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Abstract

The recent housing bubble has provided impetus for revisiting in-
dicators of housing price inflation and property characteristics. Diew-
ert (2011, Alternative Approaches to Measuring Housing Price In-
flation,’ paper presented at the Economic Measurement Group Work-
shop, 2011, UNSW, Australia) for example has provided a comparison
of various methods of constructing property price indices using index
number and hedonic regression methods, which he illustrates using
data from a small Dutch town over a number of quarters. We provide
an alternative approach based on Shephard’s dual lemma and apply
it to the same data used by Diewert. This method avoids the multi-
collinearity problem associated with traditional hedonic regression,
and the resulting prices of property characteristics show smoother
trends than Diewert’s results. We also revisit the Diewert and Shimizu
(2013) study that employed hedonic regressions to decompose the price
of residential property in Tokyo into land and structure components
and that constructed constant quality indexes for land and structure
prices respectively. We use three models from Diewert and Shimizu
(2013) to fit our real estate data from town “A” in Netherlands, and

∗We are grateful to W.E. Diewert for his comments and for sharing his data.
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also construct the price indices for land and structure, which are com-
pared with our results derived above.

Keywords: Hedonic price index, duality theory, distance function,
housing prices

JEL Classification Codes: C2, C23, C43, D12, E31, R21.

1 Introduction

During the recent international financial distresses that led to the Great Re-
cession the balance sheets of banks were (and continue to be) under severe
oversight by banking regulators. Basel II requires that bank holding com-
panies have combined Tier 1 and Tier 2 capital ratios of at least 8%. These
capital ratios reflect the percentages of a bank’s capital to its risk-weighted
assets. One of the major assets of a bank is its portfolio of residential
mortgages, which typically make up between 20% and 25% of a bank’s total
assets. As of June 2012 the total residential loans outstanding in the US
were roughly US$ 3.5 trillion.

Figure 1: http://research.stlouisfed.org/fred2/series/REALLN?cid=100

The precipitous drop in the value of such holdings, measured in the val-
uations from mark to market accounting instead of the more conventional
book valuations, was the key component in causing the Great Recession.
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There are a set of reasonable questions to ask about the way in which
banks, banking regulators, and rating agencies establish the valuation of a
bank’s real estate holdings and thus the bank’s solvency.

1. What methods do banks use to value their real estate holdings?

2. Are these methods the same across real estate holdings in different
regions of a country?

3. Are these methods the same across real estate holdings in different
countries?

4. Are these methods transparent and easily calculated?

5. Are these methods consistent with the economic assumptions underly-
ing the value at risk paradigm used to set reserve benchmarks?

Our paper addresses these questions by providing a transparent and easily
implementable methodology for constructing real estate price indices based
on economic assumptions in keeping with the other economic assumptions
underlying many of the regulatory criteria used by banking regulators in, for
example, the assessment of the value at risk paradigm that provides banks
with the rules for setting reserve benchmarks. We use an input distance
function to describe the value generating process of residential properties
(also referred to as the ”dwelling unit”), which is a euphanism for the output
of a production process whose price is the price of the residence. The inputs
into the production process are a set of characteristics that a buyer demands,
proxied in our empirical analysis by the square footage of the structure, the
amount of land on which the structure sits, and the age of the structure.
The specific form of the input distance function is translog and the shadow
prices are derived based on duality theory. We use these shadow prices
to construct an imputed residential properties (dwelling unit) price index
and compare it to those generated by more conventional hedonic methods.
These methods and their advantages and disadvantages are examined by
Good, Sickles, and Weiher (2008), among many others. We implement
our modeling approach using a single-output, multi-input distance function.
The standard method to estimate the parameters of such an input distance
function is to normalize the regression model by moving one of the input
variables to the left hand side and to treat it as the dependent variable and
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view the unknown distance as a right hand side error that is combined with
the normal idiosyncratic error in the regression model. Of course this former
source of error is bounded due to the bounded nature of the distance function
itself. We utilize several methods to address this aspect of the composed error
and compare our imputed residential price index across different approaches.
The methods are 1) corrected ordinary least squares with White-type robust
standard errors; 2) time dummy least squares regression with White-type
robust standard errors; 3) stochastic frontier model (Belotti, et al., 2013).

The paper uses data from Diewert (2011) to construct price indices for
residential properties in a small Dutch town using quarterly data from 2005
II to 2008 II. We compare results from our approach, which involves an
application of Shephard’s Dual Lemma (Shephard, 1953), with methods em-
ployed in Diewert and Shimizu (2013) that utilize stratification techniques
and various hedonic treatments. Compared with these hedonic regression
approaches, our empirical models can simultaneously estimate the shadow
prices of the main property characteristics without suffering from typical
problems of collinearity amoung the quality charceristics. The residential
property (dwelling unit) price indices that we derive from our estimations
show similar trends to Diewert’s results but appear to be less volatile.

2 The Theoretical Model

It is known from mathematics that a gradient vector of a function belongs to
the dual space of its variables. In economics, a classic example is Shephard’s
lemma, which says that the derivative of the cost function with respect to a
price is an input quantity, i.e., the derivative takes us from the price space to
the quantity space. In this paper, we use Shephard’s dual lemma (Shephard,
1953), which says that the derivative of the input distance function with
respect to an input is an input price. Next, we apply the dual lemma and
use it to derive shadow prices of property characteristics.

