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Abstract

This paper aims to investigate spillover effects of public capital stock in a production function

model that accounts for spatial dependencies. In many settings, ignoring spatial dependency

yields inefficient, biased and inconsistent estimates in cross country panels. Although there are

a number of studies aiming to estimate the output elasticity of public capital stock, many of

those fail to reach a consensus on refining the elasticity estimates. We argue that accounting

for spillover effects of the public capital stock on the production efficiency and incorporating

spatial dependences are crucial. For this purpose we employ a spatial autoregressive stochastic

frontier model based on a number of specifications of the spatial dependency structure. Us-

ing the data of 21 OECD countries from 1960 to 2001, we estimate a spatial autoregressive

stochastic frontier model and derive the mean indirect marginal effects of public capital stock,

which are interpreted as spillover effects. We found that spillover effects can be an important

factor explaining variations in technical inefficiency across countries as well as in explaining

the discrepancies among various levels of output elasticity of public capital stock in traditional

production function approaches.

Keywords: Public capital, Spillover effect, Stochastic frontier model, Spatial panel model,

Time-varying spatial weights

JEL Classification: C23; D24; O47

1 Introduction

Public capital includes many types of goods which are used to produce final goods and services for

consumers. The infrastructures such as highways, streets, roads, and public educational buildings

take the largest components of public capital and also electric, gas and water supply facilities,

administration, police, military service, hospital facilities, and many other forms of goods and

services are included in public capital. In the United States, the real government gross fixed capital
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formation is between 3% and 4% of real GDP and about 20% of the real gross fixed capital formation

in the private sector. Based on the estimates of Kamps (2006), the public capital stock is sizable,

taking about 55% of real GDP and more than 20% of private capital stock on average of the 22

OECD countries during the sample periods: 1960-2001. This implies that ignoring public capital

can be problematic when analyzing productivity and efficiency. Delorme et al. (1999) also argue

that public infrastructure reduces the technical inefficiency of private-sector production.

The economic impact of public investment has been received great attention in numerous studies

for the last few decades. Many studies have tried to estimate the output elasticity of public capital

and there has been a debate on the effects of public capital on output. The output elasticities

of public capital estimated by various models and samples range from 0.1 to 0.4. Specifically,

the earlier studies such as Aschauer (1989) or Munnell (1990) report relatively large elasticities

while they are considered implausibly high by subsequent studies such as Tatom (1991) or Holtz-

Eakin (1994). Recently, Bom and Ligthart (2013) estimate an average output elasticity of public

capital to be around 0.15 using meta-analysis with 68 studies for the 1983 - 2008 period. Even

though the magnitudes of the effects of public capital stock are far from consensus, there is little

doubt on the positive sign and statistical significance (Pereira and Andraz, 2013). There has been

several explanations for the disagreement on the magnitude of the effects of public capital. Major

explanations are related to econometric issues. Tatom (1991) points out the significant influence

of the relative price of energy on productivity, the omitted time trend, and possibility of spurious

regressions as main shortcomings of the previous studies. Moreover, in general, ignorance of cross

sectional dependency results in inefficient and biased estimates and invalid inference when it actually

exists. Another explanation is the possible existence of spillover effects and the different levels of

samples of studies. Pereira and Andraz (2013) pointed that the large effects of public investment

observed at the aggregate level cannot be replicated at the regional level. Also, they mentioned

that the spillover effects captured by aggregate level studies can give a clue for this paradox. They

said that the significant spillover effects are observed in some empirical studies and this can explain

some of the divergences found between regional and aggregate studies. The issue of the possible

existence of spillovers of public capital has received relatively little attention. Holtz-Eakin and

Schwartz (1995) examine the degree of geographical spillovers in productivity with state highway

investment but no evidence of important regional spillovers is found. Pereira and Roca-Sagales

(2003) investigate the regional effects of public investment and the spillovers in Spain using vector

autoregressive(VAR) models. Recently spatial econometric methods are extensively used in regional

science studies to assess spatial spillovers.

Spatial econometrics consists of econometric techniques dealing with interactions of economic

units in space. For a cross sectional model, the spatial autoregressive model by Cliff and Ord (1973)

has received the most attention. The technique is extended to panel data models. Anselin (1988)

provides a panel regression model with error components and spatial autoregressive disturbances.

Kapoor et al. (2007) propose a method of moments estimation. Lee and Yu (2010c) investigate the

quasi-maximum likelihood estimation of spatial panel models under the fixed effects specification.
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We form exogenous spatial weights matrices that capture the interactions between individuals. The

interactions can be of geographical or economic characteristics. The spatial weights matrices tend

to be time invariant because mostly spatial weights are based on geographical concepts such as

border sharing characteristics or centroid distances, which are not change over time. However, we

can also consider the economic/socioeconomic distances or demographic characteristics as sources

of cross sectional dependence. As Lee and Yu (2012) point out, when spatial weights matrix is

constructed from those characteristics in a panel or dynamic setting, the characteristics might

change over time.

Spatial dependency and the heterogeneity of the spatial dependence structure influence on the

productivity or efficiency of the economic units. The standard stochastic frontier models do not

take spatial interactions into account. Pavlyuk (2012) estimates the efficiency in presence of spatial

dependency and presents a general specification of the spatial stochastic frontier model. Glass et al.

(2013) develop a spatial autoregressive frontier model with time-varying efficiency. They shed lights

on the possible interpretations of spillover of returns to scale.

