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Semi-nonparametric Spline Modifications to the Cornwell-Schmidt-Sickles 
Estimator: An Analysis of U. S. Banking Productivity 

This paper modifies the Cornwell, Schmidt and Sickles (CSS) (1990) time-varying 
specification of technical efficiency to allow for switching patterns in temporal 
changes, which may occur more than once during the sample period.  For this 
purpose, we move from the (second-order) polynomial specification of the standard 
CSS to a spline function set up while keeping CSS’s flexibility regarding the cross 
section dimension.  The spline function specification of the temporal pattern of 
technical efficiency can accommodate more than one turning point and thus can be 
non-monotonic.  This allows the modeler to account for firm or individual efficiency 
gains that can occur relatively quickly, for example, changes related to regulation or 
policy changes as well as those related to ownership/organization changes (e.g., 
merger or acquisitions).   

1. Introduction

One of the interesting aspects of performance evaluation analysis is dynamic 

benchmarking, namely identifying and estimating the temporal patterns of efficiency 

per se and its role as an inherent component of productivity growth.  In many cases, 

the effect of efficiency changes has been found as important as technical change in 

determining the evolution of productivity growth.  One such example is the case of 

Japan during the period 1979-1988 as illustrated in Fare et al. (1994) where changes 

in technical efficiency and the catching-up process that resulted was found to be the 

most important source of growth for aggregate labor productivity.     

Some will argue, however, that the accuracy of such empirical findings may 

depend on how time-varying technical efficiency has been modeled.  Usually a linear 

time trend is used to capture the time pattern of efficiency changes (e.g. Kumbhakar, 

1990; Battese and Coelli, 1992; Cuesta, 2000).  This is a rather restrictive formulation 

of time-varying efficiency as its changes over time are given by a constant rate.  That 

is, efficiency is either increasing or decreasing at a constant rate.  It is also common to 

assume that the time pattern of technical efficiency is uniform for all producing units 

in the sample or the firms in the industry.  Even though the assumption of a common 

temporal pattern is restrictive is not unreasonable for putty-clay type industries.  
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On the other hand, several flexible specifications have been proposed in the 

literature for modeling time-varying efficiency, such as those of Cornwell, Schmidt 

and Sickles (1990), Kumbhakar (1990), Lee and Schmidt (1993), Lee (2006), 

Karagiannis and Tzouvelekas (2007) Ahn, Lee and Schmidt (2007, 2013), and Kneip, 

Sickles, and Song (2012).  Among them the Cornwell, Schmidt and Sickles (1990) 

(CSS) is still one of the more flexible specifications of temporal variation in 

efficiency, it is relatively easy to implement, and can accommodate settings in which 

technical inefficiency and the inputs or other regressors (i.e., environmental variables) 

can be correlated.2

The aim of this paper is to generalize the CSS time-varying specification to 

allow for more erratic patterns of temporal changes, which in turn will allow for 

multiple turning points.  For this purpose, we specify a spline function set up while 

keeping CSS’s flexibility in the cross-section dimension.  The generalization puts 

more emphasis on firm heterogeneity in terms of growth rates rather than level 

differences in efficiency.  The spline function specification of the temporal pattern of 

technical efficiency can also be non-monotonic due to periods in which firms may 

face radical regulation or policy changes as well as shocks related to changes in 

ownership/organization (e.g., merger or acquisitions).  

  Although the specification used in the CSS analysis allows for 

firm-specific patterns of time-varying efficiency that can change through time by 

means of a quadratic function of time, such a specification was chosen for purposes of 

illustration and due to erratic behavior of higher order terms.  

In the next section we briefly discuss the general productivity model we 

employ and decompositions into technology and efficiency change that can be made 

with it.  We then briefly outline the CSS estimator that has been used in many 

applications to measure such important aspects of economic growth and point out its 

generality in addressing environmental effects, an attribute of the estimator that has 

apparently been missed by many researchers.  In Section 3 we present a spline 

modification of the CSS estimator and discus a semi-parametric method for its 

estimation.  Section 4 discusses the banking data and the empirical results from the 

illustration we use to introduce the new estimator, while section 5 concludes. 

2 Much more general mixed types of so called “environmental” variables can also be controlled with 
the CSS model such as additive effects that impact the slope coefficients of the “environmental” 
variables.  In these specifications of the CSS estimator the “environmental” variables impact the 
frontier as well as the level of efficiency, unlike most two step models wherein there is separability 
between the frontier and efficiencies of the cross-section units, such as firms (Wang, 2002; Wang and 
Schmidt, 2002; Simar and Wilson, 2007).     
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2. Econometric Specification of the Productivity Model and the CSS Estimator

Regression based approaches to decompose productivity growth into technical 

change and efficiency change components can be based on a rather straightforward 

generic model of production using a multiple output / multiple input technology 

specified by means of the input or the output distance function (Caves, Christensen 

and Diewert, 1982; Coelli and Perelman, 1999; Sickles, Good, and Getachew, 2002).  