Assume that a good is endowed with z = (z1, . . . , zN) characteristics.
These characteristics in turn generate a value of the good equal to p >

= 0.1

We model this relation with an input correspondence

L(p) = {z ∈ ℜN
+ : z generates value p}, p >

= 0. (1)

1The value of the good is p = wz, where w = (w1, . . . , wN ) ∈ ℜN

+ are the unknown
prices of the characteristics.
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This correspondence can in turn be given a functional representation via
Shephard’s (1953) input distance function

Di(p, z) = sup{λ : z/λ ∈ L(p)}, (2)

which, with some mild assumptions on L(p)2 provides a complete character-
ization of the input correspondence, i.e.,

Di(p, z) >= 1 ⇔ z ∈ L(p). (3)

Dual to the input distance is the cost function

C(p, w) = min{wz : z ∈ L(p)} (4)

where w ∈ ℜN
+ are the (unknown) prices of the characteristics. From the

duality between C(p, w) and D(p, z) we find the shadow price vector of the
characteristics to be

ws =
p · ∇zDi(p, z)

Di(p, z)
, (5)

i.e., the unknown price vector w can be derived from observed data (p, z).
(See Appendix for the proof.)

To parameterize the distance function (2), we begin by choosing the
broad family including generalized quadratic (Chambers, 1988) or trans-
formed quadratic (Diewert, 2002) since these functions are linear in their
parameters and provide a second-order Taylor approximation. In addition, if
these functions are homogeneous of degree +1 (like the input distance func-
tion is in inputs), they take two specific functional forms (Färe and Sung,
1986). Either they are quadratic means of order ρ (Denny, 1974; Diewert,
1976) or translog (Christensen et al., 1971). The former function has only
second-order parameters, while the translog has both second- and first-order
parameters. Having no zeros in our data, we choose to estimate the translog
formulation of the distance function (2). From these estimates, by applying
(5), we can derive the desired input-characteristics shadow price vector.

2See Färe and Primont (1995).
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To relate our model to the single-output production models by Thorsness
(1997) and McMillen (2003), assume that the technology L(p) exhibits con-
stant returns to scale, i.e.,

L(λ · p) = λ · L(p), λ > 0. (6)

Then and only then can the input distance function be written as

Di(p, z) =
1

p
Di(1, z), (7)

noting that p is a scalar. Assuming that z belongs to the isoquant of L(p)
so that

Di(p, z) =
1

p
Di(1, z) ≥ 1, (8)

then our distance function formulation takes the traditional single-output
production function expression,

p ≤ Di(1, z). (9)

Thus the Cobb-Douglas model by McMillen and the CES model of Thorsness
are special cases of (9) with a pricing formula (5) now given by

ws =
p · ∇zDi(1, z)

Di(1, z)
. (10)

Upon applying(9) we find that

ws = ∇zDi(1, z) (11)

3 Data Description

In this section we make use of data kindly provided to us by Professor W.
Erwin Diewert and analyzed in Diewert (2011). The data consist of 2289
observations on quarterly sales of detached houses (what we label residen-
tial property or dwelling unit) over 14 quarters for the town of ‘A’ in the
Netherlands. This is a small city (roughly 60,000 inhabitants) and its exact
location and of course the name has been masked by Statistics Netherlands.
Transactions on dwelling units begin in the first quarter of 2005 and end the
second quarter of 2008.
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4 Empirical Model

4.1 General Specification

To justify our choice of the translog model we use in our empirical analy-
ses below, we first note that the input distance function is homogeneous of
degress +1 in inputs. It is known, see Färe and Sung (1986), that a homo-
geneous generalized quadratic function with arguments x1, x2 such as

ϕ−1(F (x1, x2)) = a0 + a1f(x1) + a2f(x2) + b1f(x1)f(x1)

+ b2f(x2)f(x2) + b3f(x1)f(x2) (12)

takes either a translog or generalized mean of order ρ functional form. As the
latter function has only second-order parameters, the translog is the preferred
choice in our empirical analysis. In the application below we specificy the
arguments as characteristics of property services, which we have denoted as
zi, i = 1, ..., n.

In the case of detached residential properties, we treat each dwelling unit
as the output whose price is influenced by a number of characteristics. The
main variables used are

p: value of the residential dwelling unit;
L: land area of the property;
S: floor space area of the structure;
A: age of the structure.

The land area L, floor space area S, and structure age A are treated as the
three input characteristics (zi, i = 1, 2, 3), and p is the value of output. The
translog input distance function is specified as below:

lnDi = α0 + α1 ln p+
1

2
α11(ln p)

2 + β1 lnS + β2 lnL+ β3 lnA +
1

2
β11(lnS)

2

+
1

2
β22(lnL)

2 +
1

2
β33(lnA)

2 + β12 lnS lnL+ β13 lnS lnA (13)

+ β23 lnL lnA+ γ1 lnS ln p+ γ2 lnL ln p+ γ3 lnA ln p.

The assumptions of homogeneity of degree +1 in inputs and symmetry
imply the following restrictions on the parameters:

β1 + β2 + β3 = 1 (14)
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3∑

l=1

βkl = 0, k = 1, 2, 3 (15)

γ1 + γ2 + γ3 = 0 (16)

βkl = βlk, k, l = 1, 2, 3. (17)

Utilizing these restrictions, the distance function can be rewritten as

lnDi = α0 + α1 ln p +
1

2
α11(ln p)

2 + β1 ln
S

A
+ β2 ln

L

A
+ lnA

+
1

2
β11(ln

S

A
)2 +

1

2
β22(ln

L

A
)2 + β12 ln(

S

A
) ln(

L

A
) (18)

+ γ1 ln
S

A
ln p+ γ2 ln

L

A
ln p

From the model, we know that the shadow price vector is

ws =
p · ∇zDi(p, z)

