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1. Introduction

Conventional univariate tests for the presence of unit roots in aggregate economic time
series have important implications for the conduct of domestic macro and international
economic policy. These tests unfortunately have been plagued by reliance on relatively short
time series with relatively low frequencies. Size distortions and low power are well-known
problems with conventional testing procedures [see, e.g., Stock (1991), and Campbell and
Perron (1991), Domowitz and El-Gamal (2001)]. Current macroeconomic theory provides
little in the way of guidance on how to increase the power and moderate size distortions
other than by increasing the length of the time series.

The literature has not been silent on the many efforts to overcome the low power of
conventional unit root tests. One such contribution was made by Hansen (1995) who noted
that conventional univariate unit root tests ignore potentially useful information from re-
lated time series and that the inclusion of related stationary covariates in the regression
equation may lead to a more precise estimate of the autoregressive coefficient. He proposed
to use the covariates augmented Dickey-Fuller (CADF) unit root test rather than conven-
tional univariate unit root tests. He analyzed the asymptotic local power functions for the
CADF t-statistic and discovered that enormous power gains could be achieved by the inclu-
sion of appropriate covariates. His Monte Carlo study suggested that such gains were also
possible in the finite sample power performances of the CADF vis-a-vis conventional ADF
test.

Hansen (1995) showed that the limit distribution of the CADF test is dependent on
the nuisance parameter that characterizes the correlation between the equation error and
the covariates. Therefore, it is not possible to perform valid statistical inference directly
using the CADF test. To deal with this inferential difficulty, Hansen (1995) suggested using
critical values based on an estimated nuisance parameter.3 His two-step procedure can be
a practical solution for the implementation of the CADF test. However, relying on the
estimated value of the nuisance parameter would introduce additional source of variability.

In this paper, we apply the bootstrap method to the CADF test to deal with the nui-
sance parameter dependency and to provide a valid basis for inference based on the CADF
test. In particular, we show the consistency of the bootstrap CADF test and establish the
asymptotic validity of the critical values from the bootstrap distribution of the test. We
also show that the bootstrap test is valid under the conditional heteroskedasticity in the
innovations. The asymptotic properties of the CADF and bootstrap CADF tests are inves-
tigated and the finite sample performances of the CADF tests are compared with various
well-known univariate unit root tests. The simulations show that the CADF test based on
the two-step procedure suffers from serious size distortions, especially when the covariates
are highly correlated with the error, while our bootstrap CADF test significantly improves
the asymptotic and the finite sample size performances of the CADF test. Moreover, the
bootstrap CADF test offers dramatic power gains over the conventional unit root tests.

3Table 1 in Hansen (1995) provides asymptotic critical values for the CADF t-statistic for values of the
nuisance parameter in steps of 0.1 via simulations. For intermediate values of the nuisance parameter, critical
values are selected by interpolation.

2



As illustrations, we apply our covariate tests and standard unit root tests in a reex-
amination of the stationarity of U.S. domestic macroeconomic aggregates in the extended
Nelson and Plosser data set. We investigate whether the findings of unit roots in the Nelson
and Plosser data set are reversed when the more powerful covariate tests are used. We find
that our new covariate test rejects the unit root hypothesis in three series in the Nelson and
Plosser data set for the period 1930-1972.

The paper is organized as follows. Section 2 introduces the unit root test with covariates
and derives limit theories for the sample tests. Section 3 applies the bootstrap methodology
to the sample tests considered in Section 2 and establishes the asymptotic validity of the
bootstrap test. Section 4 considers asymptotic powers of the bootstrap tests against the
local-to-unity models. In Section 5, we conduct simulations to investigate the asymptotic
and the finite sample performances of the bootstrap CADF test. Empirical applications are
presented in Section 6 and Section 7 concludes. All mathematical proofs are provided in
the Appendix.

2. Unit Root Tests with Covariates

2.1 Model and Assumptions

We consider the time series (yt) given by

△yt = αyt−1 + ut (1)

for t = 1, . . . , n, where△ is the usual difference operator.4 We let the regression errors (ut) in
the model (1) to be serially correlated, and also allow them to be related to other stationary
covariates. To define the data generating process for the errors (ut) more explicitly, let (wt)
be an m-dimensional stationary covariates. It is assumed that the errors (ut) are given by
a p-th order autoregressive exogenous (ARX) process specified as

α(L)ut = β(L)′wt + εt (2)

where L is the lag operator, α(z) = 1−
∑p

k=1 αkz
k and β(z) =

∑q
k=−r βkz

k.
We consider the test of the unit root null hypothesis α = 0 for (yt) given as in (1),

against the alternative of the stationarity α < 0. The initial value y0 of (yt) does not affect
our subsequent analysis so long as it is stochastically bounded, and therefore we set it at
zero for expositional brevity.

Under the null hypothesis of unit root, △yt = ut, and we have from (2) that

△yt = αyt−1 +

p∑
k=1

αk△yt−k +

q∑
k=−r

β′
kwt−k + εt (3)

which is an autoregression of △yt augmented by its lagged level yt−1 and the leads and lags
of the m stationary covariates in (wt).

4We start with the simple model without the deterministic components to effectively deliver the essence
of the theory. The models with the deterministic components will be considered at the end of this section.
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For the subsequent analysis, we also need to be more explicit about the data generating
process for the stationary variables (wt) that are used as covariates. We assume that (wt)
is generated by an AR(ℓ) process as

Φ(L)wt+r+1 = ηt

where Φ(z) = Im −
∑ℓ

k=1Φkz
k.

To define explicitly the correlation between the covariates (wt) and the series to be
tested (yt), we consider together the innovations (ηt) and (εt) that generate, respectively,
the covariates (wt) and the regression error (ut), which in turn generates (yt). Define

ξt = (εt, η
′
t)
′

and denote by | · | the Euclidean norm: for a vector x = (xi), |x|2 =
∑

i x
2
i and for a matrix

A = (aij), |A|2 =
∑

i,j a
2
ij . We now lay out assumptions needed for the development of our

asymptotic theory.

Assumption 2.1 We assume

(a) Let (ξt) be a martingale difference sequence such that Eξtξ
′
t = Σ and (1/n)

∑n
t=1 ξtξ

′
t →p

Σ with Σ > 0, and E|ξt|γ < K for some γ ≥ 4, where K is some constant depending only
upon r.
(b) α(z), det(Φ(z)) ̸= 0 for all |z| ≤ 1.

The reader is referred to Chang and Park (2002) for more discussions on the technical
conditions introduced in Assumption 2.1. Assumption 2.1 (a) allows for conditional het-
eroskedasticity (e.g., ARCH and GARCH) in all equations in the system including the
covariates. It also states that the regression error (εt) in equation (3) is serially uncorre-
lated with (ηt+k) for k ≥ 1. The condition effectively implies that the regression error (εt)
is orthogonal to the lagged differences of the dependent variable (△yt−1, . . . ,△yt−p) and
the leads and lags of the stationary covariates (wt+r, . . . , wt−q), which is necessary for the
regression (3) to be consistently estimated via usual least squares estimation. (See Hansen
(1995) for more details.)

