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1 Introduction

A recent literature has developed that combines two prominent empirical approaches to ex

ante policy evaluation: randomized controlled trials (RCT) and structural estimation (see,

for example, Wise (1985), Todd and Wolpin (2006), or Duflo, Hanna, and Ryan (2011)).

The RCT provides a “gold-standard” estimate of a particular treatment, but only of that

treatment. Structural estimation provides the capability to extrapolate beyond the experi-

mental treatment, but is based on untestable assumptions and is subject to structural data

mining. Combining the approaches by holding out from the structural estimation exercise

either the treatment or control sample (or a fraction of both) allows for external validation of

the underlying behavioral model. Although having intuitive appeal, the use of holdout sam-

ples is methodologically not well grounded. For instance, Bayesian analysis prescribes using

the entire sample to form posterior model probabilities and using the resulting predictive

distributions to characterize policy effects.

The contributions of this paper are twofold. First, we provide a formal, albeit stylized,

framework in which Bayesian inference and decision-making is optimal but data mining

poses an impediment to the implementation of the ideal Bayesian solution. Data mining in

this context is a process by which a modeler tries to improve the fit of the model during

estimation, for example, through changing functional forms, adding observed or latent state

variables, etc. Second, we provide a numerical illustration of the potential costs of data

mining and the potential benefits of holdout samples that are designed to discourage data

mining. Losses are measured relative to the optimal Bayesian decision. Our illustration

implies that holdout samples can provide a basis for assessing the relative credibility of

competing models.

It is important to emphasize that our paper does not argue the well-established point that

measures of in-sample goodness-of-fit need to be explicitly (e.g., Schwarz (1978)’s Bayesian

information criterion) or implicitly (e.g., Stone (1977)’s cross-validation approach) adjusted

for model complexity to avoid overfitting and enable consistent or efficient model selection.

This we take for granted. Our analysis will show that measures of model fit that are penalized

for model dimensionality can also be misleading if the modeler has access to the full sample,
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has engaged in a sequence of data-based modifications of his structural model and reports a

measure of penalized model fit only for the final specification that is the outcome of a data-

mining process. Only the validation based on a holdout sample can discourage (undesirable

features of) data mining and unduly optimistic assessments of model fit. Although data

mining is often informally cited as an argument in favor of the use of holdout samples, to

the best of our knowledge our paper is the first to provide a formalization. The use of

holdout samples to discourage data mining extends well beyond the RCT and program-

evaluation literature and is widespread in the social sciences. For instance, Schorfheide and

Wolpin (2012) discuss examples from time series analysis and macroeconomic modeling. In

the psychology literature, Mosier (1951) suggested the use of holdout samples, naming it

“validity generalization,” that is, validation by generalizing beyond the sample.

Our framework can be viewed as a principal-agent setup. A policy maker is the principal,

who would like to predict the effects of a treatment at varying treatment levels. The policy

maker has access to data from a social experiment, conducted for a single treatment level.

To assess the impact of alternative treatments, the policy maker engages two structural

modelers, the agents, each of whom estimates their structural model and provides measures

of predictive fit.1 We assume that the modelers are rewarded in terms of the fit of their model.

Two mechanisms are considered. Under the no-holdout mechanism, the modelers have access

to the full sample of observations and are evaluated based on the so-called marginal likelihood

functions that they report. In a Bayesian framework, marginal likelihoods are used to update

model probabilities. Because the modelers have access to the full sample, there is an incentive

to modify their model specifications and to overstate the marginal likelihood values. We refer

to this behavior as data mining.

Under the holdout mechanism, on the other hand, the modelers have access only to a

subset of observations and are asked by the policy maker to predict features of the sample

that is held out for model evaluation. Building on an old result by Winkler (1969) on

log scoring rules, the holdout mechanism is designed so that the modelers truthfully reveal

their subjective beliefs about the holdout sample. However, predictive distributions for the

1A structural model is one in which parameters are policy (treatment) invariant.
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holdout sample are not as informative as marginal likelihoods for the entire sample, which is

why the policy maker is unable to implement the full Bayesian analysis with this mechanism.