Di(p, z)
(19)

where p is the value of output, and z is the vector of all inputs. Denoting
wS, wL,and wA as the shadow prices of the structure, the land, and the age
of the structure respectively, we can then derive the explicit expressions for
the shadow prices of the input characteristics as:

wS =
p

S
(β1 + β11 lnS + β12 lnL+ β13 lnA+ γ1 ln p) (20)

wL =
p

L
(β2 + β22 lnL+ β12 lnS + β23 lnA+ γ2 ln p) (21)

wA =
p

A
(β3 + β33 lnA + β13 lnS + β23 lnL+ γ3 ln p). (22)

4.2 Specification with Constant-Returns-to-Scale As-

sumption

To make our setting comparable with the traditional hedonic regression
model, we consider the assumption of constant returns to scale (CRS). As
shown in section 2, we can derive the relation of output price and the input
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distance function under CRS assumption as in 9. The inequality is captured
by the distance to the frontier by Di(1, z). Plug the translog functional form
into (9), we can obtain the regression equation as below,

ln p = α0 + β1 lnS + β2 lnL+ β3 lnA + 1
2
β11(lnS)

2 + 1
2
β22(lnL)

2 (23)

+1
2
β33(lnA)

2 + β12 lnS lnL+ β13 lnS lnA+ β23 lnL ln+ lnDi

We can see that it is the same as the general specification when one sets
α11 = γ1 = γ2 = 0. This model with CRS assumption is, in essence, the
same as the hedonic regression with S, L and A as the characteristics.

Again, we impose the assumption of homogeneity of degree 1. Compared
with the general case, now there are no terms on the right-hand side involv-
ing ln p, thus we do not have the γ coefficients any more. The homogeneity
condition now implies equations (??), (??) and (??). With these three con-
straints, we can rewrite the equation (24) as

˜ln p = α0 + β1 ln
S
A
+ β2 ln

L
A
+ 1

2
β11(ln

S
A
)2 (24)

+1
2
β22(ln

L
A
)2 + β12 ln

S
A
ln L

A

where ˜ln p = ln p− lnA. Under this new specification, the shadow prices of
the three characteristics are

wS =
1

S
(β1 + β11 lnS + β12 lnL+ β13 lnA) (25)

wL =
1

L
(β2 + β22 lnL+ β12 lnS + β23 lnA) (26)

wA =
1

A
(β3 + β33 lnA+ β13 lnS + β23 lnL) (27)

4.3 Construction of the price index

For comparison purposes, we use the matched model Fisher index discussed
in Diewert (2011). Diewert constructs price indices for land and for struc-
tures that make up the dwelling unit of a particular age and we do likewise.
Dwelling units are grouped into 45 cells consisting of 3 categories for land area
(small, medium, large), 3 categories for structures (small, medium, large)
and 5 groups for age. The break points for the size of land and structure
are chosen in a way that about 50% of the units fall in the medium group,
and roughly 25% units are in small and large group respectively. The break

9



points for land area are L1 = 160m2 and L2 = 300m2, and the break points
for structure size are S1 = 110m2 and S2 = 140m2. Age of the structure
is identified by when the structure was built and ranges from 1960 to 2008.
For houses built in 2000-2008, A = 2; A = 3 for 1990-1999 and so on3. Using
the structure (or land) prices derived from the above model, we define wt

n to
be the average structure (land) price for properties in cell n that were sold
in period t,

wt
n =

∑
i∈n w

t
iz

t
i∑

i∈n z
t
i

=

∑
i∈n w

t
iz

t
i

ztn
(28)

where zti and wt
i represent the structure (land) area and its corresponding

shadow price in cell n. As there is no transaction in some cells across two
compared periods, we define S(s, t) to be the set of cells n that have at
least one transaction in each of the quarters s and t. The indices are then
computed over these matched components. The Laspeyres (L) and Paasche
(P) indices for periods s and t are:

wL(s, t) =

∑
n∈S(s,t)w

t
nz

s
n∑

n∈S(s,t)w
s
nz

s
n

(29)

wP (s, t) =

∑
n∈S(s,t)w

t
nz

t
n∑

n∈S(s,t)w
s
nz

t
n

. (30)

Diewert constructs the (ideal) Fisher index by taking the geometric mean of
the above two indices:

W F (s, t) = [wL(s, t)wP (s, t)]
1

2 (31)

Two sets of indices are constructed for both structure and land prices.
One is a fixed Fisher index, which uses the first quarter as the base period.
The other is a chained index: we construct the Fisher index for every two
consecutive periods, and the chained index for period t is computed as:

I tF = W F (1, 2)W F (2, 3) · · ·W F (t− 1, t)

3In Diewert (2011), the range of age A is 0 to 4. To accommodate our use of the
translog distance function, we shift the range of A to 2 to 6.
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5 Regression and Results

5.1 General Specification

We utilize three different regression methods to estimate the input distance
function (13). The methods are 1) corrected ordinary least squares with
White-type robust standard errors; 2) time dummy least squares regression
with White-type robust standard errors; 3) stochastic frontier model (Belotti,
et al., 2013). The results are shown in Table 1.

The input distance function has long been utilized in theoretical papers
to measure the technical efficiency level of a production process. The input
distance is bounded from below by unity, which represents a technically effi-
cient level of production. The use of the distance function in empirical work
can be traced back to Färe, Grosskopf and Lovell (1985) wherein linear pro-
gramming was used to estimate non-parametric distance functions and mea-
sure technical efficiency. Starting in the 1990’s, researchers also considered
parametric functions and used econometric methods for estimation. Lovell,
Richardson, Travers and Wood (1994) specified a translog distance function,
and used OLS to estimate the parameters. The translog functional form was
also used in Coelli and Perelman (1996, 2000) and also was estimated using
OLS.

