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Abstract

Which budgetary institutions result in efficient provision of public goods? We an-

alyze a model with two parties deciding the allocation to a public good each period.

Parties place different values on the public good, but these values may change over

time. We model a budgetary institution as the rules governing feasible allocations to

mandatory and discretionary spending programs. We model mandatory spending as an

endogenous status quo since it is enacted by law and remains in effect until changed,

and discretionary spending as periodic appropriations that are not allocated if no new

agreement is reached. We consider budgetary institutions that either allow only dis-

cretionary programs, only mandatory programs, an endogenous choice of mandatory

and discretionary programs, or state-contingent mandatory programs. We show that

discretionary only institutions can lead to dynamic inefficiencies, mandatory only in-

stitutions can lead to static and dynamic inefficiencies, whereas allowing mandatory

programs with appropriate flexibility results in static and dynamic efficiency.
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1 Introduction

Allocation of resources to public goods are typically decided through government budget

negotiations. In many democracies these negotiations occur annually, and are constrained

by the budgetary institutions in place. We focus on budgetary institutions that specify

the rules governing feasible allocations to mandatory and discretionary spending programs.1

Discretionary programs require periodic appropriations; no spending is allocated if no new

agreement is reached. By contrast, mandatory programs are enacted by law, and spending

continues into the future until changed. Thus under mandatory programs, spending decisions

today determine the status quo level of spending for tomorrow. We focus on three budgetary

institutions: those that allow only discretionary programs, those that allow only mandatory

program and those that allow for endogenously chosen combination of both types of programs.

Naturally, there may be disagreement among groups on the appropriate level of public

spending, thus the final spending outcome is the result of negotiations between parties that

represent these groups’ interests. Negotiations are typically led by the party in power whose

identity may change over time, and thus there is turnover in agenda-setting power. Further-

more, the economic environment is also changing over time, potentially resulting in changes

in preferences. Hence the party in power today must consider how current spending on the

public good affects future spending, when preferences and the agenda-setter possibly change

in the future. In this paper we investigate the role of budgetary institutions in the efficient

provision of public goods in an environment with these features - disagreement over the value

of the public good, a changing economic environment, and turnover in political power.

We begin by analyzing a model in which two parties bargain over the allocation to a

public good in each of two periods. The parties place different values on the public good,

reflecting possible disagreement, and these values may change over time, reflecting changes

in the underlying economic environment. To capture turnover in political power we assume

1This terminology is used in the United States budget. Related institutions exist in other budget ne-
gotiations, for example the budget of the European Union is categorized into commitment and payment
appropriations. The main distinction is that one has dynamic consequences because agreements are made
for future budgets, and the other does not.
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the proposing party is selected at random each period. Unanimity is required to implement

the proposed spending on the public good, thus the proposing party requires the responding

to party to accept the proposal. We compare the equilibrium outcome of this bargaining

game under different budgetary institutions to Pareto efficient outcomes.

We distinguish between a statically Pareto efficient allocation and a dynamically Pareto

efficient allocation. A statically Pareto efficient allocation in a given period is an allocation

such that there is no alternative allocation that would make both parties better off and at

least one of them strictly better off in that period. A dynamically Pareto efficient allocation

is a sequence of allocations, one for each period, that needs to satisfy a similar requirement

except that the utility possibility frontier is constructed using the discounted sum of utilities.

Dynamic efficiency puts intertemporal restrictions on allocations in addition to requiring

static efficiency for each period, making it is a stronger requirement than static Pareto effi-

ciency. We show that if parties disagree about the value of the public good in all periods,

then any equilibrium in which spending varies with the identity of the proposer cannot be

dynamically Pareto efficient. That is, dynamic Pareto efficiency requires that parties insure

against political risk.

Comparing equilibrium public good allocations with the efficient ones, we show that

discretionary only institutions lead to static efficiencies but dynamic inefficiencies, mandatory

only institutions can lead to static and dynamic inefficiencies, whereas allowing an endogenous

choice between mandatory and discretionary programs results in public good allocations that

are statically and dynamically Pareto efficient if the value of the public good is decreasing over

time. Furthermore, we show that if temporary cuts to mandatory programs are allowed, an

endogenous choice of mandatory and discretionary programs results in public good allocations

that are dynamically and statically Pareto efficient, for any deterministic change in the value

of the public good.

The intuition behind dynamic inefficiency of discretionary only budget institutions is that

they lead to equilibrium public good allocations that fluctuate with the change of political

power. Because the status quo size of a discretionary spending program is exogenous, the

political party in power, which possesses proposal power in our model, can implement the level
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of spending that reflects its preference. Because there could be turnover in political power in

the future, resulting public good allocations cannot satisfy the intertemporal requirements

needed for dynamic Pareto efficiency. That is, when the budgetary institution allows for only

discretionary spending, the parties are exposed to political risk.

To show dynamic inefficiency that arises under the mandatory only budget institutions,

we first show that in any equilibrium, the second period’s public good allocation either varies

with the identity of the proposing party or is equal to the first period’s level. In the former

case, dynamic inefficiency is immediate because the allocation depends on the identity of the

proposing party. In the latter case, we obtain dynamic inefficiency if the parties’ values of

the public good vary across time. This is because when the parties’ preferences vary across

time, dynamic efficiency requires that allocations also vary across time.

Static efficiency may also obtain with mandatory only budget institutions. The reason

is that the first period’s public good spending becomes the status quo in the second period

and thus determines the parties’ bargaining positions in the second period. Concerns about

their future bargaining positions can lead the parties to reach an outcome that disregards

their first-period preferences, resulting in static inefficiency.

In spite of this dynamic and static inefficiency with mandatory only budgetary institu-

tions, we obtain dynamic efficiency in two special cases. The first is if the values of the public

good of the two parties are constant across time. This precludes variation in any dynamically

efficient allocation. The second is if parties agree on the value of the public good in the first

period. In this case dynamic efficiency does not restrict the second period allocation to be

constant across proposers.

Dynamic efficiency when both discretionary and mandatory programs are allowed arises

due to two ingredients. First, the party in power in the first period finds it optimal to set the

size of the mandatory program so that it is statically efficient in the second period. If the

status quo allocation is statically efficient in the second period, then it is maintained, and

hence the second period’s public good allocation is independent of the identity of the party

in power, thereby eliminating the political risk. Second, the party in power in the first period

can use discretionary spending to tailor the level of the first period’s public good spending to
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her preferences. We obtain dynamic efficiency if the discretionary spending can be negative,

which we interpret as a temporary cut of mandatory programs, as this allows the party in

power in the first period to accommodate any time profile of public good spending (either

increasing or decreasing) that dynamic efficiency might require. If we restrict discretionary

spending to be positive, we obtain dynamic efficiency only if the value of the public good

decreases for the two parties since dynamic efficiency requires a decreasing time profile of

public good spending in that case. In both cases, the flexibility afforded by the combination

of mandatory and discretionary programs delivers dynamic efficiency.

We show that when preferences are stochastic, allowing state-contingent mandatory spend-

ing programs provides sufficient flexibility to achieve dynamic efficiency. To do this we

consider an extension of the model in which preferences are random and the time horizon is

arbitrary. We consider a budgetary institution in which proposers choose a spending rule that

gives spending levels conditional on the realization of the state. Examples of state-contingent

programs include those that are inflation adjusted or depend on the unemployment rate. The

first period proposer chooses a rule that is dynamically Pareto efficient and once selected,

this spending rule does not change because no future proposer can make a different proposal

that is better for itself and acceptable to the other party.

Our work is related to several strands of literature. A large body of political econ-

omy literature studies policies that arise from bargaining of political actors under different

decision-making rules governing their interaction (see for example Acemoglu et al., 2010;

Acemoglu and Robinson, 2012; Austen-Smith and Banks, 1988; Besley and Persson, 2011;

Dixit et al., 2000; Persson and Tabellini, 2000, 2003; Persson et al., 1997; Lizzeri and Persico,

2001). Still in the same category but more closely related to our are papers highlighting

inefficiency of policies that arise in political equilibrium (for example Alesina and Tabellini,

1990; Azzimonti, 2011; Besley and Coate, 1998; Battaglini and Coate, 2007; Krusell and

Ŕıos-Rull, 1996; Bai and Lagunoff, 2011; Persson and Svensson, 1984; Van Weelden, 2013).

Inefficiency in these papers arises either because efficient policies yield benefits in the future

when the current political representation is not in the position to enjoy them, or because ef-

ficient policies alter the choices of future policy makers, or because efficient policies lower the
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probability of the current political representation remaining in power (see Besley and Coate,

1998; Bai and Lagunoff, 2011, for discussion of possible sources of inefficiencies). Our paper

shares with the rest of the literature the first two sources of inefficiency, but unlike the rest

of the literature, our main focus is on linking these sources of inefficiency to budgetary insti-

tutions that specify the rules governing feasible allocations to mandatory and discretionary

spending programs.

Modeling mandatory spending programs as an endogenous status quo links our work to

a growing dynamic bargaining literature (including Anesi and Seidmann, 2012; Baron, 1996;

Baron and Bowen, 2013; Bowen et al., 2014; Battaglini and Palfrey, 2012; Chen and Eraslan,

2014; Diermeier and Fong, 2011; Duggan and Kalandrakis, 2012; Dziuda and Loeper, 2013;

Forand, 2010; Kalandrakis, 2004, 2010; Levy and Razin, 2013; Nunnari and Zapal, 2012).

With the exception of Bowen, Chen and Eraslan (2014) this literature has focused on studying

models with policies that only have the endogenous status quo property. In the language of

our model, this literature has focused on mandatory spending programs only. Bowen, Chen

and Eraslan (2014) model discretionary and mandatory public good spending programs, but

do not allow for endogenous choice between these two types of programs (transfers between

parties in their model are modeled as discretionary). In addition, unlike in their model, we

allow the values parties put on the public good to vary over time which plays an important role

in our results. Bowen, Chen and Eraslan (2014) show that mandatory programs may improve

the efficiency of public good provision, whereas we show that with changing preferences

mandatory programs with appropriate flexibility achieves dynamic Pareto efficiency.

In the next section we describe the model of budgetary institutions. In Section 3 we discuss

Pareto efficient allocations and define Pareto efficient equilibria. We discuss an institution

with only discretionary spending in Section 4. In Section 5 we give properties of equilibria

when the institution allows mandatory spending (with or without discretionary), and give

efficiency properties of mandatory only institutions. Section 6 discusses institutions that

allow for an endogenous choice of mandatory and discretionary spending, and Section 7

considers state-contingent mandatory spending. Section 8 concludes.
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2 Model

Consider a stylized economy and political system with two parties labeled A and B.

There are two time periods indexed by t ∈ {1, 2}.2 In each period t, the two parties decide

an allocation to a public good xt ∈ R+. The stage utility for party i from the public good in

period t is uit(xt). We assume uit(·) is twice continuously differentiable, strictly concave, and

attains a maximum at θit for all i ∈ {A,B} and t ∈ {1, 2}. This implies uit(·) is single-peaked

with θit denoting party i’s static ideal level of the public good in period t.3

We assume parties’ ideal levels of the public good are positive and party A’s ideal is lower

than party B’s. That is, 0 < θAt ≤ θBt for all t. Parties’ ideal levels of the public good may

vary across periods. In particular, these may be increasing with θi1 < θi2 for all i ∈ {A,B},

decreasing with θi1 > θi2 for all i ∈ {A,B}, divergent with θA2 < θA1 < θB1 < θB2, or

convergent with θA1 < θA2 < θB2 < θB1.

The parties have a common discount factor δ ∈ (0, 1]. Party i seeks to maximize its

discounted dynamic payoff from the sequence of public good allocations, ui1(x1) + δui2(x2).

Political system

We consider a political system with unanimity rule.4 Each period a party is randomly

selected to make a proposal for the allocation to the public good. The probability that party

i proposes in a period is pi ∈ (0, 1).

At the beginning of each period, the identity of the proposing party is realized. The

proposing party makes a proposal for the allocation to the public good. Spending on the

public good may be allocated via different programs - a discretionary program, which expires

after the first period, or a mandatory program, for which spending will continue in the next

period unless the parties agree to change it. Denote the proposed amount allocated to a

2In Section 3 we characterize Pareto efficient allocations for a model with any number of periods, and in
Section 7 we consider a more general model with any number of periods and random preferences.

3Because of the opportunity cost of providing public goods, it is reasonable to model parties’ utility
functions as single-peaked as in, for example, Baron (1996).

4Most political systems are not formally characterized by unanimity rule, however, many have institutions
that limit a single party’s power, for example, the “checks and balances” included in the U.S. Constitution.
Under these institutions, if the majority party’s power is not sufficiently high, then it needs approval of the
other party to set new policies.
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discretionary program in period t as kt, and to a mandatory program as gt. If the responding

party agrees to the proposal, the implemented allocation to the public good for the period is

the sum of the discretionary and mandatory allocations proposed, so xt = kt + gt; otherwise,

xt = gt−1.

Denote a proposal by zt = (kt, gt). We require gt ≥ 0 to ensure a positive status quo

each period. Let Z ⊆ R × R+ be the set of feasible proposals. The set Z is determined by

the rules governing mandatory and discretionary programs, hence we call Z the budgetary

institution. We explore efficiency implications of mandatory and discretionary programs for

different budgetary institutions. Specifically, we consider the following institutions: only

discretionary programs, in which case Z = R+ × {0} and gt−1 = 0 for all t; only mandatory

programs, in which case Z = {0}×R+; both mandatory and positive discretionary, in which

case Z = R+×R+; and both mandatory and discretionary where discretionary spending may

be positive or negative, in which case Z = {(kt, gt) ∈ R× R+ : kt + gt ≥ 0}. It is natural to

think of spending as positive, however, it is also possible to have temporary cuts to spending

on mandatory programs, for example government furloughs that temporarily reduce salaries

to public employees. This temporary reduction in mandatory spending can be thought of

as negative discretionary spending as it reduces total spending in the current period on a

particular good, but does not affect the status quo for the next period.