Our analysis abstracts from the complexities of dynamic optimization-based structural

models that are used in empirical applications. To capture the essence of a complex problem

in a stylized framework, we equip the modelers each with a linear regression model. These

models are structural in the sense that we impose a cross-coefficient restriction that allows

the modelers to identify the parameter that controls the magnitude of the treatment effect

solely based on variation in an exogenous regressor. At first glance, this assumption may

appear overly restrictive. An example in which identification might be problematic is where

treatment provides an intrinsic benefit or cost, for example, a stigma effect in the case of a

welfare program.2 However, by varying the variance of the exogenous regressors relative to

the magnitude of the treatment in the RCT, we can capture the fact that estimates of the

treatment effect based solely on variation in the exogenous regressor may be very imprecise

in comparison to estimates that also utilize information from outcome differentials among

individuals in treatment and control groups.3

We represent the act of data mining as data-based modifications of the prior distribu-

tions that the modelers use to obtain posteriors. The modified prior distributions relax

the cross-coefficient restrictions in an attempt to fit the treatment effect. In the context

of actual structural modeling, this modification of the prior is meant to capture functional

form adjustments of agents’ preferences and firms’ production functions, or the inclusion of

additional heterogeneity, to match the treatment effect in the data.

To keep the analysis manageable and transparent, our framework does not account for a

model development phase. We equip each agent with a regression model, but do not attempt

to explain how the modelers arrived at their regression specifications. The outcome of the

model development stage is typically that researchers have arrived at specifications that

are difficult to distinguish based on the available data. This is captured in our framework

by focusing on parameterizations that imply that both models have non-trivial posterior

2See Attanasio, Meghir, and Santiago (2012) and Wolpin (2013) for further discussion of this point.
3Ferrall (2012), in a study of the Canadian Self-sufficiency Project, finds that using only the control group

in estimation leads to much less precise parameter estimates.
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probabilities and that the frequency (in repeated sampling) with which the highest posterior

probability model equals the “true” model is clearly less than one.

Although we are able to give a qualitative characterization of the behavior of the modelers

under the two mechanisms based on analytical derivations, we use a numerical example to

illustrate how the size and the composition (in terms of observations from the control and

treatment groups) of the holdout sample affects the risk of the policy maker. We find that

the holdout mechanism dominates the no-holdout mechanism because of the data mining that

occurs if the modelers have access to the full sample. The lowest level of risk is attained by

holding back 50% of the sample (where the control and treatment sample are of equal size)

and providing the modelers only with data either from the control or from the treatment

group.

Conditional on it being desirable to provide the modelers with only a fraction of the

available data, our result about the optimal composition of the estimation sample may appear

counterintuitive. After all, including observations from both the control and treatment group

will allow the modelers to generate sharper estimates of the treatment effect. At the same

time, this additional information will make the treatment effect estimates more similar across

models, which makes it more difficult for the policy maker to determine the highest-posterior-

probability model based on the limited information from the predictions for the holdout

sample.

Our paper is related to several branches of the economics literature. We draw on the

literature on scoring rules and the evaluation of probability assessors when setting up the

payoff scheme for the modelers. Winkler (1969) showed that log predictive densities create

the incentive to truthfully reveal subjective probabilities. Further results on the evaluation

of probability assessors can be found in the textbook by Bernardo and Smith (1994) and in

the literature on testing of experts, e.g. Sandroni (2003). Our setup assumes that the payoff

to Modeler 1 does not depend on the predictions made by Modeler 2 (and vice versa). Thus,

by assumption we ignore possible strategic interactions among the modelers, which are the

subject of the literature on incentives of macroeconomic forecasters, e.g. Laster, Bennet,

and Geoum (1999) and Lamont (2002).
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Our work is also related to the literature on pooling of probability distributions and the

so-called expert problem, e.g., French (1985), Lindley (1985), Genest and Zidek (1986), and

Clemen and Winkler (2007). In this literature, a decision maker seeks advice from a panel

of experts and has to aggregate opinions expressed in terms of probability distributions.