In our application, the land, structure and age of a detached property are
regarded as the inputs, which are used to “produce” this property, and input
distance Di gives us an estimate of the (in)efficiency level compared to the
efficiency frontier. As discussed in previous sections, we choose translog func-
tional form for the input distance. In most empirical studies using translog
input distance functions with m outputs and k inputs, the negative of the
logged kth input is treated as the dependent variables and is regressed upon
the rest terms, and the negative of the logged input distance is treated as
an error term. Employing this method, the equation to be estimated is re-
arranged as:

− lnA = α0 + α1 ln p+
1

2
α11(ln p)

2 + β1 ln
S

A
+ β2 ln

L

A

+
1

2
β11(ln

S

A
)2 +

1

2
β22(ln

L

A
)2 + β12 ln(

S

A
) ln(

L

A
) (32)

+ γ1 ln
S

A
ln p+ γ2 ln

L

A
ln p− lnDi

11



Note that by the definition of the input distcance function, Di ≥ 1, thus
− lnDi ≤ 0 and can be interpreted as a one-sided error. Now the objective
function (32) fits into the production frontier models, and we can utilize
frontier models for estimation, such as those devleoped in Stata (Belotti, et
al., 2013).

OLS can be used to estimate the coefficients of the distance function.
After obtaining the estimates of all coefficients, we correct the estimated
intercept by adding the largest positive residual such that the adjusted func-
tion bounds all the observed points from below. This gives us the corrected
OLS (COLS) estimates. Some researchers suggest that there exists potential
simultaneous equation bias, as one of the input variables (here “− lnA”) is
assumed to be endogenous and there are ratios of inputs in the right-hand-
side (“ln(S/A)” and “ln(L/A)”). However, as shown in Coelli (2000), under
the cost minimization assumption, OLS provides consistent estimates of the
parameters. Though our observations are detached properties with access to
basically the same amenities, we still use robust errors in the regression to
account for possible heteroskedasticity. The parameter estimates are shown
in Table 1, and the R2 is 0.8726.4

The data begins in the first quarter of 2005 and ends in the second quarter
of 2008. Considering that property prices might be affected by the date of
the transaction due to changing market conditions and other factors proxied
by time, we add dummy variables to account for yearly effects and reestimate
the model by COLS. The adjusted R2 improves a bit to 0.878.

As noted in Coelli and Perelman (1996), both the linear programming
technique (see, for example, Färe et. al., 1993) and the COLS method as-
sume the distance to full efficiency is due entirely to technical inefficiency.
To account for the effect of data noise, we can employ stochastic frontier
methods. Adding a pure noise term to equation (32), we now have a com-
posite error ǫi = vi − lnDi = vi − ui, where ui is the idiosynchratic error

4We have also utilized a modified IV estimator to address the potential for endogeneity
in the log ratio’s of the other input characteristics and the age characteristic as well as
considered other normalizaitons, for example normalizing with respect to the price of the
residential dwelling unit. However, the input distance function we utilize is consistent
with cost minimization, holding fixed output and input prices, and thus one may question
why price should be considered endogeneous. As one would expect, the renormalization
made little difference in our results. Unfortunately, instrumenting the right-hand-side
variables that interact with the left-hand-side variable ln(A) was not possible due to a
dearth of potential instruments.
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assumed to be i.i.d.N(0, σv); ui is our logged input distance, representing
technical inefficiency. Here we assume ui follows the half-normal distribu-
tion, i.e., ui = |zi|, zi ∼ N(0, σu), and use standard ML techniques for these
estimates. These and other stochastic frontier models can be estimated using
Stata (Belotti et. al., 2013). The stochastic frontier estimates from equation
(32) are reported in Table 1.

5.2 Comparisons with the methods of Diewert and
Shimizu (2013)

Diewert and Shimizu (2013) employed hedonic regression techniques to
decompose the price of residential property in Tokyo into land and structure
components, and constructed constant quality indices for land and structure
prices respectively. In this section we use three different models from Diewert
and Shimizu (2013) to fit our real estate data from town “A” in Netherlands.
We also construct the price indices for structures and land and compared
these results with those derived above.

In traditional hedonic regression models, the price of one unit of com-
modity under study is assumed to depend on a function of its characteristics.
Diewert (2003), among others, provides the microeconomic support for this
method. If one assumes that an agent can consume an hedonic commodity
Z with a set of characteristics z = (z1, . . . , zk) and other commodity X, then
the consumption of Z units of the hedonic commodity gives a subutility of
f(z1, . . . , zk), and the consumption of Z and X together generates utility
u = U(Z,X). Denote pt and wt to be the prices of the general commodity
and hedonic commodity at period t, respectively. The consumer then faces
a standard cost minimization problem:

minX,Z{p
tX + wtZ : U(X,Z) = ut}

Under some regulatory conditions, the price of the hedonic commodity can
be expressed as:

wt = ρtf(z1, . . . , zt)

That is, the price of the hedonic good is the product of some time-dependent
effects and the utility a consumer gets from its characteristics. The hedonic
regression methods are widely used in real estate studies. It explains the
property value based on actual choices of people, and it can be comfortably

13



modified to take into account the interaction between the characteristics of
the property itself and the effects of the surrounding environment. Some
limitations also exist with the classic hedonic pricing model as they do in our
approach that utilizes the input distance function. For example, the model
assumes that the price of the residential dwelling unit can change immediately
after the change in one or some of its characteristics, whereas in reality, there
may be a substantial time lag. The model assumes that there are a variety
of properties in the market so that consumers can choose the one with the
desired combination of characteristics, which is only possible if the market is
deep. Another problem is the multicollinearity among characteristics, which
we will encounter below. A consumer may find that some properties have all
the good characteristics, while some alternatives are inferior in all aspects.