In this paper, we mainly concern how to estimate the effects of public capital stock on output

separating out the direct and indirect effects. The direct effects include the feedback effects which

pass through neighboring regions and back to the region itself. The indirect effects are interpreted

as spillover effects. We consider the possible existence of spatial dependence by incorporating the

spatially correlated terms with a variety of spatial dependence structures. Also, we measure the

technical efficiencies of countries. We expect to improve the estimation of the technical efficiency by

adding public capital as a factor input and controlling the possible cross sectional dependence. To

this end we investigate the quasi-maximum likelihood(QML) estimation of Spatial Autoregressive

Stochastic Frontier Model. Finally, we apply the model to a dataset from 21 OECD countries under

the settings of both time-invariant and time-varying spatial weights matrices. We found significant

and sizable output elasticity of public capital, and significant spillover effects, and also we estimated

the relative technical efficiency scores of each models.

The paper continues with the following structure. Section 2 introduces the standard spatial

models and presents the associate frontier model we are interested in. Also, we discuss on the

direct, indirect, and total effects of the inputs on output and connect the interpretation to the

spillover effects. In section 3, we modifies the quasi-maximum likelihood estimation provided by

Lee and Yu (2012) for the efficiency analysis. In section 4, we apply the model to a dataset from

21 OECD countries with a variety of weight matrices specifications. Section 5 concludes the paper.

2 Spatial Autoregressive Stochastic Frontier Model

We begin with a non-spatial production function. The production function is of the form:

yit = β0 +Xitβ + εit i = 1, · · · , N ; t = 1, · · · , T, (1)
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where i indexes cross-section of economic units and t indexes time periods. yit is output of the ith

unit at time t, whereas Xit is a (1 ×K) input vector of the ith unit at time t. β is the (K × 1)

parameter vector to be estimated, and εit is an i.i.d disturbance term with zero mean and variance

σ2ε .

In general, three types of spatial interaction effects can be given on the non-spatial production

function. The first are endogenous interaction effects, which are explaining dependence between

the dependent variable, y, of each unit. The second are exogenous interaction effects, which are

explaining dependence between the dependent variable of a specific unit, y, and the independent

variable of another unit, X. The last type are the interaction effects among the error terms. A full

model with all types of spatial effects can be written as:

yit = ρ
N∑
j=1

wijyjt + β0 +Xitβ + θ
N∑
j=1

wijXjt + εit, (2)

εit = λ
N∑
j=1

wijεjt + uit.

The model in matrix notation is given:

Y = ρWY + β0ιn +Xβ +WXθ + ε, (3)

ε = λWε+ u,

where W is an exogenous (N ×N) spatial weights matrix with non-negative elements, WY , WX,

and Wε represent the endogenous interaction effects, exogeneous interaction effects, and interaction

effects among the disturbance term, respectively1.

For model selection, Anselin et al. (2008) provide Lagrange Multiplier tests for a spatially lagged

dependent variable and for a spatial error term under panel data setting. The test starts from the

non-spatial pooled model

y = Xβ + ε. (4)

The tests center on the null hypotheses H0 : ρ = 0 and/or H0 : λ = 0. The Lagrange Multiplier

statistics are of the forms:

LML =
[e′(IT ⊗W )Y/(e′e/NT )]2

[(WŶ )′M(WŶ )/σ̂2] + T · tr(WW +W ′W )]
, (5)

LME =
[e′(IT ⊗W )e/(e′e/NT )]2

T · tr(WW +W ′W )
, (6)

1Elhorst (2014) named this equation as the general nesting spatial (GNS) model.
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where e = Y −Xβ̂ denotes the residuals of a regression model without any spatial terms, WŶ is the

spatially lagged predicted values in the regression, and M = INT −X(X
′
X)−1X

′
. The statistics

are asymptotically distributed as χ2(1) Also, Elhorst (2010) suggested the robust counterparts of

the LM tests as

robustLML =
[e
′
(IT ⊗W )Y/σ̂2v ]

2 − [e
′
(IT ⊗W )e/σ̂2v ]

2

J − T · TW
, (7)

robustLME =
[e
′
(IT ⊗W )e/σ̂2v ]

2 − [(TTW /J)× e′(IT ⊗W )Y/σ̂2v ]
2

T · TW (1− T · TW /J)
, (8)

where J = [(WŶ )′M(WŶ )/σ̂2] + T · tr(WW + W
′
W )] and TW = tr(WW + W

′
W ). Among the

interaction effects, we are interested in the endogenous interaction effects. Hence we impose the

restrictions of θ = 0 and λ = 0. The the model (2) reduces to

yit = ρ
N∑
j=1

wijyjt + β0 +Xitβ + εit, (9)

The model is called Spatial Autoregressive Model; hereafter SAR. This is the Cliff-Ord type pro-

duction function, suggested by Cliff and Ord (1981)

The associated stochastic frontier specification of (9) can be obtained by assuming the distur-

bance term εit is a composite error with a non-negative random variable ui, which represents the

technical inefficiency, and a systematic random noise vit. We assume ui to be time-invariant fol-

lowing the assumption of Schmidt and Sickles (1984). εit is no longer assumed to have zero mean.

Instead, we assume vit is i.i.d. with zero mean and variance σ2v . Then the spatial autoregressive

stochastic frontier (SARSF) model is given

yit = ρ

N∑
j=1

wijyjt + β0 +Xitβ − ui + vit. (10)

Define αi ≡ β0 − ui then the model (10) becomes

yit = ρ
N∑
j=1

wijyjt + αi +Xitβ + vit. (11)

A relative inefficiency(or efficiency) measure accounts for the output of each unit to the output that

could be produced by a fully-efficient unit. Because the most efficient unit has the largest αi, the

relative inefficiency measure can be derived by defining u∗i as the distance between max(α̂i) and αi
2.