We consider subgame perfect equilibria of the game between parties A and B. A pure

strategy for party i in period t is a pair of functions σit = (πit, αit), where πit : R+ → Z is a

proposal strategy for party i in period t and αit : R+×Z → {0, 1} is an acceptance strategy

for party i in period t. Party i’s proposal strategy πit = (κit, γit) associates with each status

quo gt−1 an amount of public good spending in discretionary programs, denoted by κit(gt−1)

and an amount in mandatory programs, denoted by γit(gt−1). Party i’s acceptance strategy

αit(gt−1, zt) takes the value 1 if party i accepts the proposal zt offered by party j 6= i when

the status quo is gt−1, and 0 otherwise.5

We restrict attention to equilibria in which (i) αit(gt−1, zt) = 1 when party i is indifferent

5We are interested in efficiency properties of budgetary institutions. Because the utility functions are
strictly concave, Pareto efficient allocations do not involve randomization. Hence, if any pure strategy
equilibrium is inefficient, allowing mixed strategies does not improve efficiency.
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between gt−1 and zt; and (ii) αit(gt−1, πjt(gt−1)) = 1 for all t, gt−1 ∈ R+, i, j ∈ {A,B} with

j 6= i. That is, the responder accepts any proposal that it is indifferent between accepting

and rejecting, and the equilibrium proposals are always accepted. We henceforth refer to a

subgame perfect equilibrium that satisfies (i) and (ii) simply as an equilibrium.

Denote an equilibrium as σ∗. Given conditions (i) and (ii), if party i ∈ {A,B} is the

proposer and party j 6= i is the responder in period 2, then for any g1 admissible under Z

the equilibrium proposal strategy (κ∗i2(g1), γ
∗
i2(g1)) of party i in period 2 solves

max
(k2,g2)∈Z

ui2(k2 + g2)

s.t. uj2(k2 + g2) ≥ uj2(g1).
(P2)

Let Vi(g;σ2) be the expected second-period payoff for party i given first-period mandatory

spending g and second-period strategies σ2 = (σA2, σB2). That is

Vi(g;σ2) = pAui2(κA2(g) + γA2(g)) + pBui2(κB2(g) + γB2(g)).

If party i ∈ {A,B} is the proposer and party j 6= i is the responder in period 1, then for any

g0 admissible under Z the equilibrium proposal strategy (κ∗i1(g0), γ
∗
i1(g0)) of party i in period

1 solves

max
(k1,g1)∈Z

ui1(k1 + g1) + δVi(g1;σ
∗
2)

s.t. uj1(k1 + g1) + δVj(g1;σ
∗
2) ≥ uj1(g0) + δVj(g0;σ

∗
2).

(P1)

3 Pareto efficiency

In this section we characterize Pareto efficient allocations and define Pareto efficient equi-

libria, both in the static and the dynamic sense.

3.1 Pareto efficient allocations

As a benchmark we characterize the Pareto efficient allocations. We distinguish between

the social planner’s static problem (SSP) which determines static Pareto efficient allocations,

and the social planner’s dynamic problem (DSP) which determines dynamic Pareto efficient

allocations.6

6Previous authors, for example, Dziuda and Loeper (2013) or Riboni and Ruge-Murcia (2008) have
demonstrated that an endogenous status quo can lead to static inefficiency due to dynamic incentives. The
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We define a statically Pareto efficient allocation in period t as the solution to the following

maximization problem

maxxt∈R+ uit(xt)

s.t. ujt(xt) ≥ u
(SSP)

for some u ∈ R, i, j ∈ {A,B} and i 6= j.7 By Proposition 1, statically Pareto efficient

allocations are all those between the ideal points of the parties.

Proposition 1. An allocation xt is statically Pareto efficient in period t if and only if xt ∈

[θAt, θBt].

Denote a sequence of allocations by x = (x1, x2) and party i’s discounted dynamic payoff

from x by Ui(x) =
∑2

t=1 δ
t−1uit(xt). We define a dynamically Pareto efficient allocation as

the solution to the following maximization problem

maxx∈R2
+

Ui(x)

s.t. Uj(x) ≥ U
(DSP)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. Denote the sequence of party i’s static ideals

by θi = (θi1, θi2) for all i ∈ {A,B}, and denote the solution to (DSP) as x∗ = (x∗1, x
∗
2).

8

Proposition 2 characterizes the dynamically Pareto efficient allocations.

Proposition 2. A dynamically Pareto efficient allocation x∗ satisfies the following properties:

1. For all t, x∗t is statically Pareto efficient. That is, x∗t ∈ [θAt, θBt] for all t.

2. Either x∗ = θA, or x∗ = θB, or u′At(x
∗
t ) + λ∗u′Bt(x

∗
t ) = 0 for some λ∗ > 0, for all t.

Proposition 2 part 2 implies that if x∗ 6= θi for all i ∈ {A,B}, and θAt 6= θBt in period t

then we must have

−u
′
At(x

∗
t )

u′Bt(x
∗
t )

= λ∗ (1)

latter paper also shows that the endogenous status-quo does not necessarily lead to dynamic efficiencies in a
different model, and in the context of central bank decision-making.

7The social planner’s static problem (SSP) is a standard concave programming problem so the solution
is unique for a given u if it exists.

8Note the solution to (DSP) depends on U , but for notational simplicity we suppress this dependency
and denote the solution to (DSP) as x∗. The solution to (DSP) is unique for a given U if it exists. In the
proof of Proposition 2 in the Appendix we present (DSP) for any number of periods, and prove Proposition
2 for this more general problem.
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for some λ∗ > 0. This is because if u′Bt(x
∗
t ) = 0, then part 2 of Proposition 2 implies that we

must also have u′At(x
∗
t ) = 0 which is not possible when θAt 6= θBt.

By (1) if parties A and B do not have the same ideal level of the public good in any two

periods t and t′, then in a dynamically Pareto efficient allocation, either the allocation is

equal to party A’s or party B’s ideal in both periods, or the ratio of their marginal utilities

is equal across these two periods, i.e.,
u′At(x

∗
t )

u′Bt(x
∗
t )

=
u′
At′ (x

∗
t′ )

u′
Bt′ (x

∗
t′ )

. In both cases there is a dynamic link

across periods.

3.2 Pareto efficient equilibrium

We define a dynamically Pareto efficient equilibrium given an initial status quo g0 as an

equilibrium that results in a dynamically Pareto efficient allocation for any realization of the

sequence of proposers. More precisely, denote a strategy profile as σ = ((σA1, σA2), (σB1, σB2))

with σit = ((κit, γit), αit). Recall that the total spending on the public good in period

t is the sum of the mandatory spending and the discretionary spending. An equilibrium

allocation for σ given initial status quo g0 is a possible realization of total public good

spending for each period xσ(g0) = {xσt (g0)}2t=1, where xσ1 (g0) = κi1(g0)+γi1(g0), and xσ2 (g0) =

κj2(γi1(g0)) + γj2(γi1(g0)) for some i, j ∈ {A,B}. The random determination of proposers

each period induces a probability distribution over allocations given an equilibrium σ, thus

any element in the support of this distribution is an equilibrium allocation for σ.9 We require

every allocation in the support of this distribution to be dynamically Pareto efficient for the

equilibrium to be dynamically Pareto efficient.

Definition 1. A profile of strategies σ is a dynamically Pareto efficient equilibrium given

initial status quo g0 ∈ R+ if and only if

1. σ constitutes an equilibrium.

2. Every equilibrium allocation xσ(g0) for σ given initial status quo g0 is dynamically

Pareto efficient.

9For example, if A is the proposer in period 1 and B is the proposer in period 2, then the equilibrium
allocation is xσ1 (g0) = κA1(g0) + γA1(g0), and xσ2 (g0) = κB2(γA1(g0)) + γB2(γA1(g0)).
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A statically Pareto efficient equilibrium given initial status quo g0 is analogously defined

as an equilibrium in which the realized allocation to the public good is statically Pareto

efficient in all periods t given initial status quo g0. Thus a necessary condition for a strategy

profile σ to be a dynamically Pareto efficient equilibrium is that σ is a statically Pareto

efficient equilibrium. In the next sections we analyze which budgetary institutions result in

a statically or dynamically Pareto efficient equilibrium.

The analysis of a dynamically Pareto efficient equilibrium is aided by the following lem-

mas.

Lemma 1. Suppose θAt 6= θBt for any t. If allocations x and x̃ are both dynamically Pareto

efficient and xt′ = x̃t′ for some t′, then x = x̃.

An implication of Lemma 1 is that if parties’ ideal levels of the public good are different

in both periods, then given an allocation in the first period, the dynamically Pareto efficient

allocation in the second period is uniquely determined. This means that if the equilibrium

level of spending in period 2 varies with the identity of the period-2 proposer, then the

equilibrium cannot be dynamically Pareto efficient.

In general dynamic Pareto efficiency is stronger than static Pareto efficiency, but from

part 1 of Proposition 2 it is clear that if θA = θB then an allocation x is dynamically Pareto

efficient if and only if xt is statically Pareto efficient in all periods. The next lemma shows

that this is also true if the preferences differ in only one period.

Lemma 2. Suppose there exists at most one t′ such that θAt′ 6= θBt′. Then an allocation x is

dynamically Pareto efficient if and only if xt is statically Pareto efficient in period t for all t.

This is true because for all t 6= t′ it must be that xt = θit, and only in period t′ must (1)

be true, thus there is no dynamic link across periods.

4 Discretionary spending

Suppose spending is allocated through discretionary programs only, implying that the

status quo in each period is exogenous and equal to 0. In this case there is no dynamic link
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between the previous period’s policy and the current period’s status quo, and Z = R+×{0}.

Without the dynamic link between periods, the bargaining between the two parties is a

static problem, similar to the monopoly agenda-setting model in Romer and Rosenthal (1978,

1979).10 We next characterize the equilibrium and its efficiency properties.

For this section we denote a proposal in period t by kt since gt is zero. Consider any period

t. Since uBt is single-peaked at θBt and 0 < θAt ≤ θBt, we have uBt(0) ≤ uBt(θAt). Hence, if

party A is the proposer in period t, it proposes its ideal policy kt = θAt, which is accepted by

party B. If party B is the proposer in period t, however, whether it can implement its ideal

policy depends on the locations of the parties’ ideal points relative to the status quo, which

is equal to 0. Specifically, let φoAt be the highest policy that makes party A as well off as the

status quo in period t. That is,

φoAt = max{x ∈ R+|uAt(x) ≥ uAt(0)}.

Note that φoAt ≥ θAt. Since status quo spending is 0, party A accepts any proposal kt such

that 0 ≤ kt ≤ φoAt. To find party B’s optimal proposal, there are two cases to consider.

(i) Suppose θBt ≤ φoAt. Then, since uAt is single-peaked at θAt ≤ θBt, we have uAt(θBt) ≥

uAt(φ
o
At) = uAt(0) and therefore party A accepts kt = θBt in period t. In this case, party B’s

optimal proposal in period t is equal to its ideal point θBt. (ii) Suppose θBt > φoAt. Then,

given the single-peakedness of uBt, the optimal policy for B that is acceptable to A is equal

to φoAt. In this case, party B proposes kt = φoAt < θBt. To summarize, party B’s optimal

proposal is equal to min{θBt, φoAt}.

Since the policy implemented in period t is equal to θAt when party A is the proposer

and equal to min {θBt, φoAt} ≥ θAt when party B is the proposer, the policy implemented in

period t is in [θAt, θBt] and therefore statically Pareto efficient by Proposition 1. To discuss

the equilibrium’s dynamic efficiency properties, we consider the following three cases. (i)

Suppose θAt 6= θBt for all t. In this case, min{θBt, φoAt} > θAt, which implies that the policy

implemented in period t varies with the identity of the proposer. By Lemma 1, this implies

dynamic Pareto inefficiency. (ii) Suppose there is at most one t′ such that θAt′ 6= θBt′ . By

10Note that when only discretionary spending is allowed, g0 = g1 = 0, and hence the proposer’s first-period
problem (P1) becomes a static problem identical to (P2).
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Lemma 2, an allocation x is dynamically Pareto efficient if and only if xt is statically Pareto

efficient in all periods. The following proposition summarizes these results.11

Proposition 3. Under a budgetary institution that allows only discretionary spending pro-

grams, given the initial status quo of zero:

1. The equilibrium is statically Pareto efficient.

2. The equilibrium is dynamically Pareto inefficient if and only if θAt 6= θBt for all t.

Specifically, the equilibrium level of spending in period t is xt = θAt if party A is the proposer

and is xt = min{θBt, φoAt} ∈ [θAt, θBt] if party B is the proposer.

5 Mandatory spending

When spending can be allocated by way of mandatory programs, the party selected to

propose in the first period has to take into account the effect of the amount of public good

allocated to mandatory program on the second-period spending because it becomes the status

quo spending in the second period. This creates a dynamic link between periods.

5.1 Preliminaries

We first show that this dynamic game admits an equilibrium and give properties of the

equilibrium proposal strategies in period 2.12 The proposition applies to any budgetary

institution that allows mandatory spending programs, in combination with discretionary

spending or in isolation.

To state the proposition we define the functions φAt : R+ → R+ and φBt : R+ → R+.

The value φAt(gt−1) is the highest spending level that makes party A as well off as under the

11The result is stated for the two-period model, but a straightforward generalization of the argument
shows that in a model with an arbitrary number of periods, Proposition 3 holds if the condition in part 2 is
replaced by θAt 6= θBt for at least two periods.

12Equilibrium existence is not immediate because the constraint set in the second period is determined by
the responder’s acceptance condition [see (P2)]. The constraint is not monotone in the proposer’s first-period
choice variable g1. Rather, g1 determines both the lowest and the highest policy the second-period responder
is willing to accept. This requires a non-trivial proof of lower-hemicontinuity of the second-period acceptance
correspondence to show continuity of the first period payoff. This proof is given in the Appendix.
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status quo gt−1, and φBt(gt−1) is the lowest spending level that makes party B as well off as

under the status quo. That is,

φAt(gt−1) = max{x ∈ R+|uAt(x) ≥ uAt(gt−1)}

φBt(gt−1) = min{x ∈ R+|uBt(x) ≥ uBt(gt−1)}.