The basic paradigm in Diewert and Shimizu (2013) is referred to as a
builder’s model, which is based on the assumption that the value of a res-
idential property is the sum of the value of the land on which it is built
and the construction cost of its structure. Considering that the structure’s
price usually falls as the structure ages, they assume the constant quality
structure to be a function of its age and a constant depreciation rate over all
time periods. Following the notation used above, we can specify the model
as below,

pit = wL,tLit + wS,t(1− δAit)Sit + ǫit i = 1, . . . , N(t); t = 1, . . . , 14 (33)

where N(t) is the number of properties sold in period t. One concern about
this model is the multicollinearity between the land size and structure size:
we would expect a larger house structure to be built with a larger land area.
Our data shows that the correlation between land size and structure size
is 0.6278. Thus the coefficient estimates of land and structure may not be
reliable in the sense that small variations in the data may result in erratic
changes in the estimates. To deal with this multicollinearity, Diewert and
Shimizu (2013) assumed the price of a constant quality structure was pro-
portional to a property construction cost index published by the relevant au-
thority. This method was also employed in Diewert (2011) as one approach
to exploring the price change of residential properties, in which the index
used was the New Dwelling Output Price Index (NDOPI) published by the
Central Bureau of Statistics of Netherlands. The resulting land price index
from Diewert (2011) will be included as part of our comparison.5 Though

5Compared to what we describe here, Diewert (2010) used a different method to con-
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Diewert examined the same dataset for town “A” as our paper, the focus of
the research was on the price index construction of the residential proper-
ties rather than their characteristics. Thus we use applicable methods from
Diewert and Shimizu (2013) to make comparisons, which focused more on
the decomposition of property price into land and structure components.

We set the constant quality structure price to be proportional to the New
Dwelling Output Price Index (NDOPI) mentioned above, the same index
used in Diewert (2011) as we examine the same dataset. As Diewert assumes
that the price of the structure is proportional to the construction cost in-
dex, we follow this assumption in order to provide results as comparable as
possible to the hedonic methods he uses and set wS,t = wSPC,t, where PCt

represents the exogenous cost index. The model can then be written as

pit = wL,tLit + wS,tPCt
(1− δAit)Sit + ǫit i = 1, . . . , N(t); t = 1, . . . , 14

(34)
We denote this model as DS0, corresponding to the basic builder’s model
in Diewert and Shimizu (2013).6 Coefficients of this nonlinear model are
estimated by minimizing the mean squared error of the residual term. wL,t

is interpreted as a suitable constant quality land price for all residential
properties sold in period t, and the constant quality land price index for
quarter t is defined by Diewert and Shimizu to be

IL,1t = wL,t/wL,1. (35)

The age-adjusted constant quality structure is defined to be (1−δAit)Sit and
the corresponding structure price index for quarter t is defined by Diewert
and Shimizu to be

IS,1t = (wSPCt
)/(wSPC1

) = PCt
/PC1

. (36)

The second model employs splines on both the land size and structure age.
Empirical evidence indicates that the growth rate of the property land prices
vary with land size. To model the possible changes in land prices as land

struct the land price index.
6In Diewert and Shimizu (2013), the basic builder’s model also included the 21 dummy

variables indicating different wards in Tokyo, to account for possible differences in land
prices. In our dataset, all observations are detached residential properties with access to
basically the same amenities, thus the difference in locations has little effect on property
prices. The R2 is quite satisfactory in our regression.
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area increases, Diewert and Shimizu (2013) divided all observations into 3
groups based on the land size, and assumed that the land price in each group
was linear in land size. Diewert (2011), which analyzed the same dataset as
we do, also considered the possibility of changing land prices over different
land area ranges in one of his approaches to measure the property price. The
method used in Diewert (2011) was the same as Diewert and Shimizu (2013)
wherein all observations were grouped into 3 categories based on their land
sizes and land price was assumed to be piecewise linear in land areas. To
make our results comparable with that from Diewert (2011), we divide our
data into the same 3 groups, with break points at L1 = 160 and L2 = 300.
This generates a grouping with approximately 50% of the properties in the
middle group and 25% in the lower and upper groups. The piecewise linear
relative land value function is thus specified as

fL(Lit) = DLit,1γ1Lit +DLit,2(γ1L1 + γ2(Lit − L1)) (37)

+ DLit,3(γ1L1 + γ2(L2 − L1) + γ3(Lit − L2))

where DLit,j , j = 1, 2, 3 are the land dummy variables with DLit,j = 1 indi-
cating that the property falls into category j and DLit,j = 0 meaning that
observation i is not in category j. γk, k = 1, 2, 3 are unknown parameters to
be estimated.

We also group all the observations into three categories based on the age
of the structure in order to be consistent with Diewert as he points out that
depreciation rates will not be the same for structures of different ages. The
break points are chosen to be A1 = 1 and A2 = 2, and the categorical dummy
variables for ages are denoted as DAit,j, j = 1, 2, 3, with DAit,j = 1 indicating
that the property is in category j. This is intended to ensure that the three
groups have roughly the same size. However, due to the categorical nature
of the data and the unequal number of properties in each of the five age
categories (ages are indicative of the building decade and range from 0 to 4
with structures with ages new to 10 years a much larger number than the
other 4 categories) the actual number of properties in the three groups are
unequal and set at 1052, 481, and 474, respectively. The piecewise linear
depreciation function of the structure’s age is defined as

gA(Ait) = 1− (DAit,1δ1Ait +DAit,2(δ2A1 + δ2(Ait − A1)) (38)

+ DAit,3(δ1A1 + δ2(A2 −A1)) + δ3(Ait − A2))

where δk, k = 1, 2, 3 are the unknow parameters modeling the depreciation
schedule of different structure ages.
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Now the new model with generalization on land size and structure age
can be defined as

pit = wL,tfL(Lit) + wSPCt
gA(Ait)Sit + ǫit (39)

We denote this model as DS1. This is also a nonlinear regression model,
and we can see that the 3 land relative value parameters (γ’s) and the 14
land time parameters (wL,t’s) cannot all be identified unless we impose some
normalization condition. Thus, we make the normalization that γ1 = 1. Note
that in this extended model, the marginal land prices for each category, the
γ’s, are assumed to be the same over all time periods, while wL,t represents
the time change in land price for properties in all groups. Thus the constant
quality land price index is again defined as in (35) for period t, while the
constant quality structure price index is again defined as in (36) .