2Since output is in logarithms, relative technical efficiency is defined as r̂i ≡ exp(−u∗i ).
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u∗i ≡ max(α̂i)− α̂i. (12)

We can write the stacked form of (12) as follows:

Yt = ρWYt +Xtβ + α + Vt, t = 1, · · · , T (13)

where Yt = (y1t, y2t, · · · , yNt)′ and Vt = (v1t, v2t, · · · , vNt)′ are (N × 1) column vectors, and vit’s

are i.i.d across i and t with zero mean and variance σ2. The Xt is an (N × K) matrix matrix

of non-stochastic regressors, and α is an (N × 1) column vector of individual effects. The spatial

weights matrix Wt is a non-stochastic and row-normalized, and time varying (N ×N) matrix.

The spatial weights matrix, W , is taken to be exogenous and captures cross-section dependence

among observations. The spatial weights matrix is mostly specified to be time invariant because

it is usually based on the characteristics that are hardly changing over time such as geographical

distance or border sharing feature. However, it can be formed from other concepts that are time

varying such as economic/socioeconomic distances or demographic characteristics. We incorporate

time varying characteristics of the spatial weights matrix, so we add time-subscript t in (13) as

follows:

Yt = ρWtYt +Xtβ + α + Vt (14)

The reduced form of (14) is

Yt = (IN − ρWt)
−1(Xtβ + α + Vt). (15)

One advantage of incorporating the spatial dependence is that it captures the direct and indirect

effects separately. If the OLS model is adopted, only the direct effects of explanatory variables are

captured as the coefficient estimates of the variables. When a spatial lag term is introduced in the

model, the direct effects of an explanatory variable, Xk, are the diagonal elements of (IN−ρWt)
−1βk,

while the indirect effects are the off-diagonal elements of the matrix. The premultiplied matrix can

be decomposed as

(IN − ρWt)
−1 = IN + ρWt + ρ2W 2

t + ρ3W 3
t + · · · . (16)

Hence the direct effect will be greater than or equal to βk. The first two matrix terms of the right

hand side of (16) represent a direct effect of a change in Xk only and an indirect effect of a change

in Xk only, respectively. The rest terms represent higher order direct and indirect effects, which

include the feedback effects of other units. To obtain a single direct effect and indirect effect for

an explanatory variable in the model, LeSage and Pace (2009) suggest reporting the average of the

direct effects and the average of the indirect effects.
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To test whether spatial spillovers exist or not, the estimated indirect effects should be used, not

the estimate of ρ. This is because the indirect effects are derived from the multiplication of (IN −
ρWt)

−1 and βk, and the variation of the indirect effects depends on the variation of all coefficient

estimates. In other words, even though each coefficients are estimated to be significant, this does

not mean that the mean indirect effect is significant, and vice versa. LeSage and Pace (2009)

suggest simulating the distribution of the direct and indirect effects. The simulation procedure is

basically in two steps: 1) computing the mean value over D draws of direct/indirect effects for the

approximation of the overall effects and 2) obtaining t-statistics by dividing the sample mean by

the corresponding standard deviation.

3 QML estimation of Spatial Autoregressive Model with Time-

varying spatial weights matrices

Spatial models can be estimated by maximum likelihood, quasi-maximum likelihood, instrumental

variables, generalized method of moments, or by Bayesian Markov Chain Monte Carlo methods.

One advantage of QML is that it does not rely on the assumption of normality of the disturbances.

For the standard panel data model with fixed effects, one can estimate jointly the common param-

eters of interest and fixed effects by the maximum likelihood estimation. However, it is well-known

that the MLE of the variance is inconsistent when T is finite. Similar consequences are found for

the spatial panel data model with fixed effects. To avoid the incidental parameter problem, we

can use a data transformation, which is a demeaning procedure of each variables. Lee and Yu

(2010c) provide asymptotic properties of quasi-maximum likelihood estimators for spatial dynamic

panel data with both time and individual fixed effects. Elhorst (2014) summarizes how to estimate

spatial autoregressive model with fixed effects when spatial weight matrix is time invariant. In this

section, we derive quasi-maximum likelihood estimator for spatial autoregressive model with fixed

effects when spatial weight matrix is time variant. Maximum likelihood estimator accounts for the

endogeneity of the spatial lag term.

Let θ = (β, ρ, σ2v)
′. The log-likelihood function of the model 14 is

LogLN,T (θ,α) = −NT
2
ln(2πσ2v) +

T∑
t=1

ln|IN − ρWt| −
1

2σ2v

T∑
t=1

V ′t (θ)Vt(θ), (17)

where Vt(θ) = (IN − ρWt)Yt − Xtβ − α. We can get the analytic solution to αi by solving the

first-order conditions of (17) with respect to αi as follows:

αi =
1

T

T∑
t=1

yit − ρ N∑
j=1

wtijyjt −Xitβ

 i = 1, · · · , N. (18)
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By substituting (18) into (17), we concentrate out α in (17) and get the concentrated log-likelihood

function as follows:

LogLN,T (θ) = −NT
2
ln(2πσ2v) +

T∑
t=1

ln|IN − ρWt| −
1

2σ2v

T∑
t=1

Ṽ ′t (θ)Ṽt(θ), (19)

where Ṽt(θ) = Ỹt − ρW̃tYt − X̃tβ, Ỹt = Yt − 1
T

∑T
t=1 Yt, W̃tYt = WtYt − 1

T

∑T
t=1WtYt, and X̃t =

Xt − 1
T

∑T
t=1Xt. As one can see, the concentrated log-likelihood function (19) is same as the log-

likelihood function from (14) after demeaning variables. We can write the transformed model after

demeaning as follows:

Ỹt = ρW̃tYt + X̃tβ + Ṽt. (20)

Assuming we know the true value of ρ = ρ∗, the ordinary least squares estimates of β and σ2v

of (20) can be found analytically as follows 3:

β̂ = (X̃ ′X̃)−1X̃ ′[Ỹ − ρ∗W̃Y ], (21)

σ̂2v =
1

NT
(Ỹ − ρW̃Y − X̃β̂)′(Ỹ − ρW̃Y − X̃β̂). (22)

Substituting (21) and (22) into the likelihood (19) gives a concentrated likelihood function depend-

ing on a single unknown parameter ρ:

LogLN,T (ρ) = C − NT

2
(Ỹ − ρW̃Y − X̃β̂)′(Ỹ − ρW̃Y − X̃β̂) +

T∑
t=1

ln|IN − ρWt|, (23)

where C is a constant term which is not relying on ρ. Finally, by maximizing (23), we can obtain

a solution to ρ. Even though a closed-form solution of ρ does not exist, the numerical solution is

unique because the concentrated log-likelihood (23) is a concave function in ρ. Once we have a ML

estimator of ρ, we can compute the estimates of β and σ2v by replacing it in (21) and (22).

For the asymptotic properties of the QML estimators, we need the following regularity assump-

tions for the spatial weight matrix, Wt.

Assumption A1 Wt’s are row-normalized non-stochastic spatial weights matrices with zero diag-

onals for all t.

Assumption A2 IN − ρWt is invertible for all t and for all ρ ∈ Λ, where the parameter space Λ

is compact and ρ0 is in the interior of Λ.

Assumption A3 Wt’s are uniformly bounded in both row and column sums in absolute value,

uniformly in t. Also, (IN − ρWt)
−1’s are uniformly bounded, uniformly in ρ ∈ Λ and t.

3The bias-corrected σ̂2
v,BC proposed by Lee and Yu (2010a) to avoid possible bias caused by the demeaning

procedure can be obtained as σ̂2
v,BC = T

T−1
σ̂2
v.
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The asymptotic variance matrix of the parameters4 is derived as

Asy.V ar(β, ρ, σ2v) =


1
σ2 X̃

′
X̃ − −

1
σ2 X̃

′
W ∗

′
X̃β

∑T
t=1 tr(W

∗
t W

∗
t +W ∗

′
t W

∗
t ) + 1

σ2β
′
X̃
′
W ∗

′
W ∗X̃β −

0 1
σ2

∑T
t=1 tr(W

∗
t ) NT

2σ4


−1

,

(24)

where W ∗t = Wt(IN − ρWt)
−1.

4 An Empirical Application

In this section, we apply the SARSF model to a dataset from 21 Countries5 in the Organisation for

Economic Co-operation and Development(OECD) for the period of 1960 - 2001. For the analysis,

we construct the spatial weights matrices using both geographical distance and economic distance

as described in Sec. 4.1. Also, for each cross-sectional interaction, we try contiguity approach

and distance decaying approach with and without thresholds for the weights matrix construction.

Moreover, we allow the weights matrices for changing over time if the underlying distance concept

is time dependent. If a spatial weights matrix is based on economic or socio-economic distance

concepts or demographic characteristics, time-varying weights matrix may need be considered for

more accurate specification.

4.1 Specifications of the Spatial Weights Matrices

Prior to the estimation, we need to specify the spatial dependence structure between observations.

The approaches to construct the spatial weight matrices often used in practice are roughly cate-

gorized into two groups: weights based on a contiguity or distance. We utilize both approaches

following the tradition. Typically geographical relations are used for specifying the dependence, but

we can use economic relations. For the geographical relations, we used the border sharing feature

and the centroid distance between capital cities of each countries. For the economic relations, the

bilateral trade volume measured by sum of bilateral exports and bilateral imports is used. The

main distance concepts we use in this section are as follows:

• Contiguity : DG1

For ∀i 6= j,

dij =

{
1 if countries i and j share a border;

0 otherwise.

4This is a modification of the asymptotic variance matrix provided by Elhorst and Freret (2009).
5The 21 countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece, Iceland, Ireland,

Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and United
States. Germany is excluded because a truncation in data.
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• Geographical Distance : DG2

For ∀i 6= j,

dij = bd−γij ,

where bdij denotes the bilateral distance between capital cities of countries i and j, and α is

any positive exponent6.

• Average Bilateral Trade : DA
E

dij =
1

T

T∑
t=1

(
extij + imt

ij

)
,

where extij and imt
ij represent the bilateral exports and imports volume from country i to j

at time t, respectively.

• Yearly Bilateral Trade : Dt
E

dtij = extij + imt
ij

DG1 is the most typical weights concept. In many cases the boundaries shared between spa-

tial units play an important role in terms of spatial influence. Moreover, the contiguity approach

lessens burden of calculation making the weights matrix sparser than one from other specifications.

On the other hands, the distance weights such as DG2, D
A
E , and Dt

E , have the advantages in that

they provide more affluent information. However, all the elements of the weights matrices tend to

be non-zero, so if the number of cross-sectional units gets larger, the numerical calculation can be

burdensome. Hence, we generate distance weights with thresholds for the purpose of robustness

check7. We order the centroid distances and pick the k closest (or biggest trade volume) units. In

this paper, we used k = 5, and k = 10. To satisfy the regularity conditions for the asymptotic

analysis, the distance concepts should be row-normalized before estimation. Denote the normalized

weights matrices by W instead of D, which represents the non-normalized weights matrices.