Under Assumption 2.1 (a), the following invariance principle holds

1√
n

[ns]∑
t=1

ξt →d B(s)

for s ∈ [0, 1] as n → ∞. The limit process B = (Bε, B
′
η)

′ is an (1 +m)-dimensional vector
Brownian motion with covariance matrix

Σ =

(
σ2
ε σεη

σηε Ση

)
.

Let zt = (△yt−1, . . . ,△yt−p, w
′
t+r, . . . , w

′
t−q)

′. We assume

Assumption 2.2 σ2
u > 0 and Eztz

′
t > 0.
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The condition σ2
u > 0 ensures that the series (yt) is I(1) when α = 0, which is necessary to

be able to interpret testing α = 0 as testing for a unit root in (yt). The condition Eztz
′
t > 0

implies that the stationary regressors in (zt) are asymptotically linearly independent, which
is required along with the condition Assumption 2.1 (a) for the consistency of the LS
coefficient estimates for (zt).

2.2 Covariates Augmented Unit Root Tests

To introduce our test statistics more effectively, we first let α̂n be the OLS estimator of α
from the covariates augmented regression (3), σ̂2

n the usual error variance estimator, and
s(α̂n) the estimated standard error for α̂n. We also let

α̂n(1) = 1−
p∑

k=1

α̂k

where α̂k’s are the OLS estimators of αk’s in the CADF regression (3).
The statistics that we will consider in the paper are given by

Sn =
nα̂n

α̂n(1)
, Tn =

α̂n

s(α̂n)
. (4)

Note that Sn is a test for the unit root based on the estimated unit root regression coefficient,
and Tn is the usual t-statistics for testing the unit root hypothesis from the CADF regression
(3). The test Tn is considered in Hansen (1995).

The limit theories for the tests Sn and Tn are given in

Theorem 2.3 Under the null hypothesis α = 0, we have as n → ∞,

Sn →d σε

∫ 1

0
Q(s)dP (s)∫ 1

0
Q(s)2ds

, Tn →d

∫ 1

0
Q(s)dP (s)(∫ 1

0
Q(s)2ds

)1/2

under Assumptions 2.1 and 2.2, where

Q(s) = β(1)′Ψ(1)Bη(s) +Bε(s)

and P (s) = Bε(s)/σε.

The asymptotic distributions for both Sn and Tn are nonstandard and depend upon
the nuisance parameters that characterize the correlation between the covariates and the
regression error as shown in Hansen (1995).5

5Noting that the null limit distribution of the CADF t-test depends only on the correlation coefficient ρ2,
Hansen (1995, Table 1, p.1155) provides the asymptotic critical values for the CADF t-test for values of ρ2

from 0.1 to 1 in steps of 0.1. The estimate for ρ2 is constructed as ρ̂2 = σ̂2
vε/σ̂

2
vσ̂

2
ε , where vt = β(L)′wt + εt,

and σ̂vε,σ̂
2
v and σ̂2

ε are consistent nonparametric estimators of the corresponding parameters.
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The models with deterministic components can be analyzed similarly. When the time
series (xt) with a nonzero mean is given by

xt = µ+ yt (5)

or with a linear time trend
xt = µ+ δt+ yt (6)

where (yt) is generated as in (1), we may test for the presence of the unit root in the process
(yt) from the CADF regression (3) defined with the fitted values (yµt ) or (y

τ
t ) obtained from

the preliminary regression (5) or (6). The limit theories for the CADF tests given in
Theorem 2.3 extend easily to the models with nonzero mean and deterministic trends, and
are given similarly with the following demeaned and detrended Brownian motions

Qµ(s) = Q(s)−
∫ 1

0
Q(t)dt

and

Qτ (s) = Q(s) + (6s− 4)

∫ 1

0
Q(t)dt− (12s− 6)

∫ 1

0
tQ(t)dt

in the place of the Brownian motion Q(s).

3. Bootstrap Unit Root Tests with Covariates

In this section, we consider the bootstrap for the covariates augmented unit root tests Sn

and Tn introduced in the previous section. Throughout the paper, we use the usual notation
∗ to signify the bootstrap samples, and use P∗ and E∗ respectively to denote the probability
and expectation conditional on a realization of the original sample.

To construct the bootstrap CADF tests, we first generate the bootstrap samples for
the m-dimensional stationary covariates (wt) and the series (yt) to be tested. We begin by
constructing the fitted residuals which will be used as the basis for generating the bootstrap
samples. We first let ut = △yt and fit the regression

ut =

p∑
k=1

α̃kut−k +

q∑
k=−r

β̃′
kwt−k + ε̃t (7)

by the usual OLS regression. It is important to base the bootstrap sampling on regression
(3) with the unit root restriction α = 0 imposed. The samples generated by regression (3)
without the unit root restriction do not behave like unit root processes, and this will render
the subsequent bootstrap procedures inconsistent as shown in Basawa et al. (1991).

Next, we fit the ℓ-th order autoregression of wt as

wt+r+1 = Φ̃1,nwt+r + · · ·+ Φ̃ℓ,nwt+r−ℓ+1 + η̃t (8)

by the usual OLS regression. We may prefer, especially in small samples, to use the Yule-
Walker method to estimate (8) since it always yields an invertible autoregression, thereby
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ensuring the stationarity of the process (wt) [see, e.g., Brockwell and Davis (1991, Sections
8.1 and 8.2)].

We then generate the (1 + m)-dimensional bootstrap samples (ξ∗t ), ξ∗t = (ε∗t , η
∗′
t )

′ by
resampling from the centered fitted residual vectors (ξ̃t), ξ̃t = (ε̃t, η̃

′
t)
′ where (ε̃t) and (η̃t)

are the fitted residuals from (7) and (8). That is, obtain iid samples (ξ∗t ) from the empirical
distribution of (

ξ̃t −
1

n

n∑
t=1

ξ̃t

)n

t=1

.

The bootstrap samples (ξ∗t ) constructed as such will satisfy E∗ξ∗t = 0 and E∗ξ∗t ξ
∗′
t = Σ̃,

where Σ̃ = (1/n)
∑n

t=1 ξ̃tξ̃
′
t.

Next, we generate the bootstrap samples for (w∗
t ) recursively from (η∗t ) using the fitted

autoregression given by

w∗
t+r+1 = Φ̃1,nw

∗
t+r + · · ·+ Φ̃ℓ,nw

∗
t+r+1−ℓ + η∗t

with appropriately chosen ℓ-initial values of (w∗
t ), where Φ̃k, 1 ≤ k ≤ ℓ are the coeffi-

cient estimates from the fitted regression (8). Initialization of (w∗
t ) is unimportant for our

subsequent theoretical development, we may therefore simply choose zeros for the initial
values.

Then we obtain (w∗
t+r, . . . , w

∗
t−q) from the sequence (w∗

t ), and construct the bootstrap
samples (v∗t ) as

v∗t =

q∑
k=−r

β̃′
kw

∗
t−k + ε∗t

using the LS estimates β̃k, −r ≤ k ≤ q from the fitted regression (7). Then we generate
(u∗t ) recursively from (v∗t ) using the fitted autoregression given by

u∗t = α̃1u
∗
t−1 + · · ·+ α̃pu

∗
t−p + v∗t

with appropriately chosen p-initial values of (u∗t ), and where α̃k, 1 ≤ k ≤ p are the estimates
for αk’s from the fitted regression (7).