Besides these main characteristics such as the land and structure size,
the price of a residential property is also affected by other factors concerning
the design of the structure and use of the land space. The model is further
extended to adjust for number of rooms, which affect the quality of the
structures. To model the effects from number of rooms, we utilize the same
technique that first divides all observations into 3 groups and then define the
piecewise linear function of number of rooms. In our data, the number of
rooms, denoted as Nit, ranges from 2 to 10. We first transform the variable
to be Rit = Nit− 2, which ranges from 0 to 8, and then divide the properties
into three groups based on Rit. The break points for Rit are chosen to be
R1 = 2 and R2 = 3. Let DRit,j be the dummy variable for the number of
rooms, and the piecewise linear function of Rit is defined as:

gB(Rit) = θ1 +DRit,1Rtn +DRit,2(θ2R1 + θ3(Rit −R1)) (40)

+ DRit,3(θ2R1 + θ3(R2 −R1) + θ4(Rit − R2))

Then model incorporating this adjustment of structure quality is specified
as:

pit = wL,tfL(Lit) + wSPCt
gA(Ait)gB(Rit)Sit + ǫit (41)

where of course wS does not vary with time in order to address the high
collinearity between structure and land sizes. As the case in DS1, not all
parameters can be identified unless some normalizations are made. We thus
add two normalization conditions that γ1 = 1 and θ1 = 1, and denote this
model as DS2. The constant quality price indices for land and structure are
defined the same as in the previous two models.
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The land price indices constructed from different models are plotted in
Figure 2. We can see that the three indices derived using our model exhibit
similar trends, while the indices derived from the DS models show somewhat
parallel but shifted temporal patterns. The upturns and downturns basically
occur at the same time period, but indices generated from our model appear
less variable.

Note that the land price indices derived using the DS models climb in the
third quarter in 2007, and then fall sharply in the next two quarters, while
indices from our model move rather smoothly and exhibit only a moderate fall
in 2008 quarter 1. To further explore the difference, we need to jointly look
at the property prices and the implied prices of the land and the structure.
Using the method described in section 4.1, we can similarly construct the
Fisher fixed-base and chained indices for the properties, which are shown in
Table 4. We can see that the property price index also peaks in 2007 quarter
3, and then falls back a little. When decomposing this temporal change
of property price into components of land price and structure price, the
DS models assume the structure prices to be proportional to the exogenous
construction cost index (NDOPI), which increases all the way over 2007 to
the first quarter in 2008. Thus all the decrease in the property price in 2008,
quarter 1 is attributed to change in the land price, resulting in a substantial
fall of the land price index as we observed. In our model, this decrease in
the residential property price index is explained by both land and structure
price. Seen from Figure 3, the structure price indices derived from our model
also fall moderately in the first quarter in 2008.7

The use of NDOPI as the structure price index in the DS models is
adopted to deal with multicollinearity problems, and cannot be supported
within the model. With the same idea, we now introduce exogenous informa-
tion on land price and derive the structure prices from the DS models. The
time-varying parameter wL,t now is set to be wLPLt

, proportional to some
land price index, and the structure price parameter wS,t is allowed to freely
change over each period. With all other settings remain the same, we still
denote the models as DS0, DS1 and DS2. The exogenous land price index is
chosen to be the one generated from our SFA model. The resulting structure
price indices are shown in Table 7 and plotted in Figure 4. We can see that
with the land price index derived from our model as exogenous information,

7In all DS models, the structure price indices are equal to the construction cost index
(NDOPI), thus we only use DS0 as a representation.
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the structure price indices generated from the DS models show basically the
same trend as our structure price indices. Thus, the reliability of land or
structure prices generated using the DS models heavily depends on how well
the exogenous information reflects the true changing pattern of the price of
the other component. The method we propose here can avoid the problem of
multicollinearity in hedonic regression and construct the land and structure
price indices at the same time. Our methods also tend to smooth the price
fluctuations and are less sensitive to market changes compared to the DS
models.

5.3 Specification with Constant-Returns-to-Scale As-
sumption

Compared with the general specification, the setting under CRS assumption
is a constrained regression with α11 = γ1 = γ2 = 0. We conduct the joint
F-test for these constraints, and the F-statistic is 42.5, with a p-value smaller
than 10−4. Thus we would reject the assumption of constant-returns-to-scale
based on the data. Nevertheless, we impose the CRS constraint here to make
our setting comparable with the hedonic regression model.