Distance functions that are linear in parameters, such as the linear in logs Cobb-

Douglas or translog or linear in levels generalized-Leontief or quadratic, constitute 

the predominant functional forms used in productivity studies.  Treatments for 

unobserved technical efficiency (heterogeneity) can be motivated with the following 

classical model for a single output technology estimated with panel data assuming 

unobserved firm effects:  

where ( )i tη  represents the unit specific fixed effect that may be time varying, itx   is a 

vector of regressors, some of which may be endogenous and correlated with the error 

itv  or the effects ( ).i tη  This is the basic regression model for single output 

technologies used in many empirical studies.  

We start with a relatively simple representation of the output distance function 

as an m- output, n-input deterministic distance function 𝐷𝐼(𝑌,𝑋) given by the Young 

index, described in Balk (2008): 

𝐷𝐼(𝑌,𝑋) =
∏ 𝑋𝑘𝑖𝑡

𝛿𝑘𝑛
𝑘=1

∏ 𝑌𝑗𝑖𝑡
𝛾𝑗𝑚

𝑗=1

The input-distance function is non-increasing, linear homogeneous in inputs, convex 

in X and non-decreasing and quasi-convex in Y. After taking logs, adding a 

disturbance term itv  to account for nonsystematic error in observations, functional 

form mis-specifications, etc. and a technical efficiency term ( )i tη to reflect the 

nonnegative difference between the upper bound of unity for the distance function 

and the observed value of the distance function for firm i at time t, we can write the 

input distance function as:  
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where and .  After redefining a few variables 

the distance function can be written in the canonical form as 

where 𝑧𝑖𝑡 = [𝑥𝑖𝑡∗  𝑦𝑖𝑡∗ ].  The functional form utilized in most studies is the Cobb-

Douglas specification. Even though it has been criticized for its assumption of 

separability of outputs and inputs, as pointed out by Coelli (2000) among many 

others, the Cobb-Douglas remains a reasonable and parsimonious first-order local 

approximation to the true function.  The translog input distance function, where the 

second-order terms allow for greater flexibility, proper local curvature, and lift the 

assumed separability of outputs and inputs, can also be framed in this canonical 

model representation of a linear panel model with unit-specific and time-varying 

heterogeneity. The translog input distance function takes the form:  

1
2 2 1 1 1 1

2 1

1 1
2 2

m m m n n n

it j jit jl jit lit k kit kp kit pit
j j l k k p

m n

jk jit lit it it
j k

y y y y x x x

y x u

γ γ δ δ

θ η

∗ ∗ ∗ ∗ ∗ ∗

= = = = = =

∗ ∗

= =

− = + + +

+ + +

∑ ∑∑ ∑ ∑∑

∑∑

Since the model is linear in parameters, then after redefining a few variables the 

translog distance function also can be written as3  

Of course, if the technology involves multiple outputs, then the right hand side 

endogenous variables must be instrumented. Whether or not the effects need to be 

instrumented depends on their orthogonality with all or a subset of the regressors.   

This is the model vehicle we use for estimating efficiency change using the 

frontier methods we specify below.  If we assume that innovations are available to all 

firms and that firm-specific idiosyncratic errors are due to relative inefficiencies then 

we can decompose sources of TFP growth in a variety of ways.  The overall level of 

innovation change (innovation is assumed to be equally appropriable by all firms) can 

3 A similar transparent reparametrization of any distance function that is linear in parameters can be 
used to estimate other linear in parameters distance functions such as the generalized Leontief or the 
quadratic.   
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be measured directly by such factors as a distributed lag of R&D expenditures, or 

patent activity, or some other direct measure of innovation.  It can be proxied by the 

time index approach of Baltagi and Griffin (1988), linear time trends, or some other 

type of time variable.  Innovation measured in any of these ways would be identified 

under non-pathological circumstances.  Direct measures can be identified under an 

assumption that the matrix of regressors has full column rank, and the indirect 

measures can be identified by functional form assumptions.  For example, the index 

number approach used in Baltagi and Griffin is identified by its nonlinear 

construction.  Innovation can also be proxied by exogenous or stochastic linear time 

trends (Bai, Kao and Ng, 2009), which are often identified by nonlinear specifications 

of time varying inefficiency used in the models of Battese and Coelli (1992) and Lee 

and Schmidt (1993).  Other types of restrictions can be employed, such as the 

orthogonality conditions utilized in the Cornwell, Schmidt, and Sickles (1990) 

estimator we extend in our analysis using cubic splines.   