Finally, we generate (y∗t ) from (u∗t ) with the null restriction α = 0 imposed. This is to
ensure the nonstationarity of the generated bootstrap samples (y∗t ), which is claimed under
the null hypothesis, and to make the subsequent bootstrap tests valid. Thus we obtain (y∗t )
as

y∗t = y∗t−1 + u∗t = y∗0 +

t∑
k=1

u∗k

which also requires initialization y∗0. An obvious choice would be to use the initial value
y0 of (yt), and generate the bootstrap samples (y∗t ) conditional on y0. The choice of initial
value may affect the finite sample performance of the bootstrap; however, the effect of the
initial value becomes negligible asymptotically as long as it is stochastically bounded. If the
mean or linear time trend is maintained as in (5) or (6) and the unit root test is performed
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using the demeaned or detrended data, the effect of the initial value y∗0 of the bootstrap
sample would disappear. We may therefore just set y∗0 = 0 for the subsequent development
of our theory in this section.

To construct the bootstrapped tests, we consider the following bootstrap version of the
covariates augmented regression (3), which was used to construct the sample CADF tests
Sn and Tn in the previous section

△y∗t = αy∗t−1 +

p∑
k=1

αk△y∗t−k +

q∑
k=−r

β′
kw

∗
t−k + ε∗t . (9)

We test for the unit root hypothesis α = 0 in (9) using the bootstrap versions of the CADF
tests, defined in (10) below, that are constructed analogously as their sample counterparts
Sn and Tn defined in (4). Similarly as before, we denote by α̂∗

n and s(α̂∗
n) respectively the

OLS estimator for α and the estimated standard error for α̂∗
n obtained from the CADF

regression (9) based on the bootstrap samples, and by α̂∗
n(1) the bootstrap counterpart to

α̂n(1). The bootstrap tests use the statistics defined as

S∗
n =

nα̂∗
n

α̂∗
n(1)

, T ∗
n =

α̂∗
n

s(α̂∗
n)

(10)

corresponding to Sn and Tn introduced in (4) of the previous section.
To implement the bootstrap CADF tests, we repeat the bootstrap sampling for the

given original sample and obtain a∗n(λ) and b∗n(λ) such that

P∗ {S∗
n ≤ a∗n(λ)} = P∗ {T ∗

n ≤ b∗n(λ)} = λ

for any prescribed size level λ. The bootstrap CADF tests reject the null hypothesis of a
unit root if

Sn ≤ a∗n(λ), Tn ≤ b∗n(λ).

It will be shown under appropriate conditions that the tests are asymptotically valid, i.e.,
they have asymptotic size λ.

The following Theorem 3.1 shows that the bootstrap statistics S∗
n and T ∗

n have the same
null limiting distributions as the corresponding sample statistics Sn and Tn. It implies, in
particular, that the bootstrap CADF tests are asymptotically valid.

Theorem 3.1 Under the null hypothesis α = 0, we have as n → ∞,

S∗
n →d∗ σε

∫ 1

0
Q(s)dP (s)∫ 1

0
Q(s)2ds

in P, T ∗
n →d∗

∫ 1

0
Q(s)dP (s)(∫ 1

0
Q(s)2ds

)1/2
in P

under Assumptions 2.1 and 2.2 where Q(s) and P (s) are defined in Theorem 2.3, in the
sense of, e.g., Remark 2 in Chang and Park (2003).
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Our bootstrap theory here easily extends to the tests for a unit root in models with
deterministic trends, such as those introduced in (5) or (6). It is straightforward to establish
the bootstrap consistency for the CADF tests applied to the demeaned and detrended time
series, using the results obtained in this section.

We may also readily bootstrap the CADF tests for models generated with ARCH and
GARCH innovations. In the paper, we only consider a simple model with ARCH(1) in-
novations. The required bootstrap procedures for models with more general ARCH and
GARCH innovations are very similar. We let

εt = ϵt
√

ht (11)

with ht = π + λε2t−1, where π > 0, λ > 0 are unknown parameters and (ϵt) is a sequence
of iid random variables with Eϵt = 0 and Eϵ2t = 1. In this case, we may estimate π and
λ consistently by π̃ and λ̃ in the regression ε̃2t = π̃ + λ̃ε̃2t−1, for t = 1, . . . , n, using the

fitted residuals defined in (7). Subsequently, we define ϵ̃t = ε̃t/
√

h̃t with h̃t = π̃+ λ̃ε̃2t−1 for
t = 1, . . . , n, and standardize (ϵ̃t) by

ϵ̃t −
∑n

t=1 ϵ̃t/n√∑n
t=1(ϵ̃t −

∑n
t=1 ϵ̃t/n)

2/n

and redefine it as (ϵ̃t). Likewise, we redefine (η̃t) to be the centered fitted residual from
regression (8). Then we let ζ̃t = (ϵ̃t, η̃t)

′, and obtain bootstrap samples (ζ∗t ), ζ
∗
t = (ϵ∗t , η

∗
t )

′,
from (ζ̃t). To get the bootstrap samples (ξ∗t ), ξ

∗
t = (ε∗t , η

∗
t )

′, we only need to obtain the
bootstrap samples (ε∗t ) from (ϵ∗t ), since the bootstrap samples (η∗t ) are already available.
However, the bootstrap samples (ε∗t ) can be readily constructed from the bootstrap samples
(ϵ∗t ) by defining ε∗t = ϵ∗t

√
h∗t with h∗t = π̃ + λ̃ε∗2t−1 recursively for t = 1, . . . , n conditional on

h∗1 = π̃ + λ̃ε̃20.

4. Asymptotics under Local Alternatives

In this section, we consider local alternatives given by

H1 : α = − c

n
(12)

where c > 0 is a fixed constant, and let (yt) be generated by (1) and (2). The asymptotic
theories for the local-to-unity models are now well established [see, e.g., Stock (1994)], and

9



the following limit theories are easily derived from them for our model:

Sn →d S(c) = −c+ σε

∫ 1

0
Qc(s)dP (s)∫ 1

0
Qc(s)

2ds

Tn →d T (c) = − c

σε

(∫ 1

0
Qc(s)

2ds

)1/2

+

∫ 1

0
Qc(s)dP (s)(∫ 1

0
Qc(s)

2ds

)1/2

where

Qc(s) = Q(s)− c

∫ 1

0
e−c(s−r)Q(r)dr

is Ornstein-Uhlenbeck process, which may be defined as the solution to the stochastic dif-
ferential equation dQc(s) = −cQc(s)ds+ dQ(s), and Q is defined in Theorem 2.3.

Bootstrap theories for the local-to-unity models are established in Park (2003). Here we
may follow Park (2003) to show S∗

n →d∗ S and T ∗
n →d∗ T under the local alternatives (12),

where S and T are the limiting null distributions of Sn and Tn given in Theorem 2.3. See
Chang et al. (2013) for proofs of these results.