Assuming the white noises are i.i.d with zero mean and constant variance,
and taking into account the one-sided log-distance term lnDi, again we have
composite errors in the regression. From the results of the general specifica-
tion, we can see that the slope coefficients estimates are very close with each
other under different regression methods, and only the intercept needs to be
corrected for the one-sided error. As only the estimates of slope coefficients
are used in the formula generating the shadow prices of characteristics, the
choice of which regression method to use does not lead to much difference.
Thus I will use robust OLS method for simplicity. To take into account the
possible year effects and seasonality, we add dummies for both years and
quarters in our regression. The estimation results are shown in Table 3.
Using formulas (27), we can then construct the price indexes of structure
and land, which are shown in Table 8. As we add dummies to pick up the
yearly and quarterly effects in the regression, we compare the results under
the CRS assumption with those obtained in general specification with time
dummy variables, and denote as TD-CRS and TD correspondingly. The plots
of the indexes are shown in Figure 5 and Figure 6. As we can see from the
figures, compared with the general specification, the structure price indexes
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under CRS assumption are almost the same, while the land price indexes are
lower in all periods. To uncover where this difference comes from, we go back
to check the coefficients estimates with and without the CRS assumption. In
the general specification with time dummy variables, the coefficient of the
cross term of structure and property price, lnS ln p, is considerably smaller,
and the corresponding t-value is near zero, indicating that the coefficient is
insignificant. As a contrast, the coefficient of the cross term of land and
property price, lnL ln p, is much larger and significant. In the specification
with the CRS assumption, both cross terms are deleted, and their coefficients
are no longer in the calculation of the shadow price of corresponding char-
acteristics. Thus the lack of lnS ln p has nearly no influence on the shadow
price calculation of structures, while the lack of lnL ln p results in obvious
change in the calculated shadow prices of lands. Despite the decrease of the
levels of the land price indexes, the changing trends over the studied period
are basically the same with or without the CRS assumption.

6 Conclusions

We are optimistic about the potential usefulness of our new approach to
construct residential property price indices. It has reasonable theoretical
underpinnings and is parsimonious in terms of required data. Rather than
relying on exogenous information to circumvent problems of multicollinear-
ity between different property characteristics, our method can estimate the
shadow price of each characteristic with little computational burden. As this
model is less sensitive to actual market fluctuations, it also can be combined
with traditional hedonic regression methods to provide bounds on residen-
tial property prices based on mark-to-market adjustment and less volatile
consumer preferences.
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Appendix

We prove the shadow price expression (5) in two ways, both when z adjusts
to w and when w adjusts to z.

Define the cost function as

C(p, w) = min
z

wz − µ(Di(p, z)− 1) (A.1)

then
F.O.C : w − µ∗∇zDi(p, z) = 0. (A.2)

Also note that
µ∗ = C(p, w). (A.3)

This follows from

C̃(p, w, α) = min
z

wz − µ(Di(p, z)− α) (A.4)

= αC(p, w),

and
∂C̃

∂α
= µ = C(p, w). (A.5)

Thus, by the FOC we have,

w = C(p, w) · ∇zDi(p, z) (A.6)

and by Euler’s theorem we have

p = wz = C(p, w)Di(p, z) (A.7)

or
C(p, w) = p/Di(p, z) (A.8)

and thus

ws =
p · ∇zDi(p, z)

Di(p, z)
. (A.9)

Next consider the dual optimization problem

Di(p, z) = min
w

wz − λ(C(p, w)− 1) (A.10)

= w∗z − λ∗(C(p, w∗)− 1)
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As above one can show that

Di(p, z) = λ∗ (A.11)

thus
Di(p, z) = w∗z −Di(p, z)(C(p, w∗)− 1) (A.12)

and

Di(p, z) =
w∗z

C(p, w∗)
(A.13)

Therefore

∇zDi(p, z) =
w∗

C(p, w∗)
−

w∗ · ∇wC(p, w∗)

C(p, w∗)2
. (A.14)

Now since C(p, w∗) = 1, a constant function,

w∗ · ∇wC(p, w∗) = 0 and

∇zDi(p, z) =
w∗

C(p, w∗)
. (A.15)

Again, using the Euler’s theorem and noting that w∗z = p, we have

ws,∗ =
p · ∇zDi(p, z)

Di(p, z)
(A.16)
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Figure 2: Land Price Index Comparison
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Figure 3: Structure Price Index Comparison
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Figure 4: Structure Price Index Comparison with Exogenous Land Price
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Figure 5: Structure Price Index Comparison with CRS
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Figure 6: Land Price Index Comparison with CRS
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Parameter COLS Time Dummy SFA
Coefficient Std.Err. t Coefficient Std.Err. t Coefficient Std.Err. t

α0 -8.654262 0.9184771 -9.42 -7.886361 0.533136 -14.79
α1 2.999968 0.6205874 4.83 2.519516 0.2859612 8.81 2.506335 0.2969787 8.44
α11 -0.432247 0.1122404 -3.85 -0.3851873 0.042537 -9.06 -0.339389 0.0458892 -7.40
β1 0.4251001 0.1919702 2.21 0.5175217 0.1231534 4.20 0.5230654 0.1267647 4.13
β2 -0.7420501 0.2855724 -2.6 -0.6834723 0.1417875 -4.82 -0.5483521 0.1469673 -3.73

1
2
β11 0.0491277 0.0205348 2.39 0.0358318 0.0168336 2.13 0.0550541 0.0168423 3.27

1
2
β22 -0.0471125 0.0296489 -1.59 -0.0423398 0.0150257 -2.82 -0.0146476 0.0160396 -0.91
β12 0.0074992 0.0490074 0.15 0.0073379 0.0249217 0.29 0.0101349 0.0255948 0.40
γ1 -0.0105265 0.0651377 -0.16 -0.0098862 0.0375809 -0.26 -0.0390997 0.0388763 -1.01
γ2 0.2456549 0.1031222 2.38 0.2307362 0.0425736 5.42 0.1550929 0.0459129 3.38

Table 1: Regression Results of Different Methods
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Diewert Ours
Num. of observations 2289 2280

Ave. sale price 190.13 189.76
Ave. land area 257.6 258.98

Ave. structure area 127.2 127.09

Table 2: Summary Statistics Comparison

Coef. Std. Err. t
α0 -0.257646 0.114862 -2.24
β1 0.9153355 0.075584 12.11
β2 0.1219993 0.0539718 2.26