4.2 Data Description

For the estimation of the typical production function, we need real GDP as output, and labor par-

ticipation and private capital stock as factor inputs. To get those variables, we first extracted PPP

converted GDP per capita(rgdpl), PPP converted GDP per worker(rgdpl2wok), population(pop)

and investment share of rgdpl(ki) from Penn World Table Version 7.1 (Heston et al., 2012). With

these variables, we can easily calculate real GDP, y, and labor participation, l, as y = rgdpl×pop and

6We assume γ = 1 in this paper.
7Spatial models have a major weakness in the exogeneity of the spatial weights matrix W . W needs to be specified

prior to the estimation but the specification of W is not tested in most cases. For this reason, it is examined whether
the empirical results are robust to the specifications of W by estimating the same model with different spatial weights
matrices in empirical research. In this paper, we check the sensitivity of the results to the choice of W using the 10
specifications of W .
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l = (rgdpl×pop)/rgdpl2wok, respectively. For the estimation of private capital stock, kp, we use the

perpetual inventory method after obtaining real aggregate investment, which is rgdpl×ki×pop/100.

In using the perpetual inventory method, we assume that the real capital stock in 1960 is depre-

ciated real aggregate investment in 1959 and the fixed depreciation rate of 6% for all countries for

all periods. Since we are interested in the effects of public capital, we also need the public capital

variable. Major challenge of empirical study on public capital productivity is shortage of public

capital data. Kamps (2006) provides the public capital stock estimates of 22 OECD countries from

1960 to 2001. Unfortunately, the study is outdated so the estimates are not compatible with the

up-to-date Penn World Table dataset and also the estimates are in national currencies, which is

not suitable for international comparison8. Hence we obtained the public capital stock using the

multiplication of public capital to real GDP ratio in Kamps (2006) and the real GDP from PWT

7.1. The summary statistics of the key variables are shown in Table 1.

To construct spatial weight matrices, we need the contiguity relations, geographical distances,

and economic distances. The contiguity relations are examined using queen criterion. The bilateral

geographical distances(both in miles and km) between capital cities are accessible from the website

of Professor Kristian Skrede Gleditsch in University of Essex9. For the economic distances, we

obtained the bilateral trade data from NBER-UN Trade Data 1962-2000 (Feenstra et al., 2005).

The dataset is based on the reports by the importing country assuming that they are more accurate

than the reports by the exporting countries. For a limitation, the dataset contains several data

points that indicate a country imports from itself. This happens because some aggregate items of

the statistics are created simply by adding up the subcategories. To keep the regularity assumption

A1, we ignored the ’self-trade’ data points and we set them zeros.

4.3 Empirical Findings

Table 2 reports the LM test statistics and the robust LM test statistics for a spatially lagged

dependent variable and a spatial error term and the associated p − values to determine which

spatial terms are appropriate. This is so called specific-to-general approach that tests the non-

spatial model against the spatial lag and/or the spatial error model (Elhorst, 2014). The hypothesis

of no spatially lagged dependent variable is rejected at 1% significance in both classical LM tests

and robust LM tests with all time invariant spatial weights matrices. However, the test results

on spatial error correlation are arguable; the hypothesis of no spatially autocorrelated error term

cannot be rejected with all spatial weights matrices when using the classical LM tests while the

Elhorst’s robust LM test rejects the nulls in all spatial weights except for the contiguity case10.

Tables 3 - 5 show the estimation results when adopting a non-spatial panel fixed effects model

and SARSF with selected spatial weights matrices. There are 11 estimated models depending on the

spatial matrix specifications: the five main models of (1) Non-spatial fixed effects, (2) Geographical

8It is hard to find appropriate price indexes and PPP exchange rates for all countries for the periods.
9http://privatewww.essex.ac.uk/~ksg/

10Because these tests are not nested each other, we are not able to choose one between SAR and SEM against each
other.
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contiguity, (3) Geographical distance without cut-off, (4) Average bilateral trade, and (5) Yearly

bilateral trade, and the two k-nearest sub-models with k = 5, 10 for (3), (4), and (5), respectively.

The first column of Table 3 gives the results of non-spatial fixed effects model, which is a benchmark

model. The coefficients of thed three factor inputs are significantly different from zero and have

the expected signs. However, we found the spatial lag model is more appropriate, so we regard

the results as biased. A caveat is that we are not able to compare the coefficient estimates in

the non-spatial model and their counterparts in the other models because the coefficient estimates

in the models (2) - (4) and the associated sub-models (3-1), (3-2), (4-1), and (4-2) are no longer

interpreted as output elasticities of the factor inputs because the existence of (IN − ρWt)
−1 in

the equation (15). For appropriate comparisons, we need to obtain the mean direct effects, mean

indirect effects and total effects as we discussed in Sec. 2.

In Tables 6 and 7, we present the direct and indirect effects estimates based on the coefficient

estimates in Tables 3 - 5. The direct effects are computed by averaging the diagonal elements of

(IN−ρWt)
−1βk, and the indirect effects are computed by averaging the row sums of the off-diagonal

elements of (IN − ρWt)
−1βk with 1,000 parameter combinations draws. Tables 6 shows the results

when we use the time invariant spatial weights matrices. The total effects are sum of direct and

indirect effects. Overall, the total effects estimates have similar values with the results of non-

spatial fixed effects displayed in Table 3. In Model (3), the direct effects of factor inputs are 0.331,

0.175, and 0.239. The indirect effects appear to be 0.128, 0.067, and 0.093, which are 27.9%, 27.7%,

and 28.0% of their own total effects. By comparing the Tables 3 - 5 and the Tables 6 - 7, we can

back out the feedback effects, which pass through neighbors and back to the country itself11. Since

the coefficients estimates in Model (3) are 0.327, 0.175, and 0.236, the feedback effects are 0.004,

0.000, and 0.003 for labor, private capital, and public capital, respectively. The other columns of

Table 6 show more or less similar results with the results from Model (3) except for Model (2).