The Cornwell Schmidt and Sickles (CSS) (1990) panel stochastic frontier 

model itself extends the basic panel data model of Pitt and Lee (1981) and Schmidt 

and Sickles (1984) to allow for heterogeneity in slopes as well as intercepts. Thus, in 

the model ( )it it i ity x t vβ η= + +   the effects are specified as ( )i it i itt W vη δ= + .  The L 

coefficients of W, the terms in the vector iδ , depend on different units representing 

heterogeneity in slopes.  In their application to the US commercial airline industry, 

CSS specified 2(1, , )itW t t= , although this was intended by the authors’ to be a 

parsimonious parameterization useful for their application.  It does not in general limit 

the effects to be quadratic in time.   

A common construction can relate this model to standard panel data model. 

Let 0i iuδ δ= +  and 0 [ ]iEδ δ= . Then the model can be written as: 

 Here iu  are assumed to be i.i.d. zero mean random variables with covariance matrix 

∆ . The disturbances itv  are taken to be i.i.d. random variable with a zero mean and 

constant variance 2σ , and uncorrelated with the regressors and iu . In matrix form the 

model is: 
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where ( )iQ diag W= , 1, ,i N=  is a NT NL× matrix, and u is the associated 1NL×  

error vector. 

Three different estimators can be derived based on differing assumptions 

regarding the correlation of the efficiency effects and the regressors, specifically, the 

correlation between the error term u, and regressors Z and W.  These are the within 

and GLS, which we employ in this paper, and the efficient IV estimator.4

The within estimator allows for correlation between all of the regressors and 

the effects.  Let

 We briefly 

discuss below the within and GLS estimators, which we will modify using the spline 

extensions in the following section.   

1( )QP Q Q Q′−= , Q QM I P= − . Then the CSS within (CSSW) estimator 

of β  is given by:  

. 

The GLS estimator is consistent when no correlation exists between the technical 

efficiency term and the regressors, as in Pitt and Lee (1981), Schmidt and Sickles 

(1984) and many others that utilize this standard random effects assumption.  The 

variance of the composed error is given by  
2cov( ) ( ) .NT NI Q I Qε σ ′= Ω = + ⊗∆  

CSS show that  

1/2 1
QM F

σ
−Ω = +  

where 1/2 2 1/2 1/2 1/2 1/2( [ ( ( )( ] (NL NF Q Q I Q I Q Q Qσ′− ′ ′ − ′− ′= + ⊗∆ ).  The transformed model 

is thus 1/2 1/2 1/2 1/2
0y X Wβ δ ε− − − −Ω = Ω +Ω +Ω .  CSS provide formulae for the feasible 

consistent estimates of 1/2−Ω .   

For either the within or GLS estimators the 0δ  are estimated by regressing the 

residuals for firm i on 2(1, , )itW t t=  and the fitted values from this regression provide 

consistent ( )T →∞ estimates of the [ ( )].iE tη  This is analogous to the approach in 

Schmidt and Sickles (1984) when there is no temporal variation in the unit specific 

technical efficiencies. Relative efficiencies, normalized by the consistent estimate of 

                                                        
4 Details on the efficient IV estimator can be found in the CSS paper. 
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the order statistics identifying the most efficient unit, are then calculated as

( ) max[ ( )]jj
t tη η=

 

.  Efficiency of firm i relative to the most efficient firm is then given 

by ( ) ( ) ( ).i iRE t t tη η= −
 

5

 

   

3.     Spline Model Specification 
 

Another flexibility aspect in the specification of technical efficiency involves 

monotonicity over time. In many previous specifications (e.g., Battese and Coelli, 

1992; Cuesta, 2000), the effect of the passage of time on technical inefficiency is 

necessarily monotonic and thus may be either efficiency-enhancing or efficiency-

impeding, but not both. Others, such as Lee and Schmidt (1993) and Lee (2006) allow 

for more general patterns. We consider below the quadratic spline as a special case of 

restricted least squares and thus once the number of knots is set (or tested for 

sequentially) a general spline estimator can be specified (Buse and Lim, 1977).  

Depending on the number of break (turning) points, which may be determined by 

either prior information regarding the sector under consideration (Bottasso and Conti, 

2009) or by the process suggested by Fox (1998), the time pattern can be rather 

flexible, curved or monotonic. The latter two options can be tested statistically as 

nested model specifications.  