These are illustrated below in Figure 1. If gt−1 < θAt, then φAt(gt−1) > gt−1 and if gt−1 ≥

θAt, then φAt(gt−1) = gt−1. If gt−1 ≤ θBt, then φBt(gt−1) = gt−1 and if gt−1 > θBt, then

φBt(gt−1) < gt−1.

uAt

gt−1
θAtg φAt(g)g′=φAt(g

′)

uBt

gt−1
θBtg=φBt(g) g′φBt(g

′)

Figure 1: φAt and φBt

Proposition 4. Under any budgetary institution that allows mandatory spending programs,

an equilibrium exists. For any g1 ∈ R+, any equilibrium σ∗ = ((σ∗A1, σ
∗
A2), (σ

∗
B1, σ

∗
B2)) with

σ∗it = ((κ∗it, γ
∗
it), α

∗
it) satisfies

κ∗A2(g1) + γ∗A2(g1) = max{θA2, φB2(g1)}

κ∗B2(g1) + γ∗B2(g1) = min{θB2, φA2(g1)}.

Furthermore:

1. κ∗i2(g1) + γ∗i2(g1) ∈ [θA2, θB2] for all i ∈ {A,B} and all g1 ∈ R+.

2. If θA2 6= θB2, then

κ∗A2(g1) + γ∗A2(g1) = κ∗B2(g1) + γ∗B2(g1) = g1 if g1 ∈ [θA2, θB2],

κ∗A2(g1) + γ∗A2(g1) < κ∗B2(g1) + γ∗B2(g1) if g1 /∈ [θA2, θB2].
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Proposition 4 gives the equilibrium level of total spending in the second period. The

proposition implies that the equilibrium total spending is unique for any status quo. Propo-

sition 4 part 1 implies that the equilibrium level of spending in period 2 is statically Pareto

efficient. Part 2 gives properties of the equilibrium spending if the parties’ ideals are different.

If the status quo is statically Pareto efficient, then it is maintained. If the status quo is not

statically Pareto efficient, then the equilibrium proposal is different from the status quo and

depends on the identity of the proposer - specifically, it is lower when A is the proposer than

when B is the proposer.

x2

g1
θA2 θB2

θA2

θB2

κ∗A2(g1) + γ∗A2(g1)

κ∗B2(g1) + γ∗B2(g1)

Figure 2: Period 2 equilibrium strategies with mandatory spending for uit(xt) = −(xt− θit)2

Figure 2 is an example of equilibrium spending in period 2 for quadratic loss utility. While

the exact form depends on the specific utility function, any second-period strategy has similar

properties. Consider party A as the proposer in period 2. If the status quo is g1 < θA2, then,

since uB2(g1) < uB2(θA2), party A proposes its ideal policy x2 = θA2, which is accepted. If

g1 ∈ [θA2, θB2], then, since any x2 < g1 would be rejected by party B and party A prefers g1

to any x2 > g1, party A proposes x2 = g1. If g1 > θB2, then party B accepts any proposal

in [φB2(g1), g1], the interval of policies closer to θB2 than g1 is. Since θA2 < θB2 < g1, either

θA2 ∈ [φB2(g1), g1] or θA2 < φB2(g1). If θA2 ∈ [φB2(g1), g1], then party A proposes x2 = θA2.

If θA2 < φB2(g1), then party A proposes the policy closest to θA2 that is acceptable to B,

which is φB2(g1). For quadratic loss utility function, if g1 ≥ θB2 and φB2(g1) ≥ θA2, we have

φB2(g1) = 2θB2 − g1, which is decreasing in g1. For general strictly concave uB2, if g1 ≥ θB2
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and φB2(g1) ≥ θA2, then φB2(g1) is decreasing in g1.

5.2 Inefficiency with mandatory spending only

Suppose now that spending is allocated through mandatory programs only, such that

Z = {0} × R+. Since kt is zero for any t, the equilibrium discretionary proposal κ∗it(gt−1) is

zero for all i ∈ {A,B}, all t and all gt−1 ∈ R+. For the rest of the section we thus denote a

proposal in period t by gt.

We show that equilibrium allocations can in general be dynamically Pareto inefficient

and even statically Pareto inefficient with mandatory spending programs only. Proposition 5

gives conditions under which we obtain dynamic inefficiency, but we first define two regularity

conditions satisfied by commonly used utility functions.

Definition 2. We say uit is regular if uit(xt) = ui(xt, θit) for all t. We say uit is regular with

increasing marginal returns if uit is regular and ∂ui
∂xt

is strictly increasing in θit for all t.

Proposition 5. Under a budgetary institution that allows only mandatory spending pro-

grams, any equilibrium σ∗ is dynamically Pareto inefficient for any initial status quo g0 ∈ R+,

if any of the following conditions hold:

1. Parties’ ideals are increasing or decreasing and not overlapping, that is θA1 < θB1 <

θA2 < θB2 or θA2 < θB2 < θA1 < θB1.

2. Parties’ ideals are either increasing or decreasing, θAt 6= θBt for all t and uit is regular

with increasing marginal returns for all i ∈ {A,B}.

Furthermore, if parties’ ideals are divergent or convergent and uit(xt) = −(|xt − θit|)r with

r > 1, there exists a set I, where R+ \ I is a finite set, such that any equilibrium σ∗ is

dynamically Pareto inefficient for any initial status quo g0 ∈ I.

Proposition 5 covers all possible ways in which ideal levels of public good spending of

the two parties can vary: increasing, decreasing, convergent or divergent. Proposition 5

parts 1 and 2 give conditions under which dynamic inefficiency is obtained for increasing and

decreasing ideals of the parties. The final part of the proposition states that when preferences
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are divergent or convergent, for a special class of utility functions, dynamic efficiency is

obtained only for a set of non-generic status quos.13

The reason behind the dynamic Pareto inefficiency of any equilibrium in the proposition

is the combination of the variance in parties’ ideals with budgetary institution restricted to

mandatory spending programs. Without discretionary spending, the level of public good

spending in period 1 becomes the status quo in period 2. Because of the second-period

conflict between the two parties, either none of the parties is willing to change the status

quo and the level of public good spending is constant, or the level of public good spending

in period 2 depends on the identity of the proposing party. In each case the equilibrium

allocation violates dynamic Pareto efficiency, which requires variation in allocations across

time, but precludes variation in allocation in a given period.

The next result shows that equilibrium allocations under mandatory spending programs

can violate not only dynamic, but also static Pareto efficiency.14

Proposition 6. Suppose uit(xt) = −(xt − θit)
2 for all i ∈ {A,B} and all t. Under a

budgetary institution that allows only mandatory spending programs, if either θA1−θA2

θB2−θA2
∈ (0, 1)

or θB2−θB1

θB2−θA2
∈ (0, 1), then there exists set I of non-zero measure such that any equilibrium σ∗

is statically Pareto inefficient for any initial status quo g0 ∈ I.

The key condition of Proposition 6 is stated in terms of θA1−θA2

θB2−θA2
and θB2−θB1

θB2−θA2
. Each of these

fractions has natural interpretation as the ratio of preference variation of party i ∈ {A,B}

to future polarization between the two parties in period 2. If this ratio is small, static Pareto

inefficiency arises in equilibrium. Because the proposition requires the ratio to be positive,

static Pareto inefficiency potentially arises when the ideal levels are increasing, decreasing or

divergent. And since the proposition does not rule out θA1 = θB1, static Pareto inefficiency

can arise even in the absence of first-period conflict between the two parties.

Figure 3 illustrates Proposition 6. The parameters used satisfy the conditions in Propo-

sition 6. Specifically, the ideal levels of the two parties diverge and θA1−θA2

θB2−θA2
= θB2−θB1

θB2−θA2
= 1

3
.

13Dynamic inefficiency also obtains in a finite-horizon model with more than two periods under the con-
ditions in Proposition 5, when the changes in preferences apply to the last two periods.

14The proposition assumes quadratic stage utilities. This is for convenience, as it facilitates derivation of
analytical expressions, rather than out of necessity.
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The figure plots equilibrium public good spending in period 1 proposed by each party for

initial status quo g0 ∈ [0, 2]. What the figure shows is that unless g0 ∈ [θA1, θB1], we have

γ∗i1(g0) /∈ [θA1, θB1] for at least one of the parties, i.e., the equilibrium is statically Pareto

inefficient.

x1

g0
θA1 θB1

θA1

θB1

θA2

θB2

0 1 2
0

1

γ∗A1(g0)

γ∗B1(g0)

Figure 3: Period 1 equilibrium strategies when all spending is mandatory
θA = (0.4, 0.2), θB = (0.6, 0.8), pA = pB = 1

2
, δ = 1, uit(xt) = −(xt − θit)2

The tendency of the parties to propose g1 /∈ [θA1, θB1] is due to the dual role of first-period

public good spending. It represents spending in a standard sense but it also determines the

status quo in period 2. Party i selected to propose has an incentive to propose g1 trading

off these two roles. The first one pushes towards proposing θi1 while the second one pushes

towards θi2. When party i is unconstrained by the acceptance of party j 6= i, it proposes g1

that is a weighted average of θi1 and θi2. For i = A, when θi2 < θi1 this weighted average is

below θA1, giving rise to static Pareto inefficiency.

5.3 Efficiency with mandatory spending only

We show that despite the restriction to mandatory spending only, equilibrium allocations

can be dynamically Pareto efficient in the absence of a conflict in period 2 or in the absence

of variation in ideal levels of public good spending.

Proposition 7. Under a budgetary institution that allows only mandatory spending pro-

grams, any equilibrium σ∗ is dynamically Pareto efficient for any initial status quo g0 ∈ R+,

if any of the following conditions hold:
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1. θA2 = θB2.

2. uit is regular and θi1 = θi2 for all i ∈ {A,B}.

To understand the dynamic Pareto efficiency result in Proposition 7 part 1, recall that

by Lemma 2, if θA2 = θB2, an allocation x is dynamically Pareto efficient if and only if xt is

statically Pareto efficient in all periods, so that there is no dynamic link between allocations.

When θA2 = θB2, Proposition 4 part 1 also implies that, for any second-period status quo g1,

both parties propose g2 = θA2. The equilibrium allocation in period 2 is thus xσ
∗

2 (g0) = θA2

for any g0 ∈ R+ and the expected second-period payoff of party i, Vi(g1), is constant in g1.

Hence the proposer’s first-period problem (P1) becomes a static problem identical to (P2)

and the equilibrium allocation in period 1 satisfies xσ
∗

1 (g0) ∈ [θA1, θB1] for any g0 ∈ R+. By

Proposition 1, xσ
∗
t (g0) is statically Pareto efficient in period t for all t, and hence xσ

∗
(g0) is

dynamically Pareto efficient for any g0 ∈ R+.

The logic underlying the dynamic Pareto efficiency result in Proposition 7 part 1 differs

from the one underlying Proposition 7 part 2. When θi1 = θi2 for all i ∈ {A,B}, the parties

may have different ideal levels of public good spending in both periods, and the definition of

dynamic Pareto efficiency does create a dynamic link between allocations x1 and x2. When

uit is regular for all i ∈ {A,B}, the dynamic link requires the allocations to be constant,

and any x1 = x2 ∈ [θA1, θB1] is dynamically Pareto efficient. Proposition 7 then follows via

showing that the equilibrium allocation xσ
∗
(g0) satisfies xσ

∗
1 (g0) = xσ

∗
2 (g0) for any g0 ∈ R+.

That is, the level of public good spending is fully determined by the party selected to propose

in the first period, along with the initial status quo g0, and is constant across the two periods.

6 Mandatory and discretionary spending

In this section we consider that parties can endogenously choose how much public good

to allocate to mandatory and discretionary spending. We begin by showing that when dis-

cretionary spending can only be positive, that is Z = R+ × R+, we obtain dynamic Pareto

efficiency under some conditions.
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Proposition 8. Under a budgetary institution that allows positive discretionary and manda-

tory spending, if uit is regular with increasing marginal returns, and each party’s ideal value

of the public good is decreasing, then every equilibrium is dynamically Pareto efficient for any

status quo g0 ∈ R+.

The proof of Proposition 8 is instructive so we include it. First, consider the following

alternative way of writing the social planner’s dynamic problem:

max
(x1, xA2, xB2)∈R3

+

ui1(x1) + δ[pAui2(xA2) + pBui2(xB2)]

s.t. uj1(x1) + δ[pAuj2(xA2) + pBuj2(xB2)] ≥ U,

(DSP’)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. The difference between the original social planner’s

problem (DSP) and the modified social planner’s problem (DSP’) is that in the modified

problem, the social planner is allowed to choose a distribution of allocations in period 2.

Since we assume that utility functions are concave, it is not optimal for the social planner to

randomize and therefore the solution to the original problem (DSP) is also the solution to the

modified problem (DSP’). To state this result formally, recall that given U ∈ R we denote the

solution to the original social planner’s dynamic problem (DSP) as x∗(U) = (x∗1(U), x∗2(U)).

Lemma 3. The solution to the modified social planner’s problem (DSP’) is x1 = x∗1(U) and

xA2 = xB2 = x∗2(U).

Now fix the initial status quo g0. Denote fj(g0) as responder j’s status quo payoff. The

next result characterizes the equilibrium proposal in period 1.

Lemma 4. Under a budgetary institution that allows positive discretionary and mandatory

spending, if uit is regular with increasing marginal returns, and each party’s ideal value of

the public good is decreasing, then for any equilibrium σ∗, given initial status quo g0, the

equilibrium proposal strategy for party i in period 1 satisfies γ∗i1(g0) = x∗2(U) and κ∗i1(g0) =

x∗1(U)− x∗2(U), for U = fj(g0) and j 6= i.