However, our setup differs from this literature in that our policy maker can control the

information that is made available to the modelers (experts) and that the experts may

engage in a particular form of data mining.

Leamer (1978) studies the effect of specification searches on inference in non-experimental

settings. Lo and MacKinlay (1990) and White (2000) provide methods of correcting statis-

tical inference procedures for so-called data snooping. An example of data snooping is to

run many preliminary regressions based on a large set of explanatory variables, but only

reporting results based on a specification in which a regressor appeared to be significant and

able to, say, predict stock returns. This literature has focused on correcting standard error

estimates for data snooping. Our concept of data mining is somewhat different from the

act of searching among a large pool of regressors. We focus on data-based modifications of

structural economic models, e.g. changing functional forms, that are designed to improve

in-sample fit.

Holdout samples play an important role in cross validation approaches, e.g. Stone (1977).

The cross-validation literature showed that model validation on pseudo-holdout samples can

generate a measure of fit that penalizes model complexity. In our paper, however, the goal

is not to generate a new penalty term for in-sample fit of an econometric model. In fact,

the marginal likelihoods that are used in a Bayesian framework to construct posterior model

probabilities and serve as a benchmark for our analysis, can be interpreted as maximized

likelihood functions that are penalized for the number of free parameters in the model.

The remainder of this paper is organized as follows. For concreteness, in Section 2 we

describe a working example in which a policy maker is trying to determine the optimal level

of a school-attendance subsidy. Using a number of simplifying assumptions, we are able to

represent the structural models for the analysis of the policy question by simple univariate

linear regressions. The Bayesian solution to predicting the effects of a school-attendance
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subsidy is presented in Section 3. Section 4 contains the principal-agent setup that is used

to capture the potential benefits of weighting (or selecting) among structural models based

on predictions for holdout samples and Section 5 provides the numerical illustration. Finally,

we conclude in Section 6.

2 A Working Example

To analyze the potential benefits of holdout samples we consider the problem of evaluating

the impact of a monetary subsidy to low-income households based on school attendance of

their children. It is assumed that prior to the policy change there is no direct tuition cost

of schooling.4 The goal is to determine an optimal level of the subsidy that trades off the

costs of the subsidy program with its effect on the attendance rate. A social experiment

is conducted in which a randomly selected treatment sample is offered a school subsidy at

the level s = s̄, whereas no subsidy is provided to the households in the control sample,

that is, s = 0. The outcome variable for household i, i = 1, . . . , n, is denoted by hi and is

continuous, e.g. attendance measured in hours.

Because, in practice, it is too costly to make the treatment sample sufficiently large to

allow the treatment to be measured at a variety of subsidy levels, the policy maker has to rely

on the estimation of structural models to extrapolate the treatment effect to other levels of

treatment s∗ 6= s̄. We assume that there are two such structural models Mj, j = 1, 2. Each

household i solves the following optimization problem to determine the number of hours to

send their child to school:5

max
c∈R+,h∈[0,1]

Uj(c, h; z, u, ϑj) s.t. c = inc+ w(T − h) (1)

Here Uj(·) is a model-specific utility function, parameterized in terms of ϑj, c is household

consumption, h ∈ [0, T ] is hours spent in school, where T is the total endowment of time,

4Tuition cost variation permits the estimation of the effect of introducing a subsidy nonparametrically

for subsidy levels for which net tuition is within the domain of the tuition variation, Ichimura and Taber

(2000).
5This example is taken from Todd and Wolpin (2008).
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z is a vector of observable household characteristics, u is a random variable that captures

unobservable preference heterogeneity, and inc is parental income.

We denote the optimal attendance decision by h = ϕj(inc, w; z, u, ϑj). An attendance

subsidy s modifies the households’ budget constraint to

c = inc+ w(T − h) + sh = (inc+ s) + (w − s)(T − h) = ĩnc+ w̃(T − h). (2)

The optimal attendance choice in the presence of a subsidy is

h∗ = ϕj(ĩnc, w̃; z, u, ϑj). (3)

The modified budget constraint (2) implies that variation in household income and wage

w are sufficient to identify the effect of a school subsidy on attendance (Todd and Wolpin

(2008)). In fact, it is a key feature of many structural models that the parameters necessary

for a counterfactual policy analysis can be identified even if the sample contains no variation

in the policy instrument.