The Diewert-Wales (1992) quadratic spline function can be incorporated into 

the CSS specification in order to obtain a flexible and parsimonious specification of 

the temporal pattern of technical efficiency, allowing more than one turning point.  

This specification allows for firm-specific patterns of temporal variation of technical 

efficiency and captures effects not visible in those models that assume a common 

pattern of technical efficiency. In addition, we can test (i) for the existence of a 

common temporal pattern for all firms in the sample as well as (ii) the hypothesis of 

time-varying technical efficiency for all or some of the firms in the sample.   

                                                        
5 Firm-specific relative efficiencies can be identified along with the overall growth in innovation that 
diffuses to all firms for the GLS estimator.  Under appropriate orthogonality assumptions, a similar 
term can be identified for the Hausman-Taylor type efficient IV estimator.  Thus for these two 
estimators total factor productivity can be decomposed into technical change and efficiency change.  
Such a decomposition is not possible for the CSS within estimator as the technical change term is not 
identified after the within transformation.  

 



 9 

The spline extension of the CSS model can be introduced by assuming a single 

time break ],0[1 Tt ∈  in the inefficiency level of firm i. An extension to a model with 

multiple time breaks is straightforward and is discussed below.  Following Diewert 

and Wales (1992), the inefficiency function of the CSS model can be represented by a 

quadratic spline function as follows: 
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Here the superscripts on the quadric term parameters relate to the periods before and 

after the time break point 1t . 

  
The above can be rewritten as 
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Clearly, the above model specification allows for the levels and slopes of 

inefficiencies to differ across these two time periods. Notice that, if 2
)2(

2
)1(

2 iii δδδ ==

then the above model collapses to the standard CSS model with no breaks. Also, it is 

worthwhile to note that both the inefficiency function and its first derivative with 

respect to time are continuous at 1 t . The continuity feature is crucial here as it allows 

for a smooth transition from one state to another (no jumps).   

In order to proceed with the estimation of the CSS model with the quadratic 

spline specification, let first the matrix of time regressors to be denoted as follows: 









=

i

i
i W

W
W

2

1

0
0

 

 

where )(],,1[ 1
2

1 ttIttW i ≤= , )(],,1[ 1
2

2 ttIttW i >=  and )(⋅I is an indicator function. 

Subsequently, define  )( iWdiagQ =   and  QQQQIM Q ′′−= −1)(   as a projection 
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matrix onto column space of Q .  Then while fixing 1t , the within estimator of the 

structural parameters is given by:  

yMXXMX QQW ′′= −1)(β̂  

and the concentrated sum of squared errors, which is a function of the observed data 

and time, is given by: 

))(())((ˆˆ)( 11 yMXXMXXyyMXXMXXyeetS QQQQ ′′−′′′−== −−′  

where WXye β̂ˆ −=  represents the within residuals.  The time break 1t  is estimated by 

minimizing )(tS  using grid search techniques. That is, 

)(minarg1̂ tSt
t

=  

Once  1̂t   is estimated, which represents the least square estimator of 1t , the slope 

coefficient is obtained and the residual variance is estimated by dividing )ˆ(tS  by the 

degrees of freedom, )1( −TN .   

The model with a single time break can be extended to accommodate multiple 

time breaks. A model with k time breaks can be represented as follows: 
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Similar to the single time break model, the multiple time breaks are estimated via a 

grid search algorithm. Joint estimation of the time breaks requires a grid search over a 

large number of time break combinations. Therefore, the time breaks are sequentially 

estimated as suggested in Hansen (1999). The sequential estimation of the threshold 

parameters is consistent and is more than necessary especially when the time period 

under consideration is long. A drawback of the sequential estimation method is that it 

yields asymptotically efficient estimates only for the last time break in the estimation 

process. The previous estimates are contaminated by the presence of the neglected 

time breaks. We follow Bai (1997) and utilize a refinement estimation of the time 

breaks parameters, which amounts to re-estimating the time break parameters 

backwards, each time holding the estimates of the previous time breaks fixed. 

It is important to test whether the time breaks are statistically significant or 
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not. However, the distribution of 1t is nonstandard which complicates inference. In 

particular, testing for the presence of a time break becomes problematic, since 1t is not 

identified under the null hypothesis of no threshold and conventional tests would have 

distributions that are also nonstandard (the Davies' Problem, 1977). Following Hansen 

(1999), we utilize a bootstrap method to simulate the asymptotic distribution of the 

classical LR test in our inference on time break estimates. 