Proof. If party i is the proposer in period 1, then party i’s equilibrium proposal strategy
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(κ∗i1(g0), γ
∗
i1(g0)) is a solution to

max
(k1,g1)∈R2

+

ui1(k1 + g1) + δVi(g1;σ
∗)

s.t. uj1(k1 + g1) + δVj(g1;σ
∗) ≥ uj1(g0) + δVj(g0;σ

∗),

(P1)

where

Vi(g;σ∗) = pAui2(κ
∗
A2(g) + γ∗A2(g)) + pBui2(κ

∗
B2(g) + γ∗B2(g)).

For the proof we write x∗1 and x∗2 instead of x∗1(U) and x∗2(U). We first show that (x∗1 −

x∗2, x
∗
2) is in the feasible set for (P1). By Lemma A2, if the parties’ ideal levels of the public

good are decreasing, the Pareto efficient allocation is also decreasing. This implies x∗1 > x∗2,

and thus (x∗1 − x∗2, x∗2) ∈ R2
+ is feasible.

We next show that if γ∗i1(g0) = x∗2 and κ∗i1(g0) = x∗1 − x∗2, then the induced equilibrium

allocation is x∗1 in period 1 and x∗2 in period 2. It is straightforward to see xσ
∗

1 (g0) = γ∗i1(g0)+

κ∗i1(g0) = x∗1. Now to see that xσ
∗

2 (g0) = x∗2, first note that by Proposition 2 part 1, x∗2 ∈

[θA2, θB2]. Then by Proposition 4 part 2, we have γ∗A2(x
∗
2) = γ∗B2(x

∗
2) = x∗2.

Finally, we show by contradiction that (x∗1−x∗2, x∗2) is the maximizer of (P1). Suppose not.

Then proposing (κ∗i1(g0), γ
∗
i1(g0)) is better than proposing (x∗1 − x∗2, x∗2). That is, proposing

(κ∗i1(g0), γ
∗
i1(g0)) gives proposer i a higher dynamic payoff while giving the responder j a

dynamic payoff at least as high as fj(g0). Recall the modified social planner’s problem (DSP’)

allowed randomization over allocations in period 2, so if (κ∗i1(g0), γ
∗
i1(g0)) 6= (x∗1−x∗2, x∗2), this

implies that the allocation with x1 = γ∗i1(g0) +κ∗i1(g0), xA2 = γ∗A2(γ
∗
i1(g0)), xB2 = γ∗B2(γ

∗
i1(g0))

does better than x∗1 and x∗2. Since the solution to the social planner’s problem is unique, this

contradicts Lemma 3. �

By Lemma 4, for status quo g0 and period 1 proposer i ∈ {A,B}, the equilibrium outcome

is xσ
∗
(g0) = {x∗t (U)}2t=1 for U = fj(g

0) and j 6= i. Hence σ∗ is a dynamically Pareto efficient

equilibrium for any sequence of proposers, and for any g0 ∈ R+. This completes the proof of

Proposition (8).

By the arguments above it is clear that if the parties’ ideal levels of the public good is

increasing, and only positive discretionary spending is allowed, in general we do not obtain

Pareto efficiency. This is because with increasing ideal levels of the public good κ∗i1 =
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x∗1 − x∗2 < 0 and is not feasible. This implies however that allowing negative discretionary

spending restores dynamic Pareto efficiency, and indeed we have this result.

Proposition 9. Under a budgetary institution that allows positive or negative discretionary

spending and positive mandatory spending, that is Z = {(kt, gt) ∈ R×R+ : kt + gt ≥ 0}, then

every equilibrium σ∗ is dynamically Pareto efficient for any status quo g0 ∈ R+.

Proposition 9 is straightforward from the proof of Proposition 8 so we omit the proof.

To compare the result to other budgetary institutions, Figure 4 below provides an example

of equilibrium allocations for budgetary institutions that allow for mandatory spending pro-

grams, either in isolation or in combination with discretionary spending. The parameters

used are the same as in Figure 3.

x2

x1

θA2

θA1

θB2

θB1

xσ
∗

x∗

(a) Mandatory only

x2

x1

θA2

θA1

θB2

θB1

xσ
∗

x∗

(b) Mandatory and positive
only discretionary

x2

x1

θA2

θA1

θB2

θB1

xσ
∗

x∗

(c) Mandatory and positive or
negative discretionary

Figure 4: Equilibrium allocations under different budgetary institutions
θA = (0.4, 0.2), θB = (0.6, 0.8), pA = pB = 1

2
, δ = 1, uit(xt) = −(xt − θit)2

In Figure 4 the dashed blue line gives all the dynamically Pareto efficient allocations for

parties A and B, and the red line gives the set of equilibrium allocations. An initial status quo

and a sequence of proposers induces an equilibrium allocation in the set. As shown in panels

4a and 4b, when mandatory spending is allowed but negative discretionary spending is not,

equilibrium allocations do not coincide with any dynamically Pareto efficient allocation for

some status quos and some realization of proposers. By contrast, when positive and negative

discretionary spending is allowed, the equilibrium allocation coincides with a dynamically
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Pareto efficient allocation for any status quo and any realization of proposers.

The reason mandatory and discretionary spending achieves dynamic Pareto efficiency is

because the proposer in the first period can perfectly tailor the spending in the first period

to first period preferences, and simultaneously tailor the next period’s status quo to avoid

the political risk. Positive or negative discretionary spending allows sufficient flexibility to

achieve this. This suggests that the efficiency result may no longer hold in a model with T > 2

periods, unless further flexibility is allowed. In the next section we consider a model with

more than two periods and stochastic preferences and show that state-contingent mandatory

spending provides such flexibility.

7 State-contingent mandatory spending

In this section we consider a richer environment in which parties bargain in T ≥ 2 periods

and preferences are stochastic in each period reflecting uncertain changes in the economy.

The economic state (henceforth we refer to the economic state as simply the state) in each

period t is st ∈ S where S is a finite set of n = |S| possible states. We assume the distribution

of states has full support in every period, but we do not require the distribution to be the

same across periods. The utility of party i in period t when the spending is x and the state

is s is ui(x, s). As before, we assume ui(x, s) is twice continuously differentiable and strictly

concave in x. Further, ui(x, s) attains a maximum at θis and we assume 0 < θAs < θBs for

all s ∈ S. The state is drawn at the beginning of each period before a proposal is made.

In this setting, we consider a budgetary institution that allows state-contingent mandatory

spending. A mandatory spending program indexed to inflation or the unemployment rate,

for example, might be thought of as a state-contingent mandatory spending program. A

proposal in period t is a spending rule gt : S → R+ where gt(s) is the level of public good

spending proposed to be allocated to the mandatory program at time t in state s. If the

responding party agrees to the proposal, the allocation implemented in period t is gt(st),

otherwise the allocation in period t is given by the status quo spending rule gt−1(st). In this

environment, a strategy for party i in period t is σit = (γit, αit). Let M be the space of all

functions from S to R+, then γit :M×S →M is a proposal strategy for party i in period t
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and αit :M× S ×M→ {0, 1} is an acceptance strategy for party i in period t. A strategy

for party i is σi = (σi1, . . . , σiT ) and a profile of strategies is σ = (σ1, σ2).

7.1 Pareto efficiency with stochastic preferences

With stochastic preferences the social planner chooses an allocation rule xt : S → R+ for

all t ∈ {1, . . . , T} to maximize the expected payoff of one of the parties subject to providing

the other party with a minimum expected dynamic payoff. Formally, a dynamically Pareto

efficient allocation rule solves the following maximization propblem:

max
{xt:S→R+}Tt=1

T∑
t=1

δt−1Est [ui(xt(st), st)]

s.t.
T∑
t=1

δt−1Est [uj(xt(st), st)] ≥ U,

(DSP-S)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. We denote the solution to (DSP-S) by the sequence

of functions x∗ = {x∗t}Tt=1. The next proposition characterizes dynamically Pareto efficient

allocation rules, anologous to Proposition 2.

Proposition 10. Any dynamically Pareto efficient allocation rule satisfies:

1. For any t and t′, x∗t = x∗t′.

2. For all s ∈ S and all t, either

− u′i(x
∗
t (s), s)

u′j(x
∗
t (s), s)

= λ∗

for some λ∗ > 0, or x∗t (s) = θAs or x∗t (s) = θBs.

Proposition 10 first states that the dynamically Pareto efficient allocation rule is inde-

pendent of time, i.e., the same allocation rule is used each period. The second part of the

proposition states that the dynamically Pareto efficient allocation rule is either one party’s

ideal each period, or satisfies the condition that the ratio of the parties’ marginal utilities is

constant across states.

We next formalize a dynamically Pareto efficient equilibrium and state the efficiency

result for state-contingent mandatory spending. Define recursively xσt (g0) for t ∈ {1, . . . , T}
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by xσ1 (g0) = γi1(g0, s1) for some i ∈ {1, 2} and some s1 ∈ S and xσt (g0) = γit(x
σ
t−1(g0), st)

for some i ∈ {1, 2} and some st ∈ S and t ∈ {2, . . . , T}. An equilibrium allocation rule

for σ given initial status quo g0 is a possible realization of a spending rule for each period,

xσ(g0) = {xσt (g0)}Tt=1. The random determination of proposers and states in each period

induces a probability distribution over allocation rules given an equilibrium σ, thus any

element in the support of this distribution is an equilibrium allocation rule for σ.

Definition 3. A profile of strategies σ is a dynamically Pareto efficient equilibrium given

initial status quo g0 ∈M if and only if

1. σ constitutes an equilibrium.

2. Every equilibrium allocation rule xσ(g0) for σ given initial status quo g0 is dynamically

Pareto efficient.

Proposition 11. Under state-contingent mandatory spending, an equilibrium is either dy-

namically Pareto efficient for any initial status quo g0 ∈ M or is outcome-equivalent to a

dynamically Pareto efficient equilibrium.

The result in Proposition 11 is in stark contrast to the inefficiency results for mandatory

spending given in Propositions 5 and 6. Note that dynamic efficiency fails in the model with

changing (deterministic) preferences and fixed mandatory spending because the proposer in

period 1 cannot specify spending in the current period separately from the status quo for the

next period. Thus either spending is constant across periods or varies with the identity of

the proposer, both of which violates dynamic Pareto efficiency.

The result with stochastic preferences is understood in an analogous way to the model

with discretionary and mandatory spending. In the first period the proposer can tailor

the status quo for each state such that the future proposer in that state has no incentive

to change it. This mitigates the political risk. This also implies the proposer in the first

period chooses the spending rule that persists across periods, satisfying the first condition

of a dynamically Pareto efficient allocation rule. The first period proposer’s maximization

problem has the same solution as the social planner’s problem with the responder’s minimum

payoff appropriately specified.

26



8 Conclusion

In this paper we study the efficiency properties of budgetary institutions. We demonstrate

that discretionary only and mandatory only budget institutions may result in dynamic inef-

ficiency, and static inefficiency in the case of mandatory only budget institutions. However,

we show that by introducing flexibility through either the endogenous choice of mandatory

and discretionary programs (in the case of two periods and deterministic, but fluctuating,

preferences), or through a state-contingent mandatory program, parties’ bargaining achieves

dynamic Pareto efficiency. We show that these budgetary institutions eliminate political risk

by allowing the proposer to choose a status quo that is not changed by future proposers

because they fully account for future changes in preferences.

We have considered mandatory spending programs that are completely state-contingent,

but it is possible that factors influencing parties’ preferences, such as the mood of the elec-

torate, cannot be contracted on. In this case it seems there is room for inefficiency even with

mandatory spending that depends on the part of the state that can be contracted on. It is

possible that further flexibility with discretionary spending may be helpful, but this may also

imply more room for political risk. That is, including discretionary spending may allow too

much flexibility resulting in proposals that depend on the identity of the proposer. We leave

for future work exploring efficiency implications of discretionary and mandatory spending

when a part of the state may not be contracted on.
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Appendix

A1 Pareto efficiency

A1.1 Proof of Proposition 1

First, we show that if xt is statically Pareto efficient, then xt ∈ [θAt, θBt]. Consider

xt /∈ [θAt, θBt]. Then we can find x′t in either (xt, θAt) or (θBt, xt) such that uAt(x
′
t) > uAt(xt)

and uBt(x
′
t) > uBt(xt), and therefore xt is not a solution to (SSP).

Second, we show that if x̃t ∈ [θAt, θBt], then x̃t is statically Pareto efficient. Let u =

ujt(x̃t). Denote the solution to (SSP) as x̂t(u). Since u′At(xt) < 0 and u′Bt(xt) > 0 for all

xt ∈ (θAt, θBt), the solution to (SSP) is x̂t(u) = x̃t for any x̃t ∈ [θAt, θBt]. �

A1.2 Proof of Proposition 2

We prove the result for a more general model with T ≥ 2. Denote a sequence of allocations

by x = {xt}Tt=1 and party i’s discounted dynamic payoff from x = {xt}Tt=1 by Ui(x) =∑T
t=1 δ

t−1uit(xt). We define a dynamically Pareto efficient allocation in the T -period problem

as the solution to the following maximization problem

maxx∈RT
+

Ui(x)

s.t. Uj(x) ≥ U
(DSP)

for some U ∈ R, i, j ∈ {A,B} and i 6= j. Denote the sequence of party i’s static ideals by

θi = {θit}Tt=1 for all i ∈ {A,B}, and denote the solution to (DSP) as x∗ = {x∗t}Tt=1.

To prove part 1, by way of contradiction, suppose x∗t′ /∈ [θAt′ , θBt′ ]. By Proposition 1 there

exists x̂t′ such that uit′(x̂t′) ≥ uit′(x
∗
t′) for all i ∈ {A,B}, and uit′(x̂t′) > uit′(x

∗
t′) for at least

one i ∈ {A,B}. Now consider x̂ = {x̂t}Tt=1, with x̂t = x∗t for all t 6= t′. Then Ui(x̂) ≥ Ui(x
∗)

for all i ∈ {A,B}, and Ui(x̂) > Ui(x
∗) for at least one i ∈ {A,B}. Thus x∗ is not dynamically

Pareto efficient.
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Next we prove part 2 by considering possible values of U . Fix i, j ∈ {A,B} with i 6= j.