5. Simulations

5.1 Data Generating Process

In this section, we perform a set of simulations to investigate the performances of the
bootstrap tests. For the comparison of the bootstrap tests with other well-known tests, we
consider only T ∗

n statistic here. For the simulations, we consider (yt) given by the unit root
model (1) with the error (ut) generated by ut = α1ut−1 + vt, where the error term (vt) is
given by

vt = βwt + εt. (13)

We model the covariate (wt) to follow an AR(1) process as follows:

wt+1 = ϕwt + ηt. (14)

The innovations (ξt), ξt = (εt, ηt)
′ are randomly chosen from iid N(0,Σ), where

Σ =

(
1 σεη
σηε 1

)
.

Under this setup, we have the following covariate augmented ADF regression:

△yt = αyt−1 + α1△yt−1 + βwt + εt. (15)
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The relative merit of constructing a unit root test from the covariate augmented re-
gression depends on the correlation between the error (vt), vt = βwt + εt and the covariate
(wt). As can be seen clearly from (13) and (14), the correlation depends on two parameter
values, the coefficient β on the covariate and the AR coefficient ϕ of the covariate. We
thus control the degree of correlation between the error (vt) and the covariate (wt) through
these parameters. The values of β and ϕ are allowed to vary among {−0.8,−0.5, 0.5, 0.8}.
The coefficient α1 on the lagged difference term is set at 0.2 throughout the simulations.
The contemporaneous covariance σεη is set at 0.4. For the test of the unit root hypothesis,
we set α = 0 and investigate the sizes in relation to corresponding nominal test sizes. For
the powers, we consider α = −0.10.6 To investigate the effect of the presence of conditional
heteroskedasticity, we also consider ARCH(1) innovations (εt) generated as in (11) with
π = 0.6 and λ = 0.4. In this case, we let the covariance between (ϵt) and (ηt) be given by
σϵη = 0.415.7 This yields the covariance between (εt) and (ηt), σεη = 0.4, exactly as in our
earlier iid simulations. We set the initial value of (ht) at h1 = π = 0.6.

5.2 Asymptotic Properties

In this section, the asymptotic size properties of the CADF and the bootstrap CADF tests
are compared. The regression equation for the CADF test is based on the true model and it
contains one lagged difference term and the current value of the covariate. The regression
equation for covariate is estimated using the AR(1) model as in (14). To investigate the
effects of conditional heteroskedasticity on the bootstrap test, we let the bootstrap test
based on the iid innovations as BCADFi and the one based explicitly on the exact ARCH
specification of innovations as BCADFa, and compare their performances.

Given our model specifications in Section 5.1, ρ2 = σ2
vε/(σ

2
vσ

2
ε) is calculated as follows:

σ2
v =

β2σ2
η

(1− ϕ)2
+ σ2

ε +
2βσηε
1− ϕ

σvε =
βσηε
1− ϕ

+ σ2
ε

where σ2
ε = 1, σ2

η = 1 and σηε = 0.4. Then, for the parameters we consider, the true ρ2 varies
from 0 to 0.950. Now, we can compare the estimated ρ̂2 with true ρ2 under the simulation
setup as shown in Table 1.8 With the iid innovations, in finite samples (for n = 50, 100),
there are large biases in ρ̂2 especially when ρ2 is low. For example, when the true ρ2 is 0.0,
the estimated ρ̂2 is 0.245 for n = 50. Since the CADF test attains potential power gains at
low levels of ρ2, the size distortions possibly caused by these biases pose serious problems
to the use of the test. Moreover, these biases do not seem to vanish even for large n (e.g.,

6Here we use the simple terms “size” and “power” to mean “Type I error” and “rejection probability
under the alternative hypothesis”, respectively.

7To find σηϵ yielding σηε = 0.4 as in the iid simulations, we use the relationship σηε = σηϵE(
√
ht) and

simulate E(
√
ht) using our specification of (εt) in (11).

8In the tables below, we provide the results only for ϕ = 0.5 and 0.8 to save space because we have lower
ρ2 for these parameters.
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n = 500) for some parameter values. For example, for (β, ϕ) = (−0.5, 0.5), (−0.8, 0.5), the
differences between true ρ2 and estimated ρ̂2 are non-negligible. This is also true for the
models with the ARCH innovations. Thus, from these results, we conclude that the CADF
test may suffer from size distortions that come from the imprecise estimation of ρ2.

Next, we examine the size performances of the tests in Table 2. As the sample size
increases, the overall size performances of the CADF test improves and the sizes are close
to 5%. However, as mentioned above, when ρ2 are imprecisely estimated for (β, ϕ) =
(−0.5, 0.5), (−0.8, 0.5), the CADF test tends to underreject. Moreover, even when we have
precise estimates ρ̂2 for large n, the CADF test still shows large size distortions in some
cases. For example, for (β, ϕ) = (−0.8, 0.8), ρ̂2 is close to zero, the true value of ρ2, but the
size of the CADF test is only 1% (for n = 500). Again, this is a serious drawback of the
CADF test because the CADF test is the most useful in terms of good power performance
at low levels of ρ2. Therefore, when ρ2 is low, the CADF test, which is based on ρ̂2, shows
unreliable results even in large samples.9

In contrast, the bootstrap CADF test does not depend on the estimated ρ̂2 for choosing
critical values and it uses, instead, bootstrapped critical values for the test. As shown in
the Table 2, both the BCADFa and BCADFi show the similar results and the sizes of the
bootstrap CADF test are more stable along various parameter values than the CADF test.
In particular, for the parameters that we considered above, the bootstrap CADF test shows
good size properties. For example, for (β, ϕ) = (−0.5, 0.8), the size of the BCADFi test is
4.7% while that of the CADF test is only 1.7%. The bootstrap CADF test tends to slightly
overreject for some parameters such as (β, ϕ) = (−0.5,−0.8), but this is not our concern
because they correspond to the cases where ρ̂2 is very high and the CADF test is the least
useful in terms of power performance. Based on these experiments, we conclude that the
bootstrap CADF test shows more reliable size performances even in large samples than the
CADF test.

5.3 Finite Sample Properties

The finite sample performances of the bootstrap CADF test are compared with those of the
sample CADF test computed from the regression (15) as well as other well-known unit root
tests. More specifically, in addition to the CADF test, we also consider another CADF test
suggested by Elliott and Jansson (2003) (called the EJ test here). This test is known to
have maximal power against a point alternative. Thus, these three tests are all covariate-
augmented and the comparisons of their size and power performances would be meaningful.
As a benchmark, we consider the ADF test based on the usual ADF regression.

Choice of lag lengths critically affects the finite sample properties of the tests. To

9The simulation results where ρ2 is estimated using the true model in a parametric way are available
from the authors. In this case, the estimation of ρ2 becomes more precise and the size distortions coming
from the imprecise estimates of ρ2 disappear as n grows, as expected (for example, in the cases of (β, ϕ)=(-
0.5,0.5),(-0.8,0.5)). However, even with the more precise estimates of ρ2, the size distortions observed in
the cases of (β, ϕ)=(-0.5,0.8),(-0.8,0.8), where ρ2 are very low, still remain, and they are 1.8% and 0.7%,
respectively. Therefore, even with the more precise estimates of ρ2, the CADF test still suffers from the size
distortions problem, especially for low values of ρ2.
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investigate the effects of lag length selection on the finite sample performances of the tests,
we use popular lag length selection methods. For the ADF and the CADF tests, AIC
was used and, for the EJ test, BIC was used as suggested by Elliott and Jansson (2003).
Maximum lag length is set at four for n = 50 and 100 and two for n = 25. For the choice of
the lead and lag lengths of covariate of the CADF test, maximum lengths are set at four.
The lead and lag lengths of the covariates are chosen in such a way that ρ̂2 is minimized.