1
2
β11 -0.018214 0.0189258 -0.96

1
2
β22 0.029778 0.0107326 2.77
β12 -0.000395 0.0241278 -0.02

Table 3: Coefficients of Specification with CRS

Time Num. of NDOPI Fisher Fixed-Base Fisher Chained
Period Obs. House Price Index House Price Index

1 157 1.0000 1.0000 1.0000
2 155 0.9929 1.0240 1.0240
3 154 1.0152 1.0682 1.0784
4 155 1.0395 1.0490 1.0408
5 163 1.0071 1.0444 1.0408
6 175 1.0172 1.0668 1.0575
7 157 1.0122 1.0731 1.0734
8 152 1.0152 1.0768 1.0671
9 159 1.0344 1.0683 1.0895
10 194 1.0445 1.1189 1.1148
11 137 1.0688 1.1220 1.1247
12 187 1.0921 1.1132 1.1048
13 148 1.1134 1.1107 1.1045
14 187 1.1134 1.1058 1.1119

Table 4: House Price Index and NDOPI
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Period DS0 DS1 DS2 COLS SFA Time Dummy Diewert
1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.17085 1.14797 1.12816 1.06255 1.04764 1.05601 1.13864
3 1.16199 1.16277 1.14536 1.08708 1.06768 1.07512 1.16526
4 1.01873 1.02859 1.02990 1.02655 1.02264 1.02149 1.04214
5 1.14362 1.13589 1.13368 1.06191 1.05178 1.05369 1.11893
6 1.18897 1.16439 1.14474 1.12440 1.09966 1.11148 1.18183
7 1.27672 1.25955 1.23127 1.15472 1.12393 1.13820 1.23501
8 1.17338 1.16416 1.13854 1.12592 1.10034 1.11176 1.13257
9 1.24168 1.21921 1.18481 1.23086 1.17709 1.20706 1.21204
10 1.14775 1.15482 1.13401 1.20693 1.15966 1.18394 1.19545
11 1.24358 1.23731 1.20753 1.20707 1.16338 1.18398 1.17747
12 1.13746 1.14025 1.12421 1.21345 1.16790 1.19053 1.11588
13 1.01596 1.00828 1.00247 1.20116 1.15347 1.17922 1.05070
14 1.16739 1.15499 1.13613 1.22721 1.17198 1.20303 1.09648

Table 5: Land Price Indexes Comparison

Period DS0 COLS SFA Time Dummy
1 1.00000 1.00000 1.00000 1.00000
2 0.99291 1.04218 1.04103 1.04250
3 1.01518 1.09368 1.09011 1.09375
4 1.03947 1.05588 1.05404 1.05597
5 1.00709 1.06450 1.06224 1.06452
6 1.01721 1.05513 1.05333 1.05448
7 1.01215 1.09026 1.08712 1.08924
8 1.01518 1.07582 1.07312 1.07462
9 1.03441 1.08732 1.08382 1.08652
10 1.04453 1.13165 1.12666 1.13105
11 1.06883 1.14276 1.13757 1.14152
12 1.09211 1.11073 1.10636 1.10971
13 1.11336 1.10063 1.09711 1.10022
14 1.11336 1.11168 1.10738 1.11111

Table 6: Structure Price Index Comparison
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Period DS0 DS1 DS2 COLS SFA Time Dummy
1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.04687 1.03938 1.03864 1.04218 1.04103 1.04250
3 1.06929 1.06910 1.06970 1.09368 1.09011 1.09375
4 1.04422 1.05016 1.04987 1.05588 1.05404 1.05597
5 1.05261 1.04803 1.06071 1.06450 1.06224 1.06452
6 1.07189 1.05990 1.05488 1.05513 1.05333 1.05448
7 1.09040 1.08710 1.08229 1.09026 1.08712 1.08924
8 1.05641 1.05490 1.04801 1.07582 1.07312 1.07462
9 1.05740 1.04835 1.02903 1.08732 1.08382 1.08652
10 1.07110 1.06728 1.05556 1.13165 1.12666 1.13105
11 1.09823 1.09876 1.08828 1.14276 1.13757 1.14152
12 1.07249 1.07250 1.06274 1.11073 1.10636 1.10971
13 1.05908 1.05134 1.03586 1.10063 1.09711 1.10022
14 1.07550 1.07229 1.06113 1.11168 1.10738 1.11111

Table 7: Structure Price Indexes Comparison with Exogenous Land Price

TD-CRS TD Diewert
1.0000 1.0000 1.0000
1.0442 1.0425 0.9929
1.0958 1.0938 1.0152
1.0574 1.0560 1.0395
1.0658 1.0645 1.0071
1.0527 1.0545 1.0172
1.0868 1.0892 1.0122
1.0713 1.0746 1.0152
1.0846 1.0865 1.0344
1.1308 1.1311 1.0445
1.1392 1.1415 1.0688
1.1076 1.1097 1.0921
1.0999 1.1002 1.1134
1.1105 1.1111 1.1134

(a) Structure Price Indexes Compar-
ison with CRS

TD-CRS TD Diewert
1.0000 1.0000 1.0000
1.0229 1.0560 1.1386
1.0138 1.0751 1.1653
0.9953 1.0215 1.0421
1.0114 1.0537 1.1189
1.0463 1.1115 1.1818
1.0541 1.1382 1.2350
1.0397 1.1118 1.1326
1.0881 1.2071 1.2120
1.0682 1.1839 1.1955
1.0672 1.1840 1.1775
1.0756 1.1905 1.1159
1.0696 1.1792 1.0507
1.0821 1.2030 1.0965

(b) Land Price Indexes Comparison
with CRS

Table 8: Price Indexes Comparison with CRS
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