For any U > Uj(θj) the solution does not exist, so assume U ≤ Uj(θj).

For U = Uj(θj), the solution to (DSP) is x∗ = θj and for any U ≤ Uj(θi), the solution to

(DSP) is x∗ = θi. What remains is to consider the case when U ∈ (Uj(θi), Uj(θj)). Suppose

θA = θB, then Uj(θi) = Uj(θj), which implies x∗ = θi. So consider θA 6= θB.

For the rest of the proof, suppose U ∈ (Uj(θi), Uj(θj)) and θA 6= θB. By part 1, we can

drop the x ∈ RT
+ constraint from (DSP) since this will be satisfied.

The Lagrangian of the modified problem is

L (x, λ) = Ui(x)− λ
[
−Uj(x) + U

]
. (A2)

By Takayama (1974, Theorem 1.D.4), if the Jacobian of the constraint has rank 1 then the

solution to (DSP) satisfies

∂L (x∗, λ∗)

∂xt
= δt−1u′it(x

∗
t ) + λ∗δt−1u′jt(x

∗
t ) = 0 (A3)

with λ∗ ≥ 0. The Jacobian is [(
δt−1

∂ujt(x
∗
t )

∂xt

)T
t=1

]
, (A4)

and it has rank 1 if there exists t′ such that x∗t′ 6= θjt′ , which we show next. Suppose x∗ = θj.

This implies Uj(x
∗) > U . Because there exists t′ such that θit′ 6= θjt′ , we can find α ∈ (0, 1)

such that xt′ = αθit′ + (1−α)θjt′ satisfies the constraints in (DSP) and strictly increases the

value of the objective function relative to x∗t′ .

If λ∗ = 0, we obtain x∗ = θi, violating the Uj(x) ≥ U constraint, and hence λ∗ > 0. �

A1.3 Proof of Lemma 1

Since x and x̃ are dynamically Pareto efficient, by Proposition 2 part 1, xt ∈ [θAt, θBt]

and x̃t ∈ [θAt, θBt] for all t. There are three possible cases.

Case (i): xt′ = x̃t′ = θAt′ . By Proposition 2, part 2 either x = θA, or x = θB, or

u′At′(xt′)+λ
∗u′Bt′(xt′) = 0 for some λ∗ > 0. Since θAt 6= θBt for any t, xt′ = θAt′ implies x 6= θB.

Next note that u′At(θAt) = 0 for all t and u′Bt(θAt) 6= 0 for any t, hence u′At′(xt′)+λ∗u′Bt′(xt′) 6=

0 for any λ∗ > 0. Thus, it must be that x = θA. A similar argument shows that x̃ = θA,

proving that x = x̃.
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Case (ii): xt′ = x̃t′ = θBt′ . Analogous to case (i), if xt′ = x̃t′ = θBt′ , then x = x̃ = θB.

Case (iii): xt′ = x̃t′ ∈ (θAt′ , θBt′). Note that x 6= θi for any i, so by Proposition 2, part

2 it must be that u′At′(xt′) + λ∗u′Bt′(xt′) = 0 for some λ∗ > 0. This implies −u′
At′ (xt′ )

u′
Bt′ (xt′ )

= λ∗.

Similarly, u′At′(x̃t′)+ λ̃∗u′Bt′(x̃t′) = 0 for some λ̃∗ > 0, implying −u′
At′ (x̃t′ )

u′
Bt′ (x̃t′ )

= λ̃∗. Since xt′ = x̃t′

it follows that λ∗ = λ̃∗. Then by Proposition 2, part 2 −u′At(xt)

u′Bt(xt)
= −u′At(x̃t)

u′Bt(x̃t)
= λ∗ for all

t. To prove xt = x̃t for all t, it remains to show that −u′At(x)

u′Bt(x)
= λ∗ has a unique solution

for any λ∗ > 0. To see this, first note that x 6= θi for any i implies xt ∈ (θAt, θBt) for

all t because otherwise, xt = θit for some i and some t, and by previous arguments this

implies x = θi, which is a contradiction. From properties of uAt and uBt, we know that

−u′At(x)

u′Bt(x)
is continuous on (θAt, θBt), −

u′At(x)

u′Bt(x)
> 0 for all x ∈ (θAt, θBt), limx→θ+At

−u′At(x)

u′Bt(x)
= 0,

limx→θ−Bt
−u′At(x)

u′Bt(x)
= ∞ and ∂

∂x

[
−u′At(x)

u′Bt(x)

]
= −u′′At(x)u

′
Bt(x)−u

′
A(x)u′′B(x)

(u′Bt(x))
2 > 0 for all x ∈ (θAt, θBt).

Hence, by the Intermediate Value Theorem, a solution to −u′At(x)

u′Bt(x)
= λ∗ exists and by the

strict monotonicity of −u′At(x)

u′Bt(x)
, it is unique. �

A1.4 Proof of Lemma 2

The “only if” part follows from Proposition 2 part 1 which states that if x = {xt}Tt=1 is

dynamically Pareto efficient, then xt satisfies static Pareto efficiency for all t.

To show the “if” part, suppose x = {xt}Tt=1 is an allocation such that xt is statically

Pareto efficient in period t for all t. The proof is trivial if θA = θB, so we consider the case

when there is a unique t′ such that θAt′ 6= θBt′ . We will show that x solves (DSP). Since

θAt = θBt for t 6= t′, by Proposition 1, xt = θAt for all t 6= t′ and xt′ solves

maxx∈R+ uit′(x)

s.t. ujt′(x) ≥ u
(SSP*)

for some ū. Since xt′ solves (SSP*), it also solves

maxx∈R+ uit′(x) +
∑

t6=t′ uit(θAt)

s.t. ujt′(x) +
∑

t6=1 ujt(θAt) ≥ u+
∑

t6=t′ ujt(θAt).
(SSP**)

Since {θAt}t6=t′ maximizes
∑

t6=t′ uit(xt) and
∑

t6=t′ ujt(xt), it follows that x solves (DSP) with

U = u+
∑

t6=t′ ujt(θAt). �
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A2 Mandatory spending

A2.1 Proof of Proposition 4

We first prove equilibrium existence by showing that a solution exists for the proposer’s

problem in period 2 given any status quo g1, and given this solution, a solution exists for the

proposer’s problem in period 1.

Consider the problem of the proposing party i ∈ {A,B} in the second period under status

quo g1 ∈ R+ and budgetary institution Z that allows for mandatory spending. The proposing

party’s maximization problem is:

max(k2,g2)∈Z ui2(k2 + g2)

s.t. uj2(k2 + g2) ≥ uj2(g1).
(P2)

Consider the related problem

max
x2∈Aj2(g1)

ui2(x2) (P ′2)

where Aj2(g1) = {x ∈ R+|uj2(x) ≥ uj2(g1)} is the responder’s acceptance set under status

quo g1. If x̂2 is a solution to (P ′2), then any (k̂2, ĝ2) ∈ Z such that k̂2 + ĝ2 = x̂2 is solution to

(P2).

We next show that for any g1 ∈ R+, a solution exists for (P ′2). To show this, we prove

that for any g1 ∈ R+, acceptance set Aj2(g1) is non-empty and compact, and apply the

Weierstrass’s Theorem. Non-emptiness follows from g1 ∈ Aj2(g1) for all g1 ∈ R+. To show

compactness, we show that Aj2(g1) is closed and bounded for all g1 ∈ R+. Closedness follows

from continuity of uj2 and boundedness follow from limx→∞ uj2(x) = −∞. To see that

limx→∞ uj2(x) = −∞, note that uj2 is continuous, differentiable and strictly concave, which

implies that uj2(x) < uj2(y) + u′j2(y)(x − y) for any x, y ∈ R+. Selecting y > θj2 gives

u′j2(y) < 0 and taking limit as x→∞ shows the claim.

We next show that a solution exists to the proposer’s problem in period 1. The proposer’s

problem in period 1 is

max
(k1,g1)∈Z

ui1(k1 + g1) + δVi(g1;σ
∗
2)

s.t. uj1(k1 + g1) + δVj(g1;σ
∗
2) ≥ uj1(g0) + δVj(g0;σ

∗
2).

(P1)
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To apply Weierstrass’s Theorem, we show Vi(g1;σ
∗
2) is continuous in g1 and the constraint

set is compact. The continuation value Vi is given by

Vi(g1;σ
∗
2) = pAui2(κ

∗
A2(g1) + γ∗A2(g1)) + pBui2(κ

∗
B2(g1) + γ∗B2(g1)), (A5)

where (κ∗i2, γ
∗
i2) is a solution to (P2) for all i ∈ {A,B}. We show that κ∗i2(g1) + γ∗i2(g1) is

continuous in g1, by first showing κ∗i2(g1) + γ∗i2(g1) is unique for any g1 ∈ R+, and then using

the Maximum Theorem.

Strict concavity of uj2 implies that Aj2(g1) is convex. Given that ui2 is strictly concave,

the solution to (P ′2) is unique for any g1. To apply the Maximum Theorem we need to

show that the correspondence Aj2 has non-empty and compact values and is continuous. We

already proved the first two properties. We next establish upper and lower hemicontinuity.

Lemma A1. Let X ⊆ R be closed and convex, let Y ⊆ R and let f : X → Y be a continuous

function. Define ϕ : X � X by

ϕ(x) = {y ∈ X|f(y) ≥ f(x)}. (A6)

1. If ϕ(x) is compact ∀x ∈ X, then ϕ is upper hemicontinuous.

2. If f is strictly concave, then ϕ is lower hemicontinuous.

Proof. To show part 1, it suffices to prove that if two sequences xn → x and yn → y satisfy

yn ∈ ϕ(xn) for all n ∈ N, then y ∈ ϕ(y). Suppose, towards a contradiction, that y /∈ ϕ(y).

Then f(y) < f(x). Since f is continuous, xn → x and yn → y, we can find n′ such that

f(yn) < f(xn) for all n′ ≥ n, which contradicts yn ∈ ϕ(xn) for all n ∈ N.

To show part 2, let xn → x and y ∈ ϕ(x). We show that for each sequence xn → x

there exists a sequence yn → y and n′ such that yn ∈ ϕ(xn) for all n ≥ n′. First suppose

f(y) > f(x). Set yn = y. Clearly, yn → y. By continuity of f , there exists n′ such that

f(yn) ≥ f(xn) for all n ≥ n′, that is, yn ∈ ϕ(xn). Next suppose f(y) = f(x). There

are two cases to consider. First, if y = x, set yn = xn. Clearly yn → y and yn ∈ ϕ(xn)

for all n. Second, suppose y 6= x. By strict concavity of f , there exist at most one such

y ∈ X. Set yn = y whenever f(xn) ≤ f(x). When f(xn) > f(x), by strict concavity
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of f , maxz∈[min {x,y},max {x,y}] f(z) has a unique solution m. Because xn → x, passing into

subsequence if necessary, f(xn) < f(m) for all n. For any xn such that f(xn) > f(x), strict

concavity of f and Intermediate Value Theorem imply that there exists a unique yn 6= xn

such that f(yn) = f(xn). �

By the Maximum Theorem, the proposer’s value function in (P ′2) is continuous in g1

and the correspondence of maximizers is upper hemicontinuous in g1. Moreover, (P ′2) for

any g1 ∈ R+ involves maximization of a strictly concave objective function over compact

interval, and thus has a unique solution. Because a singleton-valued upper hemicontinuous

correspondence is continuous as a function, for any g1 ∈ R+ there exists unique equilibrium

level of public good spending κ∗i2(g1) + γ∗i2(g1) that varies continuously in g1.

Let Vi(g1) be the continuation value of party i ∈ {A,B} at the beginning of second period

with status quo g1 ∈ R+, before the identity of the proposing party has been determined and

let j 6= i. Vi is given by

Vi(g1) = piui2(κ
∗
i2(g1) + γ∗i2(g1)) + (1− pi)ui2(κ∗j2(g1) + γ∗j2(g1)). (A7)

By continuity of κ∗i2(g1) + γ∗i2(g1) for all i ∈ {A,B}, Vi is continuous in g1. We also note that

Vi(g1) ∈ [ui2(θj2), ui2(θi2)] for any i ∈ {A,B}, j 6= i and any g1 ∈ R+. The upper bound

because θi2 is the unique maximizer of ui2. The lower bound because, for any g1 ∈ R+,

ui2(κ
∗
i2(g1) + γ∗i2(g1)) ≥ ui2(θj2), if not then i could make alternative proposal j would accept

and i would strictly prefer, and ui2(κ
∗
j2(g1) + γ∗j2(g1)) ≥ ui2(θj2), if not then j could make

alternative proposal that i would accept and j would strictly prefer.

We now proceed to the first period. Let Fi(k1, g1) for any i ∈ {A,B} denote overall

(dynamic) utility of party i under budgetary institutions that allow for both mandatory and

discretionary spending programs. Let fi(g1) denote the same utility when only mandatory

spending programs are allowed. Formally,

Fi(k1, g1) = ui1(k1 + g1) + δVi(g1)

fi(g1) = ui1(g1) + δVi(g1).
(A8)

Because Vi(g1) is continuous in g1, Fi(k1, g1) is jointly continuous in (k1, g1) and fi(g1) is
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continuous in g1.

Depending on the budgetary institution Z, the proposing party i ∈ {A,B} in the first

period under status quo g0 ∈ R+ will propose (k1, g1) ∈ Z maximizing her utility subject

to the responding party j 6= i acceptance. When only mandatory spending program are

allowed, Z = {0} × R+, and i’s equilibrium proposed public good spending is

(κ∗i1(g0), γ
∗
i1(g0)) ∈ arg max

(k1,g1)∈Z|fj(g1)≥fj(g0)
fi(g1). (A9)

When both types of spending are allowed, either Z = R+×R+ or Z = {(kt, gt) ∈ R×R+|kt+

gt ≥ 0}, depending on whether discretionary spending can be negative. In equilibrium party

i proposes public good spending

(κ∗i1(g0), γ
∗
i1(g0)) ∈ arg max

(k1,g1)∈Z|Fj(k1,g1)≥Fj(0,g0)

Fi(k1, g1). (A10)

In each of these problems, the objective function is continuous and the constraint set is

compact for any g0 ∈ R+. Continuity of Fi and fi has been noted above and compactness,

noting that Vi is bounded, follows from the analogous argument to the one made for the

second period. Hence for any g0 ∈ R+, a solution to each of the optimization problems

exists, so that κ∗i1(g0) and γ∗i1(g0) are well defined. This concludes the proof of the existence

of equilibrium σ∗.