Other well-known univariate unit root tests are also considered. Ng and Perron (2001)
argue that the MIC information criterion along with GLS-detrended data yields a set of
tests with desirable size and power properties. In light of their argument, we calculate the
following tests based on the GLS-detrended data for both the statistic and the spectral
density, and select the lag lengths by the MIC, with the lower bound zero and the upper
bound given by int(12(n/100)1/4). The tests considered are the Zα test by Phillips and
Perron (1988), MZα test as discussed in Ng and Perron (2001), DFGLS test and feasible
point optimal test (Pt) by Elliott, Rothenberg and Stock (1996), and modified point optimal
test (MPt) by Ng and Perron (2001).10 We also considered the KPSS test by Kwiatkowski
et al. (1992) which tests the null hypothesis of stationarity against the alternative of a unit
root. For this test, the null and the alternative hypotheses are reversed and its results need
to be carefully interpreted.11

All regressions include a fitted intercept, and the results when including a time trend
are also provided. Sample sizes of n = 50, and 100 are examined for 5% nominal size
tests.12 Size-adjusted powers are reported where sizes are controlled by using the finite
sample critical values. The reported results are based on 3,000 simulation iterations with
the bootstrap critical values computed from 3,000 bootstrap repetitions. Each replication
discards the first 100 observations to eliminate start-up effects. The finite sample sizes and
powers for the tests are reported in Tables 3 to 6.

Tables 3 and 4 show the size results for the tests with the iid and the ARCH innovations,
respectively. The results are very similar in both cases so we focus only on the cases with
iid innovations. As can be seen clearly, the sample CADF test has quite noticeable size
distortions over various parameters especially for small samples. The distortions are even
larger when a time trend is included. For example, sizes are higher than 10% in many
cases and in some cases it reaches 22%. In contrast, the bootstrap CADF test substantially
correct the biases of the CADF test particularly when ρ̂2 is low. This improvement of the
size performance is much conspicuous when a time trend is included and for small samples.
For example, when (β, ϕ) = (0.8, 0.5) with ρ̂2 = 0.09 in Table 3, the size of the CADF test
is 12.2% while that of the bootstrap CADF test is 7.5%.

The size performances of the EJ test is the most unstable among the considered tests.
Moreover, the test becomes more unstable when a time trend is included. For example,

10We thank Elliott and Jansson, and Ng and Perron for sharing their codes with us. We do not provide
the results of the Zα, MZt, MSB and Pt tests because their performances are very similar to that of the
MZα test.

11As the lag truncation parameter, eight was used following the suggestion in Kwiatkowski et al. (1992).
12The simulation results for n = 25 and for the cases of ϕ = −0.5 and −0.8 are omitted to save the space.

Full results are available from the authors upon request.
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the size distortions of the EJ test for small sample are huge as high as 76.7% and, even for
n = 100, sometimes the sizes are over 75%. Hence, the size performances of the EJ test are
very unstable across various parameters.

The size performances of the ADF test are as good as those of the bootstrap CADF
test. This implies that ignoring covariates does not significantly affect the size properties
of the ADF test. The other tests shows reasonably good size properties as sample size
increases but they show quite unstable results when a time trend is included. Thus, for
some parameters, they tend to overreject and, for others, they tend to severely underreject.
In summary, we conclude that only the ADF test and the bootstrap CADF test show reliable
and satisfactory size performances.

Tables 5 and 6 show the results of powers with the iid and the ARCH innovations,
respectively. Again, the tables show very similar results in both cases. The significant
improvement in the finite sample sizes that the bootstrap CADF test offers does not come
at the expense of finite sample powers. Indeed, the results show that the bootstrap CADF
test offers drastic power gains over the conventional ADF test when ρ̂2 is low, where the
covariates tests are expected to improve the power properties. The powers of the bootstrap
CADF are more than two or three times as large as those of the other tests when ρ̂2 is low.
Moreover, the powers of the bootstrap CADF test are comparable to those of the CADF
test and sometimes even larger than those of the CADF test especially when a time trend
is included. The EJ test has the highest nominal powers but its size-adjusted powers are
similar to those of the CADF tests.

In contrast, the other tests show considerably lower powers compared with those of three
covariate-based tests. The powers of the ADF test are lowest among the tests considered
and the other tests show similar power performances. In particular, when a time trend is
included, the other tests substantially lose powers. These results show that using covariates
may bring enormous power gains over other univariate unit root tests.

The KPSS test tests the null hypothesis of stationarity against the alternative of a unit
root. Hence, the results in the Table 5 and 6 for the stationary series present the size perfor-
mances and those in the Table 3 and 4 for the unit root series present the power properties
of the KPSS test. The KPSS test severely overrejects the null hypothesis, sometimes over
40%. The powers of the KPSS test are very low around 40% and especially so when a time
trend is included. Thus, under the current setup of the simulations, the size and the power
properties of the KPSS test are less reliable.

Our simulation results in Tables 4 and 6 for the models with ARCH innovations show
that the presence of conditional heteroskedasticity does not have any major impact on our
bootstrap tests even in finite samples. Our theory implies that the usual bootstrap assuming
iid innovations is asymptotically valid also for models with conditional heteroskedasticity,
and therefore, it is well predicted that the CADF tests relying on the iid bootstrap work
for our simulation models generated by ARCH innovations in large samples. It turns out
that even in finite samples the iid bootstrap works as well as the bootstrap based explicitly
on the exact ARCH specification of innovations in the model. In particular, it seems clear
that the ARCH bootstrap does not provide any asymptotic refinement for our tests. This
is not surprising because the asymptotic distributions of the CADF tests are not pivotal.
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In summary, the bootstrap CADF test has good size and power properties for all com-
binations of parameter values and time series dimensions and is robust to the inclusion of
a time trend. From all these observations, we conclude that the bootstrap CADF test has
the best size and power properties under our simulation setup.

6. Empirical Applications

In our empirical applications, we consider the Nelson and Plosser (1982) data set extended
by Schotman and Van Dijk (1991). Nelson and Plosser (1982) studied the time series
properties of fourteen series and found that all of them, except the unemployment series,
were characterized by stochastic nonstationarity.

The testing strategy is as follows. We use lagged differences of each series for covariates,
thus, only stationary covariates will be utilized in our multivariate tests.13 Among the
candidates for covariates we choose the one which gives us the smallest ρ̂2 since this covariate
provides the most powerful test, as shown in Section 5. The lags of the differenced dependent
variable are selected using the Akaike Information Criterion (AIC) with the maximum lag
length four.14 For the CADF tests, current covariate is included and the combinations of
past and future covariates are tried up to the lag length four, among which the lag lengths
with the smallest ρ̂2 are chosen. For the bootstrap tests, we use critical values computed
from 5,000 bootstrap iterations. All variables in the data set are measured annually in
natural logarithms. The estimated period is 1929-1973 in consideration of the structural
breaks in 1929 and 1973 coinciding with the onset of the Great Depression and oil shock [see
Perron (1989)]. A time trend is included in the regressions. Table 7 presents the results.