The bootstrap testing is carried out in the following steps: 

1. Estimate the model under the null and alternative hypotheses and calculate the LR 

statistic as  2
10 /)( σSSLR −=   

2. Estimate the sample of residuals ê  under the null hypothesis and treat this sample 

as the empirical distribution in bootstrap replications 

3. Fix the data and draw (with replacement) a sample of size N from the empirical 

distribution above and use these errors to create a bootstrap sample 

4. Using the bootstrap sample, estimate the model under the null and alternative 

hypotheses and calculate the bootstrap value of the likelihood ratio statistic bLR  

5. Repeat this procedure a large number of times and calculate the percentage of 

draws for which bLR exceeds LR   

6. Reject the null hypothesis if the percentage above exceeds the desired confidence 

level.  

 

4.  Data and Empirical Results 

 

In this section we provide empirical evidence on a comparison between the two 

specifications of the CSS model based on the second-order polynomial and based on 

the spline function using a rather homogenous and balanced sample of large (too-big-

to-fail) US banks.  The data are from the quarterly consolidated reports on condition 

and income (Call Reports) for US commercial banks collected by the Federal Reserve 

Bank of Chicago and the Federal Deposit Insurance Corporation.  The particular 

sample used in this study covers the period from the first quarter of 1984 to the third 

quarter of 2009 (i.e., 106 quarters) and refers to 45 banks with total asset size of at 

least US$ 10 billion as of the second quarter of the 2010 fiscal year, with a total of 

4,770 observations used in the estimation.   
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 The analysis is based on the Sealey and Lindley (1977) intermediation 

approach according to which banks are viewed as financial intermediates that collect 

deposits and other funds to transform them into loanable funds by using capital and 

labor.  In this case, deposits are viewed as inputs instead of outputs as in the 

production approach.  We consider five outputs, namely real estate loans, commercial 

and industrial loans, loans to individuals, securities and off-balance sheet items.  On 

the input side we have capital, labor, and interest-bearing deposits in total non-

transaction accounts and purchased funds.  Descriptive statistics for all model 

variables are given in Table 1.  

 We estimate the proposed spline specification of the CSS model using both 

the within and the GLS estimator as with the latter we can separate the effect of 

technical change from that of changes in technical efficiency even though both are 

modeled by time trend; this is an important aspect in the productivity decomposition 

analysis.  We have also tried the Hausman-Taylor estimator in the case where some of 

the explanatory variables are not orthogonal with the “effects” capturing unobserved 

heterogeneity.  Based on the Hausman-Wu test we have no evidence of simultaneity 

bias and thus the GLS estimator fits better with the data at hand.  In addition and for 

comparison purposes we also estimate the conventional version (i.e., second-order 

polynomial) of the CSS model.  The results are presented in Tables 1 and 2. 

 Estimation the proposed spline specification of the CSS involves both the 

determination of the unknown time breaks as well as the values of the structural 

model parameters.  For this purpose, the proposed model is estimated by minimizing 

the concentrated sum of squared residuals using a grid search over possible time 

periods to determine in the first place the time breaks, as in Almanidis (2013), and 

then estimate the values of the structural parameters.  In the estimation it is assumed 

that the timing of the breaks is the same for all banks but this does not necessarily 

mean that each bank will experience the break.  This is apparent from the fact that 

efficiency is firm-specific in the CSS model.  The estimated parameters of the model 

are presented in Table 2.   Returns to scale are estimated on average to be decreasing 

while the positive sign of the time trend in the GLS model implies that technical 

change was progressive.  

 The estimated average efficiency is smaller with the spline specification than 

with the conventional specification of the CSS model.  In particular, the average 

technical efficiency from the spline specification is around 64% for both within and 
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the GLS model while the corresponding figure for the conventional specification is at 

70%.  Besides that, there is no important differences in the cross sectional distribution 

of efficiency scores.  There are however significant differences in the temporal pattern 

of efficiency scores. 