We now prove parts 1 and 2, characterizing second-period κ∗i2 and γ∗i2. For part 1, let Z

be a budgetary institution that allows mandatory spending. Notice that for any (k2, g2) ∈ Z

with k2+g2 = x2 /∈ [θA2, θB2], there exists (k′2, g
′
2) ∈ Z with k′2+g′2 = x′2 ∈ [θA2, θB2] such that

uA2(x2) < uA2(x
′
2) and uB2(x2) < uB2(x

′
2). If κ∗i2(g1)+γ∗i2(g1) /∈ [θA2, θB2] for some i ∈ {A,B}

and g1 ∈ R+, then there exists another proposal z2 = (k′2, g
′
2) ∈ Z that is accepted under

status quo g1 and makes the proposer strictly better off. Hence κ∗i2(g1) + γ∗i2(g1) ∈ [θA2, θB2]

for all i ∈ {A,B} and g1 ∈ R+.

For part 2, assume θA2 6= θB2. There are three possible cases.

Case (i): g1 < θA2. Because uA2(g1) < uA2(θA2) and uB2(g1) < uB2(θA2), party A

proposes κ∗A2(g1) +γ∗A2(g1) = θA2. When party B proposes we claim κ∗B2(g1) +γ∗B2(g1) > θA2.

To see this first note that ui2(k2 + g2) < ui2(θA2) for any k2 + g2 < θA2 and i ∈ {A,B}.
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Furthermore, there exists ε > 0 such that uA2(g1) < uA2(θA2 + ε), by continuity of uA2, and

uB2(θA2) < uB2(θA2 + ε), by θA2 < θB2, showing the claim.

Case (ii): g1 > θB2. Analogous to case (i), κ∗B2(g1) + γ∗B2(g1) = θB2 and κ∗A2(g1) +

γ∗A2(g1) < θB2.

Case (iii): g1 ∈ [θA2, θB2]. Because uA2(k2 + g2) < uA2(g1) for any k2 + g2 > g1 and

uB2(k2 + g2) < uB2(g1) for any k2 + g2 < g1, party A will never propose or accept any

k2 + g2 > g1 and party B will never propose or accept any k2 + g2 < g1. Hence κ∗A2(g1) +

γ∗A2(g1) = κ∗B2(g1) + γ∗B2(g1) = g1. �

A2.2 Proof of Proposition 5

Take any equilibrium σ∗. The proposition rules out θAt = θBt for some t, so assume

θAt 6= θBt for all t throughout. Recall that by Proposition 4 part 2, the second-period public

good spending, given initial status quo g0 and proposing party i ∈ {A,B} in the first period,

satisfies either γ∗A2(γ
∗
i1(g0)) 6= γ∗B2(γ

∗
i1(g0)) or γ∗A2(γ

∗
i1(g0)) = γ∗B2(γ

∗
i1(g0)) = γ∗i1(g0). In the for-

mer case, xσ
∗

1 (g0) = γ∗i1(g0) and at least one of the equilibrium allocations {xσ∗1 , γ∗A2(γ∗i1(g0))}

and {xσ∗1 , γ∗B2(γ
∗
i1(g0))} is dynamically Pareto inefficient by Lemma 1. Hence if σ∗ is dy-

namically Pareto efficient equilibrium given g0, the equilibrium allocation xσ
∗
(g0) satisfies

xσ
∗

1 (g0) = xσ
∗

2 (g0).

To see part 1, consider the θB1 < θA2 case. When θB2 < θA1 the argument is similar and

omitted. Assume that σ∗ is dynamically Pareto efficient equilibrium given g0. Then xσ
∗
(g0)

with xσ
∗

1 (g0) = xσ
∗

2 (g0) is dynamically Pareto efficient allocation. Now, by Proposition 2 part

1, any dynamically Pareto efficient allocation x∗ satisfies x∗1 ∈ [θA1, θB1] and x∗2 ∈ [θA2, θB2],

which, combined with θB1 < θA2, implies x∗1 < x∗2, contradicting dynamic Pareto efficiency of

xσ
∗
(g0).

Lemma A2. Suppose uit(xt) is regular with increasing returns for all i ∈ {A,B}. If θit′ > θit′′

for all i ∈ {A,B}, then any dynamically Pareto efficient allocation x∗ satisfies x∗t′ > x∗t′′.

Proof. Since x∗ is dynamically Pareto efficient, it follows that for some α ∈ [0, 1], x∗ is a
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solution to the following maximization problem

max
x∈RT

+

αUA(x) + (1− α)UB(x),

which implies that x∗t is a solution to the following maximization problem

max
xt∈R+

αuA(xt, θAt) + (1− α)uB(xt, θBt)

for all t.

Let f(xt, θAt, θBt) = αuA(xt, θAt) + (1 − α)uB(xt, θBt). Since ∂ui
∂xt

is strictly increasing in

θit for all i, we have that ∂f
∂xt

is strictly increasing in θit for all i. It follows from standard

monotone comparative statics results (for example, Edlin and Shannon, 1998, Theorem 3)

that if θit′ > θit′′ for all i ∈ {A,B}, then x∗t′ > x∗t′′ . �

An identical argument to part 1 can be used to prove part 2. By Lemma A2, we know that

any dynamically Pareto efficient allocation x∗ satisfies x∗1 6= x∗2, whereas σ∗, if it constitutes

dynamically Pareto efficient equilibrium given g0, gives rise to equilibrium allocation xσ
∗
(g0)

with xσ
∗

1 (g0) = xσ
∗

2 (g0).

Lemma A3. Suppose uit(xt) = −(|xt − θit|)r where r > 1. Then an allocation x is dynami-

cally Pareto efficient if and only if x = αθi + (1− α)θj for any α ∈ [0, 1].

Proof. Fix i, j ∈ {A,B} with i 6= j in (DSP). For any U > Uj(θj) the solution to (DSP)

does not exist so assume U ≤ Uj(θj).

Suppose θi = θj. Then for any U ≤ Uj(θj) there exists unique solution to (DSP), x∗ = θi,

and x∗ = αθi + (1− α)θj for any α ∈ [0, 1].

Suppose θi 6= θj. For U = Uj(θj), the solution is x∗ = θj and for any U ≤ Uj(θi), the

solution is x∗ = θi, to that x∗ = αθi + (1−α)θj for α ∈ {0, 1}. What remains is to consider

the case when U ∈ (Uj(θi), Uj(θj)).

For the rest of the proof, suppose U ∈ (Uj(θi), Uj(θj)) and θi 6= θj. By Proposition 2

part 1, we can drop the x ∈ RT
+ constrain from (DSP) since it will be satisfied. Lagrangian

of the modified problem is L(x, λ) = Ui(x)− λ[−Uj(x) + U ]. By Takayama (1974, Theorem

1.D.2), and since there exists x such that Uj(x) > U , x = θj,
∂L(x∗,λ∗)

∂xt
= 0 with λ∗ ≥ 0 for

all t is both sufficient and necessary for x∗.

38



Assume i = A. If i = B, the argument is similar and omitted. Because x∗t ∈ [θAt, θBt]

for all t, ∂L(x∗,λ∗)
∂xt

1
r

= −(x∗t − θAt)r−1 + λ∗(θBt − x∗t )r−1 so that ∂L(x∗,λ∗)
∂xt

= 0 is equivalent to

−(x∗t − θAt)r−1 +λ∗(θBt−x∗t )r−1 = 0. If λ∗ = 0, we obtain x∗ = θA, violating the UB(x) ≥ U

constraint, and hence λ∗ > 0. If x∗t = θBt or x∗t = θAt, we obtain x∗t = θAt or x∗t = θBt

respectively, which is possible if and only if θAt = θBt. Hence for all t such that θAt 6= θBt,

x∗t−θAt

θBt−x∗t
= [λ∗]

1
r−1 with λ∗ > 0.

Thus θBt − x∗t = (θBt′ − x∗t′)
θBt−θAt

θBt′−θAt′
for all t where t′ ∈ {t|θAt 6= θBt}, so that UB(x∗) =(

θBt′−x∗t′
θBt′−θAt

)r∑T
t=1 δ

t−1(−(θBt − θAt)
r). Argument similar to the one used in the proof of

Proposition 2 shows that UB(x∗) = U , which rewrites as
θBt′−x∗t′
θBt′−θAt

=
(

U
UB(θA)

) 1
r

= α ⇔

x∗t′ = αθAt′ + (1 − α)θBt′ . To conclude the proof we note that U ∈ (UB(θA), UB(θB)) and

UB(θB) = 0, and hence α ∈ (0, 1). �

To see the final result, assume again that σ∗ is dynamically Pareto efficient given g0, so

that xσ
∗

1 (g0) = xσ
∗

2 (g0). By Lemma A3, x is dynamically Pareto efficient allocation if and

only if x = αθA + (1−α)θB for any α ∈ [0, 1]. This implies any dynamically Pareto efficient

allocation {x∗1, x∗2} can be written as x∗1(α) = αθA1+(1−α)θB1 and x∗2(α) = αθA2+(1−α)θB2.

Because xσ
∗

1 (g0) = xσ
∗

2 (g0) is dynamically Pareto efficient allocation, xσ
∗

1 (g0) = x∗1(α
∗) and

xσ
∗

2 (g0) = x∗2(α
∗) where α∗ solves x∗1(α) = x∗2(α). Straightforward algebra shows α∗ =

θB1−θB2

θB1−θB2+θA2−θA1
. Because sgn [θB1 − θB2] = sgn [θA2 − θA1] and θi1 6= θi2 for all i ∈ {A,B},

α∗ ∈ (0, 1). This implies x∗1(α
∗) ∈ (θA1, θB1), x

∗
2(α
∗) ∈ (θA2, θB2) and xσ

∗
1 (g0) = xσ

∗
2 (g0) ∈

(θA1, θB1) ∩ (θA2, θB2). Because α∗ is unique and xσ
∗

1 (g0) = x∗1(α
∗), γ∗A1(g0) = γ∗B1(g0) ∈

(θA1, θB1) ∩ (θA2, θB2), if σ∗ is dynamically Pareto efficient equilibrium given g0.

We now argue that fA(γ∗A1(g0)) = fA(g0) and fB(γ∗A1(g0)) = fB(g0) for any g0 such that

σ∗ is dynamically Pareto efficient given g0. To see this, note that fA(γ∗A1(g0)) ≥ fA(g0) and

fB(γ∗A1(g0)) ≥ fB(g0), because γ∗A1(g0) is proposed by A and accepted by B under status quo

g0. Now assume that at least one of the inequalities is strict. We claim that fA(γ∗A1(g0)) =

fA(g0) and fB(γ∗A1(g0)) > fB(g0) contradicts optimality of A proposing γ∗A1(g0). Similar

omitted arguments can be used to rule out the remaining cases. When fA(γ∗A1(g0)) = fA(g0)

and fB(γ∗A1(g0)) > fB(g0), we will show that there exists ε > 0 such that fi(γ
∗
A1(g0) − ε) >
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fi(γ
∗
A1(g0)) for all i ∈ {A,B}, so that proposing γ∗A1(g0) cannot be optimal for A. To see

that such ε exists, we note that γ∗A1(g0) ∈ (θA1, θB1) ∩ (θA2, θB2) and that fA(g1) and fB(g1)

are respectively strictly decreasing and strictly increasing in g1 on (θA1, θB1) ∩ (θA2, θB2).

The claimed properties of fi for i ∈ {A,B} follow from fi(g1) = ui1(g1) + δVi(g1), where

Vi(g1) = ui2(g1) for all g1 ∈ [θA2, θB2] by Proposition 4 part 2.

We know that fA(γ∗A1(g0)) = fA(g0) for any g0 such that σ∗ is dynamically Pareto efficient

equilibrium given g0 and that γ∗A1(g0) = x∗1(α
∗). To finish the proof of the final result, we

show that there exists finite set of initial status quos g0 that solve fA(x∗1(α
∗)) = fA(g0). We

use the following set of results.

Lemma A4. Suppose uit(xt) = −(|xt − θit|)r where r > 1 and Z = {0} × R+. Then

κ∗i2(g1) = 0 for all i ∈ {A,B} and all g1 ∈ R+ and

γ∗A2(g1) = max {θA2,min {g1, 2θB2 − g1}}

γ∗B2(g1) = min {θB2,max {g1, 2θA2 − g1}}

for all g1 ∈ R+. Moreover, for all g1 ∈ R+ \ {2θA2 − θB2, θA2, θB2, 2θB2 − θA2} and for all

i ∈ {A,B}, V ′′i (g1) exists and V ′′i (g1) ≤ 0.

Proof. If Z = {0} ×R+, only mandatory spending programs are allowed and κ∗i2(g1) = 0 for

all i ∈ {A,B} and all g1 ∈ R+ is immediate. To prove the claimed structure of γ∗i2(g1), the

acceptance set of each party is

AA2(g1) = [min {g1, 2θA2 − g1},max {g1, 2θA2 − g1}] ∩ R+

AB2(g1) = [min {g1, 2θB2 − g1},max {g1, 2θB2 − g1}] ∩ R+

(A11)

which follows from the fact that under status quo g1, party i ∈ {A,B} is willing to accept

any policy (weakly) closer to θi2 than g1. When party i ∈ {A,B} is the proposer and party

j 6= i the responder, party i proposes θi2 for any g1 such that θi2 ∈ Aj2(g1). For any g1 such

that θi2 /∈ Aj2(g1), party A proposes the minimal level of public good B is willing to accept,

min {g1, 2θB2 − g1}, and party B proposes the maximal level of public good A is willing to

accept, max {g1, 2θA2 − g1}. Because θA2 ≤ min {g1, 2θB2 − g1} when θA2 /∈ AB2(g1) and

θA2 ≥ min {g1, 2θB2 − g1} when θA2 ∈ AB2(g1), we can write γ∗A2(g1) as stated. Similarly,
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θB2 ≥ max {g1, 2θA2 − g1} when θB2 /∈ AA2(g1) and θB2 ≤ max {g1, 2θA2 − g1} when θB2 ∈

AA2(g1) allows us to write γ∗B2(g1) as stated.