The estimations are robust to spatial weights matrix specification. One may find reasons for this

results, but we conclude that this is resulted from a wrong specification of the contiguity matrix.

Table 7 gives the direct and indirect effects estimates when we use the time varying spatial

weights matrix. We constructed the spatial weights matrix using the yearly bilateral trade volume

hence we can compute the output elasticities along the time. We are almost not able to observe the

variations of the output elasticities across the period. This is because the main trade partners of the

most countries do not vary along the time, even though each countries prefer different countries for

their partners. The total effects of the factor inputs range from 0.293 to 0.300 for labor, from 0.251

to 0.253 for private capital, from 0.380 to 0.384 for public capital. The indirect effects are around

33% of the total effects for all factor inputs across the period. We find that the total effects of labor

are smaller than the results of the time invariant weights specifications, while the total effects of

private capital and public capital are greater than the corresponding total effects. Especially, the

difference in the total effects of labor are mainly due to the difference in the direct effects, while the

difference in the total effects of private and public capital are due to the difference in the indirect

11A feedback effect is computed as the average of the diagonal elements of (ρWt + ρ2W 2
t + ρ3W 3

t + · · · )βk.
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effects.

Our interests in this paper are the spillover effects of public capital stock. Especially, examining

the spillover effects of a particular country to other countries or the spillover effects from other

countries to a specific country is crucial. However, the average indirect effects do not give the

information related to our interests. For that purpose, we separated out the marginal indirect

effects for each country. First of all, as we discussed in Sec. 2, the marginal effects of spatial model

can be found as:

∂Yt
∂Xk,t

= (IN − ρWt)
−1βk. (25)

Here, (IN − ρWt)
−1 is a (N × N) matrix, which makes βk be no longer interpreted as marginal

effects. Because of the pre-multiplication of (IN−ρWt)
−1, the marginal effects ∂Yt

∂Xk,t
is also (N×N)

matrix. The diagonal elements represent the direct effects of regressors. In other words, the effects

of a unit increment of an input in a particular country on the production of the country. The

off-diagonal elements can be interpreted as indirect effects. For instance, the ijth element(i 6= j)

represent the effect of a unit increment of an input in country i on the production of country j.

Hence, the row-sum,
∑

i 6=j
∂Yi
∂Xk,j

, can be interpreted as the spillover effects from other countries to

a specific country when all other countries increase a unit in a factor input. On the other hands,

the column-sum,
∑

j 6=i
∂Yi
∂Xk,j

, can be interpreted as the total spillover effects of a particular country

to the outputs of other countries. We obtain the measures using the simulation approach suggested

by LeSage and Pace (2009) as we discussed in Sec. 2.

Table 8 shows the spillover effects from other countries to a specific country. Interestingly, the

spillover effects of increasing a unit of factor inputs in all other countries are almost similar across

the countries. Table 9 shows the total spillover effects of a particular country to other countries.

In this case, the spillover effects of increasing a unit of factor inputs in a particular country shows

some variations across the countries. Specifically, the countries with large economies, such as United

States, United Kingdom, and France, have larger effects on other countries than smaller economies.

Let us turn our attention to the results of the efficiency analyses. With the estimation results,

we obtained the efficiency scores and rankings of countries. Table 10 displays the relative efficiency

scores estimates and the rankings. In the non-spatial fixed effects model, Iceland appears to be

the most efficient country, while Japan is the least efficient country. However, we regard the

estimation results as biased because we found the spatial lag model is more appropriate from the

Lagrange Multiplier tests, hence the efficiency estimates are also biased. The other four models

show relatively low efficiency scores than the efficiency scores of non-spatial fixed effects model.

Moreover, the efficiency scores change dramatically when we incorporate the spatial autoregressive

term. Except for Model (2), which uses geographical contiguity as spatial weights, Model (3), (4),

(5) are showing quite robust results. In these models, United States is the most efficient, while

Iceland is the least efficient. From the change between the Model (1) and other Models, we conclude

that smaller economies get relatively less benefits from other countries, while larger economies get

13



more benefits from other countries. The countries that have relatively low average GDP, such as

Iceland, Ireland, and New Zealand, get lower ranks in efficiency, while the countries that have

relatively high average GDP, such as France, Italy, Japan, UK, and US, get higher ranks in SARSF

models.

From the results, one can observe some variations in efficiency ranking between non-spatial

model and spatial models. As our spatial weights rely on the economic distance, specifically on

the relative importance as trade partner, we roughly guess that the changes in efficiency ranking

are caused by the (relative) size of trade or the size of the economy. Hence, we examined the

relationship between the changes in efficiency scores and either GDP share (% of World GDP) or

Trade-to-GDP share12. Assuming all spatial models deliver similar effects, we confine the analysis

on the comparison of Model (1) and (4). Fig. 1 shows the relation between the absolute change

in efficiency ranking and GDP share. We observe the positive correlation between the two indices.