In order to simplify the subsequent exposition, suppose that the decision rule (3) is

linearized and represented in the following stylized form, where hours h is replaced by y and

x is a scalar characteristic of the household (replacing inc, w, and z):

yi = xi,jβj + siθ + ui ui|(xi, si) ∼ iidN(0, 1). (4)

For expositional convenience, we set the variance of ui equal to one. The j subscripts

in (4) capture the different assumption embodied in the two models about the relevant

characteristic x that affects the outcome. As previously mentioned, an important feature of

structural models is that they contain restrictions that allow the identification of policy effects

without sample variation in the policy instrument. To capture this aspect in our regression

model (4), we impose the restriction θ = βj.
6 Thus, variation in xi,j is sufficient to obtain an

estimate of the subsidy effect.7 Because we will subsequently use matrix notation, let Xj be

6In the example, if there is no income effect on school attendance, e.g., if the utility function is quasi-linear

in consumption and if the utility function is quadratic in hours of school attendance, then x would be the

child wage and θ = −βj .
7For convenience we assume away the existence of heterogeneous treatment effects.
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the n×1 vectors with elements xi,j, X = [X1, X2], and let Y and S be the n×1 vectors with

elements yi and si, respectively. For notational convenience we drop the intercept from (4).

However, in the numerical illustration in Section 5 we demean all regressors on the respective

subsamples considered for estimation, which essentially introduces an intercept.

3 First-Best Analysis

We proceed by specifying a formal decision problem for a policy maker who has to predict

the effect of a subsidy that differs in magnitude from the subsidy considered in the RCT. We

deliberately use a setup in which Bayesian analysis can provide the optimal (or first-best)

decision. In Section 4 below we will introduce a friction that provides an impediment to the

implementation of the optimal decision. The Bayesian approach requires us to specify prior

distributions for the parameters of models M1 and M2 as well as prior probabilities for the

models themselves. Both models are equipped with the prior distribution θ ∼ N
(
0, 1/λ2

)
.

The density of this prior is denoted by p(θ|Mj). Overall, this leads to

Mj : Y = X̃jθ + U, U |(X,S) ∼ N(0, I), θ ∼ N

(
0,

1

λ2

)
, j = 1, 2, (5)

where X̃j = Xj+S and the variance of U is assumed to be the identity matrix I for analytical

convenience. Given the randomization of the RCT, the selection of the treatment group is

independent of the observable characteristics, that is, p(X,S) = p(X)p(S). We assume

that the marginal densities of p(X) and p(S) do not depend on θ and are the same for

both models. These assumptions have the convenient implication that p(X,S) cancels from

most of the formulas presented below and we can base our derivations on the model-specific

distributions of Y |(X,S). The prior model probabilities assigned to models M1 and M2 are

denoted by πj,0 = 1/2, j = 1, 2.

The overall posterior distribution of the treatment effect is given by the mixture

p(θ|Y,X, S) =
∑
j=1,2

πj,np(θ|Y,X, S,Mj), (6)

where

πj,n =
πj,0p(Y |X,S,Mj)

p(Y |X,S)
, p(Y |X,S) =

∑
j=1,2

πj,0p(Y |X,S,Mj). (7)
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Here p(θ|Y,X, S,Mj) is the posterior density of θ conditional on model Mj, πj,n is the

posterior probability of model Mj, p(Y |X,S,Mj) is the marginal likelihood of Mj, and

p(Y |X,S) is the marginal likelihood of the mixture of M1 and M2.