For all cases the values of ρ̂2 are lower than 0.09, thus we should expect, based on our
simulation results, more powerful test results with the CADF and the bootstrap CADF
tests than with the other tests. With these new tests we can reject the null hypothesis
of a unit root for five series (GNP Deflator, Wages, Money Stock, Velocity and S&P500)
by the sample CADF test and three series (GNP Deflator, Money Stock and Velocity) by
the bootstrap CADF test. The bootstrap test based explicitly on the ARCH innovations
presents the same results as the one based on the iid innovations. Looking at the other
tests, the EJ test rejects for eight series and the DFGLS test rejects for two series. The
other tests reject the null hypothesis for only one series or none of the series. The KPSS
test rejects for only one series, implying that the other series are all stationary.

The results for other tests are not surprising because the simulation results for n = 50
with a time trend show that the powers of other tests are very low. Also, for such small
ρ̂2 as our data set, the EJ test as well as the CADF test tend to severely overreject15. On
the other hand, the bootstrap CADF test shows reasonable size and power performances.

13Stock and Watson (1999) note that current theoretical literatures in macroeconomics provide neither
intuition nor guidance on which covariates are candidates for our CADF and bootstrap CADF tests other
than on the basis of stationarity.

14The Bayesian Information Criterion (BIC) gives almost similar results.
15ρ̂2 is low when ϕ is positive according to the simulation results. When we calculate the estimates ϕ of

AR(1) lags of potential covariates, they all take large positive numbers.
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Thus, we may conclude that the results from the EJ test and the CADF test are less reliable
and accept the results from the bootstrap CADF test that there are three stationary series
in the Nelson and Plosser data set for the considered sample period.

7. Conclusion

In this paper, we consider the bootstrap procedure for the covariate augmented Dickey-
Fuller (CADF) unit root test which substantially improves the power of univariate unit root
tests. Hansen (1995) originally proposed the CADF test and suggested a two-step procedure
to overcome the nuisance parameter dependency problem. Here, we propose bootstrapping
the CADF test in order to directly deal with the nuisance parameter dependency and base
inferences on the bootstrapped critical values. We also establish the bootstrap consistency
of the CADF test and show that the bootstrap CADF test is asymptotically valid.

The asymptotic properties of the CADF and bootstrap CADF tests are investigated and
the finite sample performances of the CADF tests are compared with various well-known
univariate unit root tests through simulations. The bootstrap CADF test significantly im-
proves the asymptotic and the finite sample size performances of the CADF test, especially
when the covariates are highly correlated with the error. Indeed, the bootstrap CADF test
offers drastic power gains over the conventional ADF and other univariate tests. As illus-
trations, we apply the tests to the fourteen macroeconomic time series in the Nelson and
Plosser data set for the post-1929 samples. The results of the bootstrap CADF test show
that there are three stationary series in the Nelson and Plosser data set for the considered
sample period.

8. Appendix

Proof of Theorem 2.3 We first define
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as required, due to Lemma A.2 in Chang et al. (2013). Similarly, the stated limit distribu-
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Proof of Theorem 3.1 The stochastic orders for the bootstrap sample moments appear-
ing in the definitions of the bootstrap test S∗
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from the results in Lemma 3 of Chang and Park (2003), and therefore, it follows from (16)
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et al. (2013), and the results in (19) and (20). �
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Table 1. Estimates of ρ2 for Various n (α = 1)

DGP iid innovations ARCH innovations

β ϕ 50 100 500 50 100 500 true ρ2

0.8 0.8 0.320 0.306 0.301 0.323 0.310 0.304 0.335
0.5 0.8 0.438 0.427 0.411 0.432 0.426 0.412 0.432
-0.5 0.8 0.245 0.202 0.128 0.232 0.194 0.126 0.000
-0.8 0.8 0.066 0.035 0.007 0.068 0.038 0.008 0.026

0.8 0.5 0.522 0.533 0.543 0.515 0.530 0.543 0.556
0.5 0.5 0.688 0.692 0.692 0.678 0.688 0.691 0.700
-0.5 0.5 0.617 0.635 0.625 0.594 0.619 0.620 0.300
-0.8 0.5 0.327 0.323 0.278 0.307 0.308 0.273 0.057

Note: The results for n = 50, and 100 are based on 3,000 simulation iterations and those for n = 500

are based on 1,000 simulation iterations.

Table 2. Asymptotic Sizes (α = 1, n = 500)

DGP iid innovations ARCH innovations

β ϕ CADF BCADFi CADF BCADFa BCADFi true ρ2

0.8 0.8 0.058 0.058 0.065 0.064 0.061 0.335
0.5 0.8 0.065 0.067 0.057 0.056 0.058 0.432
-0.5 0.8 0.017 0.047 0.019 0.049 0.047 0.000
-0.8 0.8 0.007 0.031 0.007 0.030 0.031 0.026

0.8 0.5 0.050 0.057 0.050 0.056 0.055 0.556
0.5 0.5 0.063 0.070 0.061 0.068 0.069 0.700
-0.5 0.5 0.027 0.050 0.023 0.044 0.041 0.300
-0.8 0.5 0.027 0.054 0.030 0.064 0.062 0.057

Note: The results are based on 1,000 simulation iterations with the bootstrap critical values com-

puted from 1,000 bootstrap repetitions.
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Table 3. Rejection Probabilities When α = 1 (iid innovations)

β ϕ ADF MZα MPt DFGLS KPSS EJ CADF BCADFi ρ̂2

with a constant only
n = 50

0.8 0.8 0.094 0.115 0.100 0.058 0.235 0.354 0.073 0.065 0.036
0.5 0.8 0.081 0.078 0.067 0.037 0.228 0.386 0.092 0.079 0.094
-0.5 0.8 0.068 0.045 0.041 0.021 0.247 0.372 0.088 0.083 0.125
-0.8 0.8 0.072 0.068 0.054 0.027 0.263 0.378 0.045 0.060 0.026
0.8 0.5 0.100 0.100 0.085 0.070 0.242 0.325 0.086 0.069 0.101
0.5 0.5 0.087 0.067 0.058 0.049 0.237 0.287 0.122 0.093 0.205
-0.5 0.5 0.080 0.035 0.031 0.039 0.246 0.191 0.136 0.104 0.381
-0.8 0.5 0.081 0.037 0.030 0.035 0.277 0.272 0.097 0.087 0.189

n = 100
0.8 0.8 0.071 0.065 0.054 0.038 0.379 0.134 0.053 0.068 0.032
0.5 0.8 0.058 0.051 0.045 0.033 0.388 0.204 0.075 0.075 0.102
-0.5 0.8 0.056 0.030 0.027 0.021 0.401 0.189 0.036 0.062 0.148
-0.8 0.8 0.057 0.042 0.034 0.026 0.394 0.179 0.025 0.054 0.019
0.8 0.5 0.069 0.074 0.059 0.054 0.435 0.158 0.072 0.071 0.123
0.5 0.5 0.073 0.061 0.054 0.049 0.412 0.136 0.088 0.087 0.268
-0.5 0.5 0.073 0.039 0.035 0.036 0.405 0.087 0.085 0.090 0.518
-0.8 0.5 0.071 0.047 0.044 0.044 0.412 0.127 0.050 0.073 0.237