The correlation coefficient is 0.149. The relation is reasonable because we have checked the indirect

effects tend to be larger if the size of economy is larger(See Table 9). The non-spatial Fixed

effects model cannot capture the indirect effects appropriately that the efficiency rankings might

be inaccurate. Fig. 2 display the same plots with GDP share < 1%. We still can see the positive

correlation13. For the next, Fig. 3 illustrates the relation between the changes in efficiency scores

and the trade openness. The trade openness is measured by Trade-to-GDP share. We observe a

negative correlation. The correlation coeffcient is −0.10. This is possible because the correlation

coefficient between GDP share and Trade-to-GDP is −0.45. In other word, the relative trades to

GDPs of the countries that have relatively small economies tend to be large. Hence, for those

countries the indirect effects are relatively small, which results in the negative relation between the

changes in efficiency scores and trade openness.

For the distributional comparisons of the models, we plot the kernel densities of the efficiency

scores in Fig. 5. We found the distribution from the non-spatial fixed effects model located slightly

to the right side of the density plots of other four models. Finally, in Fig. 6 we compared the

efficiency scores distributions when we include the public capital stock as a factor input with the

distributions when we exclude the public capital stock. We observe the efficiency scores distributions

are shifted to the right when we add public capital as a factor input except for the case of Model (2),

which implies that the inclusion of public capital stock variable helps to explain some of variations

in production.

5 Conclusions

In this paper, we investigate the spillover effects of public capital stock in a production frontier

model that accounts for cross sectional dependency among countries. We estimate the output elas-

12The data sources of GDP share and Trade-to-GDP are https://www.quandl.com/collections/economics/

gdp-as-share-of-world-gdp-at-ppp-by-country and World Bank(http://data.worldbank.org/indicator/NE.
TRD.GNFS.ZS), respectively.

13For Iceland, we guess that the spatial effects might be reflected excessively because the size of economy is too
small relative to other observations in the sample. One needs to be careful for interpretation on this sample.
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ticity of public capital stock as well as labor and private capital stock in a Cliff-Ord type production

frontier function. Especially, we separate out the direct and indirect effects of factor inputs and in-

terpret the indirect effects as the spillovers. Moreover, the spatial autoregressive stochastic frontier

model allow us to gain the relative efficiencies of countries as well. The spatial weights matrix is the

essential characteristic of the approach and we exploit the geographical and economic interactions

to construct our spatial weights matrices. Specifically, we allow for the spatial weights matrix to

vary across time, which is reasonable for economic/socioeconomic spatial weights. In addition,

we compare the estimation results based on a number of specifications of the spatial dependency

structure and observe robustness of our model.

We estimate the output elasticities of factor inputs at international level by the empirical ap-

plication to the data for 21 OECD countries from 1960 to 2001. We found relatively large total

output elasticities of public capital stock and observe that the indirect effects comprise around

30% of the total elasticities, which supports the argument of Pereira and Andraz (2013). We ob-

tained larger total output elasticity of public capital stock when we use the time varying weights

matrix. Finally, we measure the relative technical efficiencies of countries. Concerning the spatial

dependency, SARSF model is expected to give the less biased relative efficiency estimates than the

non-spatial counterpart, but more delicate comparison between efficiency estimates from different

models should be analyzed by the future works. Compare to the analysis that utilizes only the

traditional factor inputs, labor and private capital stock, inclusion of public capital stock results in

shift of the efficiency score distribution to the right, which implies that some of production process

is explained by public capital stock variable additionally.
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Table 1: Summary Statistics

Mean St.Dev. Min Max

Real GDP(millions) 875.8 1,598.5 3.92 11,265.5
Labor participation(thousands) 16,448 26,188 79 144,746
Private Capital(millions) 1,941.3 3,434.6 7.46 24,753.4
Public Capital(millions) 528.0 1,004.8 2.12 5,705.4

Table 2: Lagrange Multiplier Tests for a spatially lagged dependent variable and spatial error correlation

Spatial lag (H0 : ρ = 0) Spatial error (H0 : λ = 0)

Spatial Weights LM Robust LM LM Robust LM

Geo: Contiguity 36.17 (0.000) 36.75 (0.000) 0.07 (0.784) 0.65 (0.419)

Geo: Distance (no cut off) 2106.36 (0.000) 3184.42 (0.000) 0.36 (0.550) 1078.42 (0.000)

Geo: Distance (closest 5) 755.43 (0.000) 947.97 (0.000) 0.18 (0.667) 192.73 (0.000)

Geo: Distance (closest 10) 1730.85 (0.000) 2322.63 (0.000) 0.31 (0.575) 592.09 (0.000)

Average Trade (no cut off) 902.68 (0.000) 1128.23 (0.000) 0.14 (0.705) 225.69 (0.000)

Average Trade (biggest 5) 813.92 (0.000) 1116.02 (0.000) 0.10 (0.756) 302.19 (0.000)

Average Trade (biggest 10) 907.07 (0.000) 1174.70 (0.000) 0.12 (0.726) 267.76 (0.000)

Note: The numbers in parentheses are p-values.