To prove that V ′′i (g1) exists and V ′′i (g1) ≤ 0 for any i ∈ {A,B} and any status quo

g1 ∈ R+ \ {2θA2 − θB2, θA2, θB2, 2θB2 − θA2}, denote Q1 = (0,max {0, 2θA2 − θB2}), Q2 =

(max {0, 2θA2 − θB2}, θA2), Q3 = (θA2, θB2), Q4 = (θB2, 2θB2−θA2) and Q5 = (2θB2−θA2,∞).

Note that some of these intervals need not exists, for example when 2θA2 − θB2 ≤ 0 or

θA2 = 0 or θA2 = θB2. Inspection of expression for γ∗A2(g1) shows that it is constant in g1 on

Q1 ∪Q2 ∪Q5, equals g1 on Q3 and equals 2θB2 − g1 on Q4. Similarly, γ∗B2(g1) is constant in

g1 on Q1 ∪ Q4 ∪ Q5, equals 2θA2 − g1 on Q2 and equals g1 on Q3. Direct substitution into

Vi(g1) =
∑

j∈{A,B} pjui2(κ
∗
j2(g1) + γ∗j2(g1)) then gives

V ′i (g1) =



−pBu′i2(2θA2 − g1) if g1 ∈ Q2

u′i2(g1) if g1 ∈ Q3

−pAu′i2(2θB2 − g1) if g1 ∈ Q4

0 if g1 ∈ Q1 ∪Q5.

(A12)

Clearly V ′′i (g1) exists and, by strict concavity of the stage utilities, V ′′i (g1) ≤ 0 for all i ∈

{A,B} and for all g1 ∈ Qk for k ∈ {1, . . . , 5}. Noting R+\{2θA2−θB2, θA2, θB2, 2θB2−θA2} =

∪k∈{1,...,5}Qk concludes the proof of the lemma. �

Returning to the proof of the proposition, we need to show that there exists a finite

set of initial status quos g0 that solve fA(x∗1(α
∗)) = fA(g0). By Lemma A4, f ′′A(g0) =

u′′A1(g0) + δV ′′A(g0) < 0 for any g0 ∈ ∪k∈{1,...,5}Qk. Hence fA(x∗1(α
∗)) = fA(g0) has at most

two solutions on Qk for each k ∈ {1, . . . , 5}, because fA(g0) is strictly concave on Qk. Since

R+ \ ∪k∈{1,...,5}Qk includes at most finite set of points {2θA2 − θB2, θA2, θB2, 2θB2 − θA2}, set

of solutions of fA(x∗1(α
∗)) = fA(g0) on R+ is finite. �

A2.3 Proof of Proposition 6

The strategy of the proof is to show that if Z = {0} × R+ and uit(xt) = −(xt − θit)2 for

all i ∈ {A,B} and all t, then θA1−θA2

θB2−θA2
∈ (0, ψ(δ, pA)) implies that fA(g1) has unique global

maximum at g∗A < θA1 and θB2−θB1

θB2−θA2
∈ (0, ψ(δ, pB)) implies that fB(g1) has unique global
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maximum at g∗B > θB1. For initial status quo g0 = g∗i for some i ∈ {A,B}, this implies

that the only proposal i is willing to accept is (0, g∗i ) and we know, by Proposition 1, that

0 + g∗i /∈ [θA1, θB1] is statically Pareto inefficient. That the inefficiency extends to a set I of

non-zero measure follows from continuity of fi shown in the proof of Proposition 4 and from

g∗i begin unique maximizer of fi.

We will show that, under the remaining conditions of the proposition, fA(g1) has unique

global maximum with the claimed properties. Proof for fB is analogous and omitted in

the sake of space. Because θA1−θA2

θB2−θA2
∈ (0, ψ(δ, pA)) cannot hold when θA1 ≤ θA2 or when

θA2 = θB2 when ψ(δ, pA) is finite, throughout the proof assume θA1 > θA2 and θA2 < θB2.

These assumptions imply, denoting ρA = θA1−θA2

θB2−θA2
, ρA ∈ (0,∞).

From the proof of Proposition 4 we know fA(g1) is continuous function of g1 on R+. From

the proof of Lemma A4, we know that if Z = {0} × R+ and uit(xt) = −(xt − θit)2 for all

i ∈ {A,B} and all t, then VA is continuously differentiable on R+\{2θA2−θB2, θA2, θB2, 2θB2−

θA2}. Inspection of (A12) in the proof of Lemma A4 shows that VA(g1) is increasing in g1

on [0, θA2]. Because fA(g1) = uA1(g1) + δVA(g1) and θA1 > θA2, g
∗
A > θA2 for any g∗A ∈

arg maxg1∈R+
fA(g1). Using the same Qk intervals as in the proof of Lemma A4, Q3 =

(θA2, θB2), Q4 = (θB2, 2θB2 − θA2) Q5 = (2θB2 − θA2,∞), this implies g∗A ∈ ({θB2, 2θB2 −

θA2}) ∪ (∪k∈{3,4,5}Qk).

From (A12) and θA2 < θB2, we have

lim
g1→θ−B2

V ′A(g1) = u′A2(θB2) < 0 < lim
g1→θ+B2

V ′A(g1) = −pAu′A2(θB2)

lim
g1→(2θB2−θA2)−

V ′A(g1) = 0 = lim
g1→(2θB2−θA2)+

V ′A(g1)

(A13)

so that θB2 6= g∗A and f ′A(g∗A) = 0, where the latter condition is also sufficient for g∗A because

fA is piecewise strictly concave by Lemma A4. Solving f ′A(g1) = 0 for different intervals Qk

gives

g∗A,3 = θA1+δθA2

1+δ
g∗A,4 = θA1+δpA(2θB2−θA2)

1+δpA
g∗A,5 = θA1 (A14)

where, for k ∈ {3, 4, 5}, g∗A,k is local maximum of fA if g∗A,k ∈ Qk. g∗A,k ∈ Qk rewrites as

ρA ∈ (0, 1+δ) for k = 3, ρA ∈ (1−δpA, 2) for k = 4 and ρA ∈ (2,∞) for k = 5. The remaining
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possibility, f ′A(2θB2 − θA2) = 0, implies u′A1(2θB2 − θA2) = 0 and rewrites as ρA = 2.

This implies that if ρA ≥ 2, fA has unique global maximum at g∗A = θA1. If ρA ∈ (0, 2), fA

has global maximum either at g∗A,3 or at g∗A,4. Since, g∗A,3 < θA1 if g∗A,3 ∈ Q3 and g∗A,4 > θA1 if

g∗A,4 ∈ Qk, we need to show that the condition ensuring that g∗A,3 is unique global maximum

of fA is ρA ∈ (0, ψ(δ, pA)). Direct evaluation, g∗A,3 ∈ [θA2, θB2] with Proposition 4 part 2 and

some algebra give

fA(g∗A,3) = − δ
1+δ

(θA1 − θA2)2

fA(g∗A,4) = − δpA
1+δpA

(2(θB2 − θA2)− (θA1 − θA2))2

− δ(1− pA)(θB2 − θA2)2.

(A15)

Further algebra shows that fA(g∗A,3) > fA(g∗A,4) implies ρA < ψ(δ, pA), where

ψ(δ, p) = (1 + δ)

[
1 + 1+p

1−p

(√
1+δp
1+δ
− 1

)]
. (A16)

What remains is to show ψ(δ, p) ∈ (1, 1+δ) (and hence ψ(δ, p) > 1), ∂ψ(δ,p)
∂δ

> 0, ∂ψ(δ,p)
∂p

< 0

for any (δ, p) ∈ (0, 1] × (0, 1). ψ(δ, p) < 1 + δ is immediate as 1+δp
1+δ

< 1 for any (δ, p) ∈

(0, 1] × (0, 1). ψ(δ, p) > 1 for any (δ, p) ∈ (0, 1] × (0, 1) follows from limδ→0+ ψ(δ, p) = 1

for any p ∈ (0, 1), obtained by direct evaluation, and limp→1− ψ(δ, p) = 1 for any δ ∈ (0, 1],

obtained by application of L’Hopital’s rule, if we prove ∂ψ(δ,p)
∂δ

> 0 and ∂ψ(δ,p)
∂p

< 0 for any

(δ, p) ∈ (0, 1]× (0, 1). The partial derivatives are

∂ψ(δ,p)
∂δ

=
(1+p)((1−p)+2p(1+δ))−4p(1+δ)

√
1+δp
1+δ

2(1−p)(1+δ)
√

1+δp
1+δ

∂ψ(δ,p)
∂p

=
4(1+δp)+δ((1−p)(1+p))−4(1+δ)

√
1+δp
1+δ

2(1−p)2
√

1+δp
1+δ

.

(A17)

The denominator in each expression is strictly positive for any (δ, p) ∈ (0, 1]× (0, 1). Condi-

tions for the numerators to have the claimed signs are

(1− p)2[(1 + p)2 + 4p(1 + δ)(1 + δp)] > 0

δ(1− p)2[8(1 + δp)− δ(1 + p)2] > 0
(A18)

and clearly hold for any (δ, p) ∈ (0, 1]× (0, 1). �
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A2.4 Proof of Proposition 7

We first prove part 1. When θA2 = θB2 by Proposition 4 part 1, κ∗i2(g1) + γ∗i2(g1) = θA2

for all i ∈ {A,B} and all g1 ∈ R+. The continuation value of each party i ∈ {A,B} is

thus Vi(g1) = ui2(θA2) for all g1 ∈ R+. Proposing party i ∈ {A,B} in the first period under

initial status quo g0 thus makes a proposal that solves max(0,g1)∈Z ui1(g1) + δui2(θA2) subject

to acceptance constraint by the responder j 6= i, uj1(g1) + δuj2(θA2) ≥ uj1(g0) + δuj2(θA2).

This problem is identical, safe for the constants, to (SSP). κ∗i1(g0)+γ∗i1(g0) for any g0 ∈ R+ is

thus statically Pareto efficient allocation in period 1. Because θA2 is statically Pareto efficient

allocation in period 2, by Lemma 2, {xσ∗1 (g0), x
σ∗
2 (g0)} with xσ

∗
1 (g0) = κ∗i1(g0)+γ∗i1(g0) for any

i ∈ {A,B} and xσ
∗

2 (g0) = θA2 is statically Pareto efficient allocation in period t for all t and

hence is dynamically Pareto efficient. Hence equilibrium σ∗ is dynamically Pareto efficient

for any initial status quo g0 ∈ R+.

We begin the proof of part 2 with the following lemma.

Lemma A5. Suppose uit(xt) is regular for all i ∈ {A,B} and θit is constant in t for all

i ∈ {A,B}. Then an allocation x is dynamically Pareto efficient if and only if x = {x̃}Tt=1

and x̃ ∈ [θA1, θB1].

Proof. We first prove the only if part of the lemma: if uit(xt) = ui(xt, θit) and θit is constant in

t for all i ∈ {A,B}, then any dynamically Pareto efficient allocation x∗ satisfies x∗ = {x̃}Tt=1

with x̃ ∈ [θA1, θB1].

If x∗ = θA, or x∗ = θB, then the result follows immediately. Until we prove the only if

part, suppose x∗ 6= θA and x∗ 6= θB.

Suppose θAt = θBt. By Proposition 2 part 1, x∗t = θit. If θit is constant in t for all

i ∈ {A,B}, then θAt′ = θBt′ for any t′ 6= t and by Proposition 2 part 1, x∗t′ = θit′ , which in

turn implies that x∗t′ = x∗t .

Suppose that θAt 6= θBt, then by Proposition 2 part 2, we have, for any t and t′ 6= t,

u′At(x
∗
t )

u′Bt(x
∗
t )

=
u′At′(x

∗
t′)

u′Bt′(x
∗
t′)
.
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Since uit(xt) = ui(xt, θit), this implies that

∂uA(x∗t , θAt)/∂x

∂uB(x∗t , θBt)/∂x
=
∂uA(x∗t′ , θAt′)/∂x

∂uB(x∗t′ , θBt′)/∂x
.

As shown in the proof of Lemma 1, the solution to −u′At(x)

u′Bt(x)
= λ∗ is unique for any λ∗ > 0

and t. Therefore the solution to − ∂uA(x,θAt)/∂x
∂uB(x,θBt)/∂x

= λ∗ is unique for any pair of (θAt, θBt). Since

θit = θit′ for all i ∈ {A,B}, it follows that we have x∗t′ = x∗t .

We now prove the if part of the lemma: if uit(xt) = ui(xt, θit) and θit is constant in t

for all i ∈ {A,B}, then any x = {x̃}Tt=1 with x̃ ∈ [θA1, θB1] is dynamically Pareto efficient

allocation.

If θit is constant in t for all i ∈ {A,B}, then from the previous part x∗ = {x̃}Tt=1 for some x̃.