with a time trend
n = 50

0.8 0.8 0.117 0.121 0.114 0.036 0.121 0.767 0.102 0.073 0.032
0.5 0.8 0.081 0.052 0.043 0.012 0.104 0.686 0.136 0.082 0.080
-0.5 0.8 0.075 0.020 0.017 0.007 0.117 0.579 0.125 0.085 0.102
-0.8 0.8 0.083 0.042 0.036 0.015 0.108 0.756 0.055 0.061 0.022
0.8 0.5 0.123 0.071 0.064 0.039 0.101 0.663 0.122 0.075 0.090
0.5 0.5 0.115 0.031 0.028 0.019 0.105 0.512 0.177 0.105 0.180
-0.5 0.5 0.108 0.003 0.003 0.024 0.111 0.237 0.221 0.129 0.334
-0.8 0.5 0.103 0.008 0.008 0.012 0.108 0.456 0.131 0.099 0.164

n = 100
0.8 0.8 0.076 0.062 0.054 0.032 0.207 0.756 0.065 0.068 0.029
0.5 0.8 0.056 0.026 0.023 0.012 0.211 0.722 0.095 0.077 0.092
-0.5 0.8 0.047 0.014 0.013 0.006 0.216 0.526 0.046 0.075 0.134
-0.8 0.8 0.053 0.020 0.017 0.009 0.215 0.766 0.020 0.053 0.017
0.8 0.5 0.087 0.060 0.057 0.051 0.223 0.554 0.098 0.075 0.116
0.5 0.5 0.079 0.041 0.039 0.034 0.212 0.338 0.103 0.081 0.258
-0.5 0.5 0.088 0.012 0.012 0.018 0.235 0.110 0.102 0.101 0.508
-0.8 0.5 0.071 0.013 0.012 0.015 0.216 0.292 0.061 0.080 0.224
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Table 4. Rejection Probabilities When α = 1 (ARCH innovations)

β ϕ ADF MZα MPt DFGLS KPSS EJ CADF BCADFa BCADFi ρ̂2

with a constant only
n = 50

0.8 0.8 0.095 0.126 0.110 0.057 0.239 0.331 0.069 0.060 0.062 0.034
0.5 0.8 0.080 0.089 0.076 0.036 0.232 0.383 0.086 0.075 0.078 0.088
-0.5 0.8 0.071 0.050 0.040 0.023 0.239 0.375 0.088 0.083 0.082 0.116
-0.8 0.8 0.074 0.076 0.060 0.032 0.263 0.366 0.040 0.055 0.054 0.027
0.8 0.5 0.098 0.096 0.080 0.067 0.232 0.324 0.089 0.074 0.075 0.096
0.5 0.5 0.086 0.068 0.061 0.049 0.237 0.300 0.126 0.100 0.103 0.191
-0.5 0.5 0.079 0.034 0.029 0.042 0.247 0.190 0.129 0.102 0.103 0.359
-0.8 0.5 0.081 0.038 0.030 0.032 0.261 0.279 0.093 0.089 0.088 0.177

n = 100
0.8 0.8 0.072 0.068 0.061 0.044 0.378 0.139 0.049 0.062 0.062 0.032
0.5 0.8 0.058 0.052 0.046 0.032 0.384 0.203 0.068 0.073 0.070 0.098
-0.5 0.8 0.061 0.027 0.026 0.018 0.397 0.188 0.042 0.069 0.067 0.141
-0.8 0.8 0.057 0.045 0.037 0.026 0.397 0.168 0.025 0.059 0.059 0.020
0.8 0.5 0.063 0.068 0.063 0.054 0.444 0.160 0.074 0.075 0.076 0.117
0.5 0.5 0.071 0.055 0.048 0.046 0.416 0.134 0.085 0.082 0.081 0.257
-0.5 0.5 0.077 0.042 0.037 0.040 0.427 0.095 0.083 0.089 0.086 0.497
-0.8 0.5 0.069 0.046 0.042 0.043 0.412 0.137 0.050 0.071 0.071 0.224

with a time trend
n = 50

0.8 0.8 0.117 0.130 0.116 0.040 0.118 0.759 0.102 0.073 0.072 0.030
0.5 0.8 0.088 0.058 0.053 0.015 0.105 0.684 0.133 0.082 0.080 0.076
-0.5 0.8 0.074 0.026 0.022 0.007 0.116 0.591 0.115 0.084 0.084 0.094
-0.8 0.8 0.086 0.046 0.041 0.015 0.112 0.756 0.049 0.056 0.052 0.022
0.8 0.5 0.131 0.075 0.066 0.041 0.106 0.670 0.117 0.074 0.075 0.085
0.5 0.5 0.118 0.039 0.033 0.021 0.108 0.527 0.178 0.109 0.113 0.169
-0.5 0.5 0.102 0.005 0.004 0.022 0.105 0.255 0.208 0.132 0.135 0.315
-0.8 0.5 0.093 0.009 0.009 0.010 0.109 0.478 0.121 0.093 0.092 0.154

n = 100
0.8 0.8 0.079 0.064 0.057 0.030 0.203 0.731 0.063 0.069 0.067 0.029
0.5 0.8 0.057 0.028 0.029 0.014 0.216 0.722 0.088 0.075 0.077 0.089
-0.5 0.8 0.046 0.014 0.012 0.007 0.213 0.545 0.048 0.073 0.071 0.129
-0.8 0.8 0.052 0.026 0.022 0.011 0.212 0.758 0.020 0.058 0.056 0.018
0.8 0.5 0.086 0.060 0.057 0.050 0.221 0.563 0.092 0.071 0.072 0.110
0.5 0.5 0.080 0.040 0.038 0.031 0.205 0.349 0.100 0.082 0.081 0.247
-0.5 0.5 0.078 0.012 0.014 0.023 0.214 0.118 0.103 0.093 0.094 0.487
-0.8 0.5 0.072 0.018 0.018 0.018 0.203 0.307 0.057 0.084 0.082 0.211
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Table 5. Rejection Probabilities When α = 0.9 (iid innovations)