Table 3: Estimation results of a non-spatial panel fixed effects model and SARSF with time invariant spatial
weights matrices

(1) (2) (3) (4)
Determinants Non-spatial FE Geo: Contiguity Geo: Distance Average Trade

Log(L) 0.489 (15.922) 0.646 (17.795) 0.327 (9.954) 0.300 (8.994)

Log(Kp) 0.240 (22.279) 0.296 (21.587) 0.175 (10.692) 0.177 (11.605)

Log(Kg) 0.302 (15.191) 0.332 (15.049) 0.236 (12.092) 0.241 (12.490)

W · Log(Y ) - - -0.236 (-10.741) 0.284 (7.464) 0.276 (8.004)

σ̂2v 0.008 0.010 0.008 0.008

Log − likelihood NaN 909.202 912.892

Note: The numbers in parentheses are t-stats.
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Table 4: Estimation results of SARSF with k-nearest spatial weights matrices

Determinants Geo: Distance Average Trade

(3-1) (3-2) (4-1) (4-2)
Closest 5 Closest 10 Biggest 5 Biggest 10

Log(L) 0.341 (10.191) 0.330 (9.980) 0.288 (8.466) 0.301 (8.972)

Log(Kp) 0.193 (12.110) 0.183 (11.014) 0.186 (12.674) 0.179 (11.827)

Log(Kg) 0.261 (13.383) 0.243 (12.446) 0.244 (12.686) 0.243 (12.630)

W · Log(Y ) 0.213 (6.001) 0.259 (6.688) 0.261 (7.979) 0.270 (7.955)

σ̂2v 0.008 0.008 0.008 0.008

Log − likelihood 894.227 903.506 908.300 911.369

Note: The numbers in parentheses are t-stats.

Table 5: Estimation results of SARSF with time varying spatial weights matrices

Determinants (5) (5-1) (5-2)
Yearly Trade Biggest 5 Biggest 10

Log(L) 0.197 (5.811) 0.233 (6.823) 0.190 (5.622)

Log(Kp) 0.167 (10.903) 0.194 (12.903) 0.163 (10.876)

Log(Kg) 0.253 (12.550) 0.262 (13.085) 0.254 (12.617)

W · Log(Y ) 0.337 (19.015) 0.252 (7.664) 0.336 (10.106)

σ̂2v 0.008 0.008 0.008

Log − likelihood 2,154.899 2,158.198 2,157.316

Note: The numbers in parentheses are t-stats.
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Table 8: Indirect effects(row-sum):
∑

i6=j
∂Yi

∂Xk,j

Labor Private Capital Public Capital

Indirect effects t-stat Indirect effects t-stat Indirect effects t-stat

Australia 0.113 6.725 0.067 8.315 0.091 5.694
Austria 0.113 6.704 0.067 8.277 0.092 5.675
Belgium 0.111 6.781 0.065 8.418 0.090 5.745
Canada 0.106 6.904 0.063 8.645 0.086 5.855
Denmark 0.113 6.714 0.067 8.297 0.092 5.685
Finland 0.113 6.705 0.067 8.280 0.092 5.676
France 0.109 6.833 0.065 8.514 0.089 5.792
Greece 0.114 6.692 0.067 8.256 0.092 5.665
Iceland 0.114 6.684 0.067 8.242 0.093 5.658
Ireland 0.113 6.710 0.067 8.288 0.092 5.681
Italy 0.111 6.785 0.066 8.425 0.090 5.748
Japan 0.109 6.844 0.064 8.535 0.088 5.802
Netherlands 0.111 6.777 0.066 8.410 0.090 5.741
New Zealand 0.113 6.699 0.067 8.269 0.092 5.671
Norway 0.113 6.715 0.067 8.298 0.092 5.686
Portugal 0.113 6.702 0.067 8.274 0.092 5.674
Spain 0.112 6.738 0.066 8.340 0.091 5.706
Sweden 0.112 6.740 0.066 8.344 0.091 5.708
Swaziland 0.113 6.722 0.067 8.311 0.092 5.692
United Kingdom 0.110 6.820 0.065 8.490 0.089 5.780
United States 0.101 7.103 0.060 9.027 0.082 6.039

Table 9: Indirect effects(column-sum):
∑

j 6=i
∂Yi

∂Xk,j

Labor Private Capital Public Capital

Indirect effects t-stat Indirect effects t-stat Indirect effects t-stat

Australia 0.053 7.015 0.031 9.417 0.043 5.953
Austria 0.035 6.802 0.020 8.999 0.028 5.770
Belgium 0.130 6.596 0.076 8.611 0.104 5.596
Canada 0.108 5.735 0.064 7.111 0.087 4.886
Denmark 0.058 7.139 0.034 9.661 0.047 6.061
Finland 0.037 6.967 0.022 9.318 0.030 5.912
France 0.253 6.818 0.149 9.031 0.204 5.784
Greece 0.015 6.659 0.009 8.729 0.012 5.649
Iceland 0.003 6.962 0.002 9.308 0.002 5.907
Ireland 0.032 6.315 0.019 8.099 0.026 5.361
Italy 0.187 6.914 0.110 9.217 0.150 5.866
Japan 0.198 6.665 0.116 8.743 0.159 5.653
Netherlands 0.149 6.782 0.088 8.962 0.120 5.753
New Zealand 0.014 6.913 0.008 9.215 0.011 5.864
Norway 0.055 7.027 0.032 9.438 0.044 5.964
Portugal 0.028 6.885 0.016 9.160 0.022 5.841
Spain 0.090 6.842 0.053 9.077 0.072 5.804
Sweden 0.105 7.189 0.061 9.762 0.084 6.105
Swaziland 0.070 6.735 0.041 8.871 0.056 5.713
United Kingdom 0.303 7.056 0.178 9.495 0.244 5.988
United States 0.427 6.722 0.251 8.850 0.344 5.700
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Figure 1: GDP share versus Change in Efficiency
Scores
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Figure 2: GDP share versus Change in Efficiency
Scores (Selected Countries)
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Figure 3: Trade Openness versus Change in Effi-
ciency Scores
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Figure 4: GDP share versus Trade Openness
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Figure 5: Kernel Densities of Efficiency Scores
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