 Figure 1 depicts these differences in terms of average efficiencies.  The 

estimated model revealed twelve time-break points based on the bootstrap test with 

10,000 replications at each stage of time-break search.  These time-break points occur 

in the third quarter of 1986, the second quarter of 1988, the third quarter of 1990, the 

fourth quarter of 1991 and 1994, the first quarter of 1997, the third quarter of 1999, 

and 2001, the second quarter of 2004, the third quarter of 2006, and the second 

quarter of 2007 and 2008.  These points in the time correspond to the pre- and post-

deregulation period of the U.S. banking industry, periods of technological and 

financial breakthroughs, as well as to periods of financial crises that affected the U.S. 

banking efficiency levels over the past three decades.  The notable of these time 

points are: (i) the Federal Reserve’s granting commercial bank holding companies 

with the power to underwrite corporate securities in 1987 (also allowing operating 

commercial banks to underwrite corporate securities in 1989); (ii) the savings and 

loan crisis of the early 1990s; (iii) the Reigle-Neal Interstate Banking and Branching 

Efficiency Act of 1994, which allowed the interstate banking and branching; (iv) the 

Gramm-Leach-Bliley Act Financial Services Modernization Act of 1999, which 

granted broad-based securities, investment, and insurance power to commercial 

banks; (v) the introduction of the internet banking and check clearing through  

imaging technology in early 2000s; (vi) the collapse of the U.S. housing market 

bubble in mid-2006 and the subsequent dramatic increase in delinquencies and default 

rates on subprime residential-mortgage-backed securities (RMBS); and (vii) 2007-

2010 financial crisis.  

 
Comparing with Figure 2, where the average efficiencies of the conventional CSS 

model are presented, it is evident the non-monotonic time pattern of the spline 

specification around the aforementioned turning points.  In contrast, the average 

efficiencies predicted by the conventional specification reached a maximum around 

the end of 1994 and decreased thereafter. 

 

5. Concluding Remarks 
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In this paper we present a specification of the CSS (1990) model that allows for more 

erratic patters of temporal changes in technical efficiency.  The model is based on a 

second order spline function which can accommodate more than one turning point 

over time.  This non-monotonic temporal pattern depicts in a much more flexible way 

firm heterogeneity in terms of growth rates and it is particularly suitable for analyzing 

efficiency changes during periods of regulation or policy changes.  We estimate such 

a model using a translog output distance function for a sample of large (too-big-to-

fail) US banks using a semi-parametric approach and a grid search algorithm.  We 

also used a bootstrap method to formally test for the presence of time breaks.  Our 

empirical results reveal the presence of twelve time break points during the period 

1984-2009 indicating a highly non-monotonic time pattern of average technical 

efficiency.   
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Table 1: Summary Statistics (mean and standard deviation) of Model Variables  
 
 1984:Q1 1993:Q1 2000:Q1 2009:Q3 

real estate loans 867,896 
(2,027,284) 

3,300,626 
(6,149,823) 

11,900,000 
(26,400,000) 

44,700,000 
(89,100,000) 

commercial & 
industrial loans 

2,431,577 
(6,560,456) 

3,260,927 
(6,707,246) 

10,500,000 
(22,100,000) 

18,400,000 
(36,600,000) 

loans to 
individuals 

593,755 
(1,145,667) 

1,625,214 
(3,330,108) 

3,902,677 
(7,491,437) 

11,600,000 
(23,400,000) 

securities 1,868,698 
(3,627,331) 

4,149,224 
(5,668,735) 

3,485,955 
(7,679,057) 

44,000,000 
(96,200,000) 

off-balance sheet 
items 

2.31005 
(5.75334) 

1.62116 
(1.68702) 

1.36456 
(1.3120) 

1.03391 
(1.05039) 

total demand 
deposits 

987,153 
(1,509,827) 

2025,806 
(2,885,831) 

4,332,390 
(8,887,760) 

8,138,886 
(17,300,000) 

total time & 
savings deposits         

  4,991,220 
 
(11,900,000) 

     9,629,871 
    (18,800,000) 

   30,300,000 
  ( 59,800,000) 

    104,000,000 
  (214,000,000) 

labor 4,164 
(7,620) 

6,014 
(9,644) 

13,563 
(25,614) 

23,781 
(45,427) 

Capital 104,298 
(232,928) 

253,391 
(476,984) 

611,758 
(1,150,663) 

1,231,292 
(2,170,180) 

purchased funds 2,027,599 
(3,920,692) 

3,943,412 
(6,500,932) 

13,000,000 
(23,600,000) 

13,000,000 
(24,000,000) 
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Table 2: Estimated Model Parameters: Spline Specification 
 