We can thus rewrite (DSP) as maxx̃∈R+ ui(x̃, θi1)
∑T

t=1 δ
t−1 subject to uj(x̃, θj1)

∑T
t=1 δ

t−1 ≥

U , which is equivalent to (SSP). By Proposition 1, if x̃ ∈ [θA1, θB1], then x̃ solves (SSP). �

Take any equilibrium σ∗. We show that the equilibrium allocation xσ
∗
(g0) satisfies

xσ
∗

1 (g0) = xσ
∗

2 (g0) ∈ [θA1, θB1] for any g0 ∈ R+, which, by Lemma A5, implies that σ∗ is

dynamically Pareto efficient for any g0 ∈ R+. To prove that xσ
∗

1 (g0) = xσ
∗

2 (g0) ∈ [θA1, θB1] for

any g0 ∈ R+, it suffices to show that γ∗i1(g0) ∈ [θA1, θB1] for any g0 ∈ R+ and any i ∈ {A,B}.

When only mandatory spending programs are allowed, κ∗it(gt−1) = 0 for any i ∈ {A,B} and

any t, so that xσ
∗

1 (g0) = γ∗i1(g0) and xσ
∗

2 (g0) = γ∗j2(γ
∗
i1(g0)) for some i, j ∈ {A,B}. When

θA2 = θB2 (so that θA1 = θB1), γ
∗
i1(g0) ∈ [θA1, θB1] rewrites as γ∗i1(g0) = θA1 and, by Proposi-

tion 4 part 1, γ∗j2(γ
∗
i1(g0)) = θA2. When θA2 6= θB2, γ

∗
i1(g0) ∈ [θA1, θB1] implies, by Proposition

4 part 2, γ∗j2(γ
∗
i1(g0)) = γ∗i1(g0).

We now show that γ∗i1(g0) ∈ [θA1, θB1] for any g0 ∈ R+ and any i ∈ {A,B}. Suppose there

exists i ∈ {A,B} and g0 ∈ R+ such that γ∗i1(g0) /∈ [θA1, θB1]. We claim that this contradicts

γ∗i1 being part of equilibrium σ∗. The desired contradiction follows from the fact that if

θA1 = θA2, θB1 = θB2 and uit(xt) = ui(xt, θit), then for any g1 ∈ R+ \ [θA2, θB2], there exists

g̃(g1) ∈ [θA2, θB2] such that fA(g1) < fA(g̃(g1)) and fB(g1) < fB(g̃(g1)).

To see that g̃(g1) exists for any g1 ∈ R+ \ [θA2, θB2] and has the claimed properties, let

g̃(g1) = pA(κ∗A2(g1) + γ∗A2(g1)) + pB(κ∗B2(g1) + γ∗B2(g1)). When θA2 = θB2, g̃(g0) = θA2 by

Proposition 4 part 1 and fA(g1) < fA(g̃(g1)) and fB(g1) < fB(g̃(g1)) for any g1 ∈ R+ \ {θA2}
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are immediate. When θA2 6= θB2, we consider the case when g1 < θA2. When g1 > θB2 the

argument is similar and omitted. From the proof of Proposition 4 we know that if g1 < θA2,

then κ∗A2(g1) + γ∗A2(g1) = θA2 and κ∗B2(g1) + γ∗B2(g1) > θA2. Because of the restriction to

mandatory spending only, this rewrites as γ∗A2(g1) = θA2 and γ∗B2(g1) > θA2. We also have

γ∗B2(g1) ≤ θB2 by Proposition 4 part 1. From γ∗A2(g1) = θA2 < γ∗B2(g1) ∈ (θA2, θB2] for any

g1 < θA2, g̃(g1) ∈ (θA2, γ
∗
B2(g1)) ⊆ [θA2, θB2] for any g1 < θA2. This implies, for any g1 < θA2,

uB2(g1) < uB2(g̃(g1)) and uA2(g1) ≤ uA2(γ
∗
B2(g1)) < uA2(g̃(g1)), where the weak inequality

follows from A’s acceptance of γ∗B2(g1) under status quo g1 and the remaining inequalities

follow from g̃(g1) ∈ (θA2, γ
∗
B2(g1)). Since uit(xt) = ui(xt, θit) and θi1 = θi2 for all i ∈ {A,B},

ui1(g1) < ui1(g̃(g1)) for any i ∈ {A,B} and any g1 < θA2.

What remains is to show that Vi(g1) < Vi(g̃(g1)) for any i ∈ {A,B} and any g1 < θA2.

The inequality rewrites as

pAui2(θA2) + pBui2(γ
∗
B2(g1)) < ui2(g̃(g1)) = ui2(pAθA2 + pBγ

∗
B2(g1)). (A19)

The left hand side simply substitutes into definition of Vi. The right hand side follows from

Proposition 4 part 2 and g̃(g1) ∈ [θA2, θB2]. Note that the left hand side is expected utility of

a lottery over spending levels θA2 and γ∗B2(g1), while the right hand side is utility of expected

spending under the same lottery. By strict concavity of ui2 for i ∈ {A,B}, the inequality

holds and hence Vi(g1) < Vi(g̃(g1)) for any g1 < θ2. �

A3 State-contingent mandatory spending

A3.1 Proof of Proposition 10

To prove part 1, by way of contradiction, suppose x∗t 6= x∗t′ for some t 6= t′. Then

there exists s ∈ S such that x∗t (s) 6= x∗t′(s). Suppose x∗t (s) < x∗t′(s). For x∗t (s) > x∗t′(s),

the argument is similar and will not be repeated. We now show that there exists x′ ∈

(x∗t (s), x
∗
t′(s)) such that

δt−1ui(x
∗
t (s), s) + δt

′−1ui(x
∗
t′(s), s) < (δt−1 + δt

′−1)ui(x
′, s) (A20)
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for all i ∈ {1, 2}, so that x∗ = {x∗t}Tt=1 cannot be solution to (DSP-S). From strict concavity

of ui, αui(x
∗
t (s), s)+(1−α)ui(x

∗
t′(s), s) < ui(αx

∗
t (s)+(1−α)x∗t′(s)) for any α ∈ (0, 1). Setting

α = δt−1

δt−1+δt′−1 ∈ (0, 1) and x′ = αx∗t (s)+(1−α)x∗t′(s), shows that the desired inequality holds.

Next we prove part 2 by considering possible values of U . Fix i, j ∈ {A,B} with

i 6= j. For any U >
∑T

t=1 δ
t−1Es[uj(θjs, s)], the solution does not exist, so assume U ≤∑T

t=1 δ
t−1Es[uj(θjs, s)].

For U =
∑T

t=1 δ
t−1Es[uj(θjs, s)], the solution to (DSP-S) is x∗t = θjs for all t and s ∈ S

and for any U ≤
∑T

t=1 δ
t−1Es[uj(θis, s)], the solution to (DSP-S) is x∗t = θis for all t and

s ∈ S. What remains is the case when U ∈ (
∑T

t=1 δ
t−1Es[uj(θis, s)],

∑T
t=1 δ

t−1Es[uj(θjs, s)]).

Constructing Lagrangian for (DSP-S), the first order necessary condition with respect to

xt(s) for any t and s ∈ S writes δt−1u′i(x
∗
t (s), s)+λ∗δt−1u′j(x

∗
t (s), s) = 0 for some λ∗ ∈ (0,∞),

which simplifies to − u′i(x
∗
t (s),s)

u′j(x
∗
t (s),s)

= λ∗.

A3.2 Proof of Proposition 11

Suppose the state in period 1 is s1. Consider the following problems:

max
{xt:S→R+}Tt=1

ui(x1(s1), s1) +
T∑
t=2

δt−1Es[ui(xt(s), s)]

s.t. uj(x1(s1), s1) +
T∑
t=2

δt−1Es[uj(xt(s), s)] ≥ U
′

(DSP-S’)

max
{xAt ,xBt :S→R+}Tt=1

ui(x
i
1(s1), s1) +

T∑
t=2

δt−1Es[pAui(xAt (s), s) + pBui(x
B
t (s), s)]

s.t. uj(x
i
1(s1), s1) +

T∑
t=2

δt−1Es[pAuj(xAt (s), s) + pBuj(x
B
t (s), s)] ≥ U

′
(DSP-S”)

Since uA and uB are strictly concave in x for all s, clearly any solution to (DSP-S”)

satisfies xAt (s) = xBt (s) for all t, s. So we can just consider (DSP-S’).

Lemma A6. If x is a solution to (DSP-S’), then it satisfies:

1. For any t, t′ ≥ 2, xt = xt′. Moreover, x1(s1) = xt(s1) for t ≥ 2.
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2. For all s ∈ S and all t ≥ 2 either

− u′i(xt(s), s)

u′j(xt(s), s)
= λ

for some λ > 0, or xt(s) = θAs or xt(s) = θBs.

The proof of Lemma A6 is immediate from the proof of Proposition 10. We then have

the following result.

Lemma A7. If x is a solution to (DSP-S) for some U , then it is a solution to (DSP-S’) for

some U
′
. If x is a solution to (DSP-S’) for some U

′
and it satisfies that x1(s) = xt(s) for

t ≥ 2 and for all s, then x is a solution to (DSP-S) for some U .

Proof. Fix i, j ∈ {A,B} with i 6= j and s1 ∈ S. Note that (DSP-S) with x1(s) for s ∈ S\{s1}

held constant is equivalent to (DSP-S’) and that x1(s) for s ∈ S \ {s1} do not enter either

the objective function or the constraint in (DSP-S’). Hence if x is a solution to (DSP-S)

with U , (x1(s1), {xt : S → R+}Tt=2) is a solution to (DSP-S) with x1(s) for s ∈ S \ {s1}

held constant and hence x is a solution to (DSP-S’) with U
′

= U − Es∈S\{s1}[uj(x1(s), s)].

Similarly, if x with x1(s) = xt(s) for t ≥ 2 and for all s ∈ X solves (DSP-S’) with U
′
,

(x1(s1), {xt : S → R+}Tt=2) is a solution to (DSP-S) with x1(s) for s ∈ S \ {s1} held constant

and hence x is a solution to (DSP-S) with U = U
′
+ Es∈S\{s1}[uj(x1(s), s)]. �

We prove the proposition by establishing the following two claims. With slight abuse

of terminology, we call a spending rule g ∈ M dynamically Pareto efficient if {gt}Tt=1 with

gt = g for all t is a dynamically Pareto efficient allocation rule.

Lemma A8. For any t, if the status quo gt−1 is dynamically Pareto efficient, then γit(gt−1, st) =

gt−1 for all st and all i ∈ {A,B}.

Proof. Suppose the state in period t is st.

For any status quo gt−1 in period t, the proposer i’s equilibrium continuation payoff is

weakly higher than ui(gt−1(st), st)+
∑T

t′=t+1 δ
t′−tEs[ui(gt−1(s), s)] and the responder j’s equi-

librium continuation payoff is weakly higher than uj(gt−1(st), st)+
∑T

t′=t+1 δ
t′−tEs[uj(gt−1(s), s)].

To see why this is true, note that for any status quo in any period, a responder accepts a
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proposal if the proposal is the same as the status quo, so a proposer can maintain the status

quo by proposing it. Hence, proposer i can achieve the payoff above by proposing to main-

tain the status quo in period t and in future periods continue to propose to maintain the

status quo if it is the proposer and rejects any proposal other than the status quo if it is the

responder. Similarly, responder j can achieve the payoff above by reject any proposal other

than the status quo in period t and in future periods continue to reject any proposal other

than the status quo if it is the responder and propose to maintain the status quo if it is the

proposer.

Consider proposer i’s problem in period t

max
{gt:S→Rn

+}
ui(gt(st), st) + δVit(gt;σ

∗)

s.t. uj(gt(st), st) + δVjt(gt;σ
∗) ≥ uj(gt−1(st), st) + δVjt(gt−1;σ

∗).

where Vit(g;σ∗) is the expected discounted utility of party i ∈ {A,B} in period t generated

by strategies σ∗ when the status quo is g. We have shown above that uj(gt−1(st), st) +

δVjt(gt−1, σ
∗) ≥ uj(gt−1(st), st) +

∑T
t′=t+1 δ

t′−tEs[uj(gt−1(s), s))].

Suppose the solution to the proposer’s problem in period t is g∗t 6= gt−1. Then there exist

an allocation with xt = g∗t and future allocations induced by status quo g∗t and σ∗ such that

party i’s dynamic payoff is higher than ui(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[ui(gt−1(s), s)] and

party j’s dynamic payoff is higher than uj(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[uj(gt−1(s), s))]. But

if gt−1 is dynamically Pareto efficient, then having allocation in all periods t′ ≥ t equal to

gt−1 is a solution to (DSP-S’) with U = uj(gt−1(st), st) +
∑T

t′=t+1 δ
t′−tEs[uj(gt−1(s), s))], a

contradiction. �

Lemma A9. For any initial status quo g0 and any s1 ∈ S, the proposer makes a proposal in

period 1 that is dynamically Pareto efficient, that is, γi1(g0, s1) is dynamically Pareto efficient

for all i ∈ {A,B}.

Proof. Fix g0 and s1. Let fj(g0, s1) be the responder j’s status quo payoff. That is,

fj(g0, s1) = uj(g0(s1), s1) + δVj1(g0;σ
∗).

Let U
′

= fj(g0, s1) and denote the solution to (DSP-S’) by x(U
′
) = (x1(U

′
), ..., xT (U

′
)).
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By Lemma A6, xt(U
′
) = xt′(U

′
) for any t, t′ ≥ 2. Without loss of generality, suppose

x(U
′
) satisfies x1(U

′
) = xt(U

′
) for t ≥ 2. Note that x1(U

′
) is a dynamically Pareto efficient

allocation.

We next show that γ∗i1(g0, s1) = x1(U
′
). First note that if γ∗i1(g0, s1) = x1(U

′
), then, since

x1(U
′
) is dynamically Pareto efficient, by Lemma A8, the induced equilibrium allocation is

x(U
′
). We show by contradiction that γ∗i1(g0, s1) = x1(U

′
) is the solution to the proposer’s

problem. Suppose not. Then proposing γ∗i1(g0, s1) is strictly better than proposing x1(U
′
),

that is, proposing γ∗i1(g0, s1) gives i a strictly higher dynamic payoff while giving j a dynamic

payoff at least as high as fj(g0, s1). But since x(U
′
) is a solution to (DSP-S’) and hence a

solution to (DSP-S”), this is a contradiction. �
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