual effects

can be expressed as

uit =
∞

∑
r=0

v(r)(0)

r!
trθi

= θi(
1

2
−

1

4
bt +

1

4
ct2 + · · ·). (19)

With a finite time period under study, the exponential time-varying path can be

closely approximated by a polynomial function of finite degree L1. Thus the model

can be written as

yit = X ′
itβ +

L1

∑
r=0

δirt
r + εit (20)

with δir = θi
v(r)(0)

r!
.

The Battese and Coelli (1992) model can also be nested in the KSS general model

using a Taylor expansion. The basic setting is the same, while the individual effects

are assumed to follow a different time-varying path.

uit =−ηitui =−{exp[−η(t −T)]}ui.

Taking a Taylor expansion of this function, we have
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uit =−
∞

∑
r=0

η(r)(0)

r!
trui

=−eηT ui +ηeηT uit −
1

2
η2eηT ui + · · · (21)

This exponential function can be sufficiently well approximated by a polynomial

function of finite degree L2 in empirical studies. Setting δir =−ui
η(r)(0)

r!
, the model

can be written as

yit = X ′
itβ +

L2

∑
r=0

δirt
r + εit (22)

The KSS model also nests the traditional random and fixed effects estimators as

these are special cases of the CSS estimator.

In the next section we utilize our model averaging methods on these various

nested special cases of the general KSS specification and analyze average produc-

tivity growth rates and their decomposition into efficiency change and innovation

change across various countries in the world economy. The section illustrates the

feasibility of the approach and the potential gains that researchers can derive from

bringing different models and different assumptions on which they are based to bear

in analyzing an important determinant of economic growth and long term economic

welfare of a country and of the world economy.

5 Taking Model Averaging to the Data-Some Preliminary

Results in a Study of World Productivity (1960-2010)

5.1 UNIDO Data Description

The World Productivity Database (WPD) provides information on measures of the

level and growth of TFP based on 12 different empirical methods across 112 coun-

tries over the period 1960 -2010. The principal data source is the Penn World Tables

from which (chain weighted) GDP and investment are obtained, both in purchasing

power parity (1996) US dollars. From the Groningen Growth and Development

Centre and Asian Development Bank (ADB, various issues), data on employment

and hours worked were also obtained. Unemployment rates and key indicators of

the labor market were collected from the International Labor Organization (ILO)

Yearbook, and ADB (various issues). Various capital input measures were also con-

structed. Capital (K) is arguably the most difficult production factor to measure.

The WPD presents 4 different approaches based on: (1) different computations for

the initial capital stock (2) the depreciation rate (3) schedule for depreciation, and

(4) the lifetime of the asset. The different capital measures are labeled K06, K13,

Ks and Keff. Common to the first three capital measures is that capital is assumed

to depreciate at a constant rate over time. The first two capital stocks differ only
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in terms of their assumed depreciation rates (6% and 13.3%, respectively, which

correspond to about 12 and 6 year asset lives). The different depreciation rates

emphasize the importance of the either the initial capital or the effect of recent in-

vestments. K06 and K13 are based on assumption that ten years of investment serve

as an adequate proxy for the initial capital stock K0. Another common way of com-

puting the initial capital stock is to assume that the country is at its steady state

capital-output ratio. This leads to a level of steady-state capital service flows (Ks)

from a capital stock whose assumed depreciation rate is 6% per year. A different

way of measuring capital focuses on the profile of capital productivity and utilizes

a time-varying depreciation rate. As the asset ages, its capital services decline at an

increasing rate. This leads to the measure labelled Keff. There also are two kinds

of labor utilization rates for which labor force can be adjusted in our analysis. One

is based on variations in the numbers employed and one is based on variations in

hours worked. The first alternative to labor force (LF) is employment (EMP), which

is obtained as a direct measure of employment. The second is derived by applying

unemployment rates to LF data which leads to derived employment (DEMP).

We apply our model averaging methodology to the OECD (24 countries) based

on UNIDO data from 1960 to 2010. The countries in the OECD are: Australia, Aus-

tria, Belgium, Canada, Denmark, Finland, France, Greece, Iceland, Ireland, Italy,

Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Norway, Por-

tugal, Spain, Sweden, Switzerland, Turkey, UK, and USA.

5.1.1 Summary of Preliminary TFP Findings for the OECD

We choose K06, K13 and Keff as the capital inputs. We use EMP as the labor in-

put. The observation periods are from 1960 to 2010. We use the CSS, K, BC,

RE, FE specifications using EMP and three different capital measures. Thus, for

this exercise we have 15 different sets of estimates. We aggregate the results by

country, by time, to construct aggregate summary measures of technical innovation

and technical efficiency growth over the 50 years in our sample of OECD countries.

Aggregation is based on utilize geometric means using exchange and ppp weighted

gdp shares by each country as the weights. Results suggest that the impact of catch-

up relative to tehnical innovation is marginal. Preliminary results based on from our

model averaging exercise yields

OECD

1960-2010

TFP growth = 1.04% (innovation) + .09% (catch-up)

= 1.13%.
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6 Conclusion

We have discussed different theories on economic growth and productivity mea-

surement and the econometric specifications they imply. We develop a variety of

methodologies to combine the results from different models. Our methodologies

are illustrated with date from the World Productivity Database gathered by UNIDO.

TFP growth is decomposed to two components: technical efficiency change and

technological change. We aggregate growth rates of different efficiency measures

using model averaging criteria. We find out that in the time period between 1960

and 2010, OECD countries averaged about 1% TFP growth. Innovation that ex-

panded the production possibility frontier plays a much more significant role than

catch-up in improving TFP.
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