 Estimated 
Parameter 

Standard 
Error 

Estimated 
Parameter 

Standard 
Error 

 Within GLS 

y1 -0.4742 0.0731 -0.5147 0.0131 
y2 0.7517 0.0625 0.7313 0.0105 
y3 -0.0325 0.0180 -0.0255 0.0051 
y4 -0.0678 0.0377 -0.0368 0.0086 
x1 -0.2232 0.0624 -0.2700 0.0158 
x2 -0.9818 0.1479 -0.9654 0.0172 
x3 -0.2173 0.1256 -0.2203 0.0221 
x4 0.8685 0.1190 0.9024 0.0223 
x5 0.2718 0.0379 0.2554 0.0108 
y1y1 0.0321 0.0050 0.0281 0.0010 
y2y1 0.0145 0.0031 0.0162 0.0007 
y2y2 -0.0700 0.0042 -0.0688 0.0007 
y3y1 0.0003 0.0008 0.0011 0.0002 
y3y2 0.0033 0.0008 0.0033 0.0002 
y3y3 -0.0072 0.0004 -0.0073 0.0001 
y4y1 -0.0027 0.0018 -0.0021 0.0005 
y4y2 -0.0030 0.0018 -0.0040 0.0004 
y4y3 0.0015 0.0006 0.0014 0.0002 
y4y4 0.0050 0.0015 0.0047 0.0005 
x1y1 -0.0125 0.0033 -0.0134 0.0011 
x1y2 -0.0019 0.0030 -0.0017 0.0008 
x1y3 0.0006 0.0011 0.0014 0.0003 
x1y4 -0.0058 0.0022 -0.0064 0.0007 
x1x1 0.0181 0.0043 0.0186 0.0016 
x2y1 0.0213 0.0086 0.0109 0.0018 
x2y2 0.0426 0.0076 0.0399 0.0014 
x2y3 -0.0098 0.0023 -0.0094 0.0006 
x2y4 -0.0149 0.0057 -0.0090 0.0012 
x2x1 -0.0504 0.0083 -0.0574 0.0025 
x2x2 -0.0721 0.0230 -0.0712 0.0047 
x3y1 0.0640 0.0107 0.0626 0.0023 
x3y2 0.0051 0.0089 0.0066 0.0016 
x3y3 -0.0037 0.0029 -0.0024 0.0008 
x3y4 0.0035 0.0058 -0.0014 0.0015 
x3x1 0.0334 0.0090 0.0363 0.0025 
x3x2 0.0009 0.0211 0.0023 0.0040 
x3x3 0.0694 0.0326 0.0765 0.0064 
x4y1 -0.1043 0.0091 -0.0952 0.0018 
x4y2 -0.0290 0.0065 -0.0279 0.0011 
x4y3 0.0048 0.0022 0.0032 0.0006 
x4y4 0.0132 0.0044 0.0120 0.0012 
x4x1 -0.0120 0.0071 -0.0141 0.0018 
x4x2 0.1344 0.0160 0.1409 0.0032 
x4x3 -0.0489 0.0220 -0.0580 0.0039 
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x4x4 -0.0431 0.0186 -0.0398 0.0034 
x5y1 -0.0271 0.0039 -0.0244 0.0011 
x5y2 0.0151 0.0035 0.0144 0.0008 
x5y3 0.0040 0.0010 0.0036 0.0003 
x5y4 0.0021 0.0028 0.0026 0.0008 
x5x1 0.0163 0.0037 0.0197 0.0013 
x5x2 -0.0254 0.0080 -0.0256 0.0021 
x5x3 -0.0387 0.0074 -0.0406 0.0019 
x5x4 0.0045 0.0077 0.0056 0.0018 
x5x5 0.0554 0.0048 0.0519 0.0015 
y1t -0.0029 0.0003 -0.0030 0.0000 
y2t 0.0015 0.0003 0.0014 0.0000 
y3t 0.0002 0.0001 0.0002 0.0000 
y4t -0.0001 0.0001 0.0000 0.0000 
x1t -0.0002 0.0002 -0.0003 0.0001 
x2t -0.0003 0.0005 -0.0005 0.0001 
x3t -0.0022 0.0006 -0.0024 0.0001 
x4t 0.0031 0.0004 0.0034 0.0001 
x4t 0.0006 0.0002 0.0007 0.0000 
t - - 0.0001 0.0004 

 
Note: y1=log(commercial & industrial loans/real estate loans), y2=log(loans to 

individuals/real estate loans), y3=log(securities/real estate loans), y4=log(off-
balance sheet items/real estate loans), x1=log(total demand deposits), 
x2=log(total time & savings deposits), x3=log(labor), x4=log(capital), 
x5=log(purchased funds) and t=time trend. 
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Table 3: Estimated Model Parameters: Polynomial Specification 
 