We assume that the policy maker’s goal is to predict the outcome for an individual that

receives a subsidy s∗ 6= s and has characteristics (x∗1, x
∗
2) and u∗ = 0.8 The predictor of y

is denoted by ŷ and evaluated under a quadratic loss function. The posterior expected loss

(we will subsequently refer to expected loss as risk) associated with this decision is given by

ρ(ŷ|Y,X, S) =
∑
j=1,2

πj,n

∫
θ

(
(x∗j + s∗)θ − ŷ

)2
p(θ|Y,X, S,Mj)dθ. (8)

Under the quadratic loss function the optimal predictor is given by the posterior mean of

the outcome:

ŷ∗ =
∑
j=1,2

πj,n(x∗j + s∗)

∫
θp(θ|Y,X, S,Mj)dθ, (9)

which is a weighted average of the posterior mean predictions of M1 and M2. Moreover, we

can decompose the posterior risk of alternative predictors into

ρ(ŷ|Y,X, S) = ρ(ŷ∗|Y,X, S) + (ŷ − ŷ∗)2. (10)

This decomposition makes clear that the Bayes predictor ŷ∗ is first-best and any alternative

predictor that deviates from the Bayes predictor is suboptimal. The posterior risk conditions

on the observations (Y,X, S). In the numerical illustration in Section 5 We focus on the

integrated risk, which averages over (Y,X, S):

R(ŷ) =

∫
Y,X,S

ρ(ŷ∗|Y,X, S)p(Y |X,S)p(X,S)d(Y,X, S) + ∆(ŷ) (11)

∆(ŷ) =

∫
Y,X,S

(ŷ − ŷ∗)2p(Y |X,S)p(X,S)d(Y,X, S).

Equation (11) highlights that the integrated risk is also minimized by the Bayes predictor

ŷ∗. We refer to ∆(ŷ) as the (integrated) risk differential.

To calculate the optimal predictor in (9) we need to evaluate p(θ|Y,X, S,Mj) and πj,n.

The model-specific posterior for θ, the treatment effect, is given by

p(θ|Y,X, S,Mj) =
p(Y |X,S, θ,Mj)p(θ|Mj)

p(Y |X,S,Mj)
, (12)

8Because our model is linear and E[u∗] = 0, the assumption that u∗ = 0 is inconsequential. However, it

simplifies the notation a bit.
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where p(θ|Mj) is the prior distribution of θ under model Mj. The model specification in (5)

implies that this posterior distribution takes the form

θ|(Y,X, S,Mj) ∼ N

(
θ̂∗j , (λ

2 + X̃ ′jX̃j)
−1
)
, θ̂∗j = (X̃ ′jX̃j + λ2)−1X̃ ′jY (13)

The posterior model probabilities πj,n are a function of the marginal likelihoods (see (7)),

which in the linear Gaussian regression model can be calculated analytically and take the

form

p(Y |X,S,Mj) = (2π)−n/2|1 + X̃ ′jX̃j/λ
2|−1/2 (14)

× exp

{
−1

2
[Y ′(I − X̃j(X̃

′
jX̃j + λ2)−1X̃ ′j)Y ]

}
.

The exponential term captures the goodness of in-sample fit, whereas the term |1+X̃ ′jX̃j/λ
2|−1/2

can be interpreted as a penalty for model complexity. The larger λ, and thus the less diffuse

and more restrictive is the prior distribution, the less complex is the model. In fact, for

λ = ∞, there is no free parameter to be estimated. On the other hand, a more variable

regressor makes the model appear more complex. It requires a smaller value of λ and thus

the prior is in relative terms more diffuse.

4 A Principal-Agent Problem

We now introduce a friction that makes the implementation of the first-best Bayesian analysis

described in the previous section infeasible. We assume that the computation of model

conditional posteriors p(θ|Y,X, S,Mj) in (13) and marginal likelihoods p(Y |X,S,Mj) in (14)

is executed by two expert modelers (agents). In a second stage, a policy maker (principal)

aggregates the results that he obtains from the modelers to form a prediction ŷ. In some

applications this assumption might be literally satisfied in the sense that a government agency

conducts the social experiment and hires academic consultants to provide an analysis of the

policy effects. In other instances, the policy maker might correspond to the economics

profession at large as it is investigating the effectiveness of social programs and the agents

correspond to economists who conduct research on the effects of a particular policy. Because
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different individuals are assumed to be involved in the two stages of the analysis, incentive

problems potentially arise. These incentive problems, in turn, can provide a rationale for

holdout samples.