β ϕ ADF MZα MPt DFGLS KPSS EJ CADF BCADFi ρ̂2

with a constant only
n = 50

0.8 0.8 0.070 0.069 0.080 0.133 0.261 0.638 0.776 0.717 0.036
0.5 0.8 0.076 0.064 0.077 0.122 0.274 0.520 0.532 0.532 0.092
-0.5 0.8 0.068 0.072 0.074 0.132 0.232 0.411 0.435 0.506 0.124
-0.8 0.8 0.073 0.067 0.079 0.122 0.252 0.596 0.771 0.722 0.029
0.8 0.5 0.086 0.108 0.113 0.124 0.187 0.465 0.543 0.548 0.100
0.5 0.5 0.096 0.119 0.124 0.139 0.200 0.335 0.308 0.404 0.204
-0.5 0.5 0.114 0.140 0.143 0.174 0.190 0.156 0.148 0.255 0.382
-0.8 0.5 0.114 0.123 0.124 0.154 0.179 0.317 0.293 0.396 0.190

n = 100
0.8 0.8 0.129 0.234 0.255 0.282 0.371 0.996 0.996 0.995 0.039
0.5 0.8 0.130 0.209 0.223 0.252 0.346 0.956 0.965 0.960 0.106
-0.5 0.8 0.138 0.309 0.315 0.371 0.355 0.920 0.913 0.905 0.150
-0.8 0.8 0.154 0.228 0.251 0.296 0.345 0.992 0.989 0.986 0.020
0.8 0.5 0.249 0.300 0.328 0.336 0.287 0.940 0.955 0.957 0.130
0.5 0.5 0.192 0.315 0.324 0.348 0.283 0.793 0.796 0.836 0.268
-0.5 0.5 0.245 0.363 0.391 0.415 0.270 0.502 0.376 0.474 0.514
-0.8 0.5 0.225 0.293 0.301 0.324 0.278 0.765 0.760 0.759 0.236

with a time trend
n = 50

0.8 0.8 0.058 0.036 0.036 0.084 0.246 0.362 0.458 0.481 0.032
0.5 0.8 0.065 0.039 0.044 0.080 0.257 0.231 0.299 0.326 0.075
-0.5 0.8 0.070 0.041 0.050 0.076 0.239 0.202 0.182 0.308 0.098
-0.8 0.8 0.050 0.043 0.044 0.068 0.258 0.309 0.506 0.494 0.023
0.8 0.5 0.061 0.064 0.070 0.080 0.190 0.221 0.308 0.346 0.084
0.5 0.5 0.064 0.063 0.064 0.072 0.183 0.169 0.157 0.260 0.175
-0.5 0.5 0.069 0.086 0.088 0.097 0.163 0.094 0.071 0.198 0.335
-0.8 0.5 0.079 0.080 0.083 0.104 0.180 0.182 0.171 0.294 0.161

n = 100
0.8 0.8 0.089 0.087 0.097 0.149 0.439 0.943 0.989 0.985 0.036
0.5 0.8 0.107 0.117 0.131 0.167 0.422 0.813 0.911 0.906 0.096
-0.5 0.8 0.107 0.153 0.156 0.202 0.396 0.722 0.821 0.837 0.133
-0.8 0.8 0.110 0.130 0.137 0.184 0.423 0.923 0.974 0.967 0.017
0.8 0.5 0.135 0.143 0.152 0.160 0.338 0.775 0.879 0.893 0.121
0.5 0.5 0.125 0.160 0.163 0.176 0.323 0.575 0.657 0.716 0.252
-0.5 0.5 0.146 0.184 0.180 0.225 0.311 0.284 0.235 0.380 0.498
-0.8 0.5 0.133 0.144 0.153 0.176 0.329 0.537 0.590 0.665 0.219
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Table 6. Rejection Probabilities When α = 0.9 (ARCH innovations)

β ϕ ADF MZα MPt DFGLS KPSS EJ CADF BCADFa BCADFi ρ̂2

with a constant only
n = 50

0.8 0.8 0.070 0.066 0.078 0.133 0.262 0.645 0.798 0.732 0.734 0.036
0.5 0.8 0.072 0.072 0.079 0.122 0.268 0.544 0.580 0.566 0.565 0.086
-0.5 0.8 0.066 0.079 0.095 0.145 0.235 0.413 0.427 0.514 0.516 0.118
-0.8 0.8 0.078 0.064 0.069 0.130 0.249 0.596 0.777 0.725 0.726 0.029
0.8 0.5 0.091 0.105 0.118 0.131 0.191 0.491 0.540 0.584 0.585 0.094
0.5 0.5 0.085 0.128 0.128 0.140 0.202 0.346 0.307 0.422 0.425 0.192
-0.5 0.5 0.115 0.146 0.152 0.162 0.187 0.182 0.153 0.272 0.275 0.360
-0.8 0.5 0.105 0.128 0.128 0.155 0.178 0.323 0.302 0.427 0.425 0.176

n = 100
0.8 0.8 0.142 0.231 0.239 0.274 0.370 0.997 0.998 0.998 0.997 0.039
0.5 0.8 0.143 0.219 0.231 0.272 0.349 0.963 0.972 0.964 0.964 0.102
-0.5 0.8 0.138 0.296 0.307 0.343 0.349 0.927 0.916 0.906 0.906 0.143
-0.8 0.8 0.148 0.231 0.235 0.297 0.349 0.988 0.992 0.990 0.989 0.021
0.8 0.5 0.265 0.311 0.318 0.329 0.284 0.941 0.957 0.960 0.959 0.124
0.5 0.5 0.210 0.337 0.357 0.357 0.282 0.819 0.817 0.837 0.837 0.258
-0.5 0.5 0.246 0.370 0.376 0.398 0.275 0.518 0.393 0.486 0.485 0.496
-0.8 0.5 0.226 0.307 0.317 0.330 0.281 0.767 0.768 0.780 0.776 0.221

with a time trend
n = 50

0.8 0.8 0.065 0.037 0.037 0.079 0.249 0.347 0.486 0.505 0.508 0.032
0.5 0.8 0.067 0.040 0.043 0.075 0.252 0.247 0.301 0.351 0.351 0.070
-0.5 0.8 0.072 0.042 0.046 0.077 0.242 0.206 0.208 0.325 0.330 0.093
-0.8 0.8 0.057 0.044 0.046 0.068 0.258 0.324 0.555 0.516 0.513 0.023
0.8 0.5 0.060 0.060 0.064 0.079 0.182 0.241 0.328 0.369 0.378 0.079
0.5 0.5 0.059 0.064 0.065 0.077 0.184 0.185 0.168 0.263 0.265 0.166
-0.5 0.5 0.080 0.085 0.089 0.093 0.161 0.103 0.079 0.212 0.217 0.312
-0.8 0.5 0.080 0.075 0.079 0.109 0.184 0.176 0.173 0.307 0.308 0.149

n = 100
0.8 0.8 0.087 0.089 0.096 0.143 0.441 0.950 0.990 0.986 0.986 0.035
0.5 0.8 0.099 0.111 0.120 0.158 0.421 0.825 0.920 0.916 0.915 0.093
-0.5 0.8 0.113 0.147 0.147 0.185 0.404 0.726 0.826 0.843 0.843 0.128
-0.8 0.8 0.111 0.123 0.130 0.173 0.421 0.921 0.977 0.967 0.966 0.018
0.8 0.5 0.142 0.135 0.152 0.150 0.337 0.807 0.882 0.903 0.903 0.116
0.5 0.5 0.110 0.153 0.166 0.184 0.329 0.594 0.665 0.731 0.734 0.243
-0.5 0.5 0.155 0.187 0.185 0.217 0.312 0.319 0.256 0.393 0.393 0.479
-0.8 0.5 0.139 0.134 0.134 0.170 0.324 0.534 0.607 0.686 0.686 0.206
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