 Estimated 
Parameter 

Standard 
Error 

Estimated 
Parameter 

Standard 
Error 

 Within GLS 

y1 -0.3755 0.0971 -0.4443 0.0569 
y2 0.4031 0.0896 0.4336 0.0459 
y3 0.0459 0.0271 0.0465 0.0221 
y4 0.2944 0.0649 0.3145 0.0374 
x1 -0.4347 0.1085 -0.3536 0.0689 
x2 -2.2830 0.2253 -1.7420 0.0746 
x3 0.5044 0.1829 0.2103 0.0963 
x4 -0.0252 0.1623 0.0415 0.0970 
x5 0.2740 0.0667 0.2061 0.0472 
y1y1 -0.0183 0.0059 -0.0207 0.0045 
y2y1 0.0478 0.0043 0.0473 0.0029 
y2y2 -0.0998 0.0050 -0.0979 0.0031 
y3y1 -0.0122 0.0012 -0.0121 0.0010 
y3y2 0.0012 0.0010 0.0015 0.0008 
y3y3 -0.0094 0.0006 -0.0097 0.0004 
y4y1 -0.0097 0.0028 -0.0087 0.0023 
y4y2 -0.0156 0.0030 -0.0154 0.0019 
y4y3 -0.0003 0.0010 -0.0004 0.0009 
y4y4 0.0133 0.0029 0.0133 0.0022 
x1y1 0.0001 0.0057 0.0000 0.0046 
x1y2 -0.0008 0.0047 -0.0031 0.0034 
x1y3 0.0189 0.0017 0.0191 0.0015 
x1y4 0.0047 0.0040 0.0054 0.0032 
x1x1 -0.0251 0.0087 -0.0216 0.0068 
x2y1 -0.0802 0.0126 -0.0899 0.0080 
x2y2 -0.0202 0.0121 -0.0141 0.0060 
x2y3 -0.0107 0.0033 -0.0101 0.0028 
x2y4 0.0542 0.0092 0.0553 0.0053 
x2x1 0.0020 0.0150 0.0066 0.0108 
x2x2 -0.3136 0.0355 -0.2655 0.0203 
x3y1 0.0312 0.0150 0.0387 0.0099 
x3y2 -0.0204 0.0112 -0.0195 0.0071 
x3y3 0.0064 0.0043 0.0056 0.0035 
x3y4 -0.0465 0.0100 -0.0466 0.0064 
x3x1 0.1143 0.0150 0.1111 0.0107 
x3x2 0.1382 0.0282 0.1114 0.0173 
x3x3 0.2650 0.0445 0.2560 0.0280 
x4y1 -0.0325 0.0110 -0.0318 0.0079 
x4y2 0.0274 0.0077 0.0262 0.0048 
x4y3 -0.0161 0.0033 -0.0160 0.0027 
x4y4 -0.0006 0.0075 -0.0017 0.0052 
x4x1 -0.0511 0.0107 -0.0514 0.0080 
x4x2 0.0372 0.0217 0.0447 0.0138 
x4x3 -0.2723 0.0278 -0.2694 0.0169 
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x4x4 0.1292 0.0229 0.1246 0.0147 
x5y1 0.0457 0.0061 0.0463 0.0046 
x5y2 0.0228 0.0051 0.0210 0.0036 
x5y3 0.0043 0.0016 0.0039 0.0014 
x5y4 -0.0167 0.0046 -0.0162 0.0036 
x5x1 -0.0188 0.0073 -0.0201 0.0056 
x5x2 0.0836 0.0131 0.0759 0.0093 
x5x3 -0.1433 0.0112 -0.1293 0.0084 
x5x4 0.0716 0.0103 0.0699 0.0078 
x5x5 -0.0094 0.0079 -0.0116 0.0064 
y1t -0.0002 0.0003 -0.0003 0.0002 
y2t 0.0003 0.0003 0.0003 0.0001 
y3t 0.0004 0.0001 0.0004 0.0001 
y4t 0.0006 0.0002 0.0006 0.0001 
x1t 0.0010 0.0004 0.0009 0.0002 
x2t -0.0040 0.0007 -0.0034 0.0003 
x3t -0.0016 0.0008 -0.0016 0.0004 
x4t 0.0028 0.0006 0.0027 0.0003 
x4t 0.0022 0.0003 0.0021 0.0002 
t - - 0.0083 0.0016 

 
Note: y1=log(commercial & industrial loans/real estate loans), y2=log(loans to 

individuals/real estate loans), y3=log(securities/real estate loans), y4=log(off-
balance sheet items/real estate loans), x1=log(total demand deposits), 
x2=log(total time & savings deposits), x3=log(labor), x4=log(capital), 
x5=log(purchased funds) and t=time trend. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Average Efficiencies over Time, the Spline Specification 
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Figure 2: Average Efficiencies over Time, the Polynomial Specification 
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