We proceed by describing the objective and constraints of the policy maker in Section 4.1.

We then discuss two mechanisms that the policy maker could use to set incentives for the

modelers in Section 4.2. One of the mechanisms involves a holdout sample. In the other

mechanism, the modelers have access to the full data set. In Section 4.3, we characterize

two options that are available to the modelers: (i) Bayesian analysis of model Mj based on

the data provided by the policy maker and (ii) in-sample data mining, which is represented

by a modification of the prior distribution. Finally, we discuss the optimal choices of the

modelers under the two mechanisms in Section 4.4.

4.1 The Policy Maker

We assume that the social experiment described in Section 2 is conducted by a policy maker.

The policy maker has access to all the data from the experiment, but can estimate only the

treatment effect in the experiment, namely by taking the difference in means between the

treatment and the control group. The estimator of the treatment effect can be represented

as coming from the statistical model

Mpm : Y = Sθ + V, (15)

where V is a n×1 vector of error terms and we use the pm subscript to denote policy maker.

The resulting estimator of the treatment effect is

θ̂pm = (S ′S)−1S ′Y. (16)

Given that the subsidy takes on only two values, s = 0 or s = s̄, the policy maker’s statistical

model Mp cannot be used to extrapolate the treatment effect to other levels of treatment

s 6= s̄. For that purpose, the policy maker engages the two modelers to analyze their

structural models M1 and M2. His objective is to obtain a predictor that minimizes the

integrated risk R(ŷ) in (11). Thus, ideally, the policy maker would like to reproduce the

Bayesian prediction ŷ∗.
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4.2 Mechanisms Available to the Policy Maker

We consider two potential mechanisms that the policy maker can use to obtain the decision-

relevant information from the modelers. Under the first mechanism, the modelers receive the

entire sample (Y,X, S). Under the second mechanism, the policy maker splits the sample

and hands the modelers only a subset of the observations. The policy maker has discretion

about the size of the holdout sample and its composition in terms of observations from the

treatment and control group.

No-Holdout Mechanism. The policy maker gives the modelers access to the entire data

set (Y,X, S). In turn, they are asked to report a marginal data density p̃j(Y |X,S) and a

posterior distribution for the treatment effect p̃j(θ|Y,X, S). We use p̃(·) rather than p(·) to

allow for the possibility that the modelers do not truthfully reveal these two objects. Only

if the reported densities coincide with the actual densities in (13) and (14) can the policy

maker implement the first-best Bayesian decision. We assume that the compensation of the

modelers is a function of how well their models are able to fit the data, adjusting for model

complexity.9 More specifically, under the no-holdout (NH) mechanism the payoff is equal to

the reported log marginal likelihood

ΠNH

(
p̃j(Y |X,S)

)
= ln p̃j(Y |X,S). (17)

The policy maker updates the model probabilities according to

π̃j,n =
πj,0p̃j(Y |X,S)

π1,0p̃1(Y |X,S) + π2,0p̃2(Y |X,S)
. (18)

Note that the payoff for Modeler 1 is independent of the action taken by Modeler 2, and vice

versa. Thus, we abstract from strategic interactions between the modelers.

Holdout Mechanism. The modelers receive the full sample of covariates and treatment

levels (X,S), but only a subset of the outcome data Y from the policy maker. The outcome

data are partitioned into Y ′ = [Y ′r , Y
′
p ], where Yr is a regression sample that is given to the

9We rule out any kind of collusive behavior among the modelers including the aggregation of model

predictions and the redistribution of payoffs.
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modelers for estimation purposes and Yp is a holdout or prediction sample that can be used

by the policy maker to evaluate predictions.10

We assume that the policy maker updates the model probabilities based on the predictive

densities p̃j(θ̂pm|Yr, X, S) for the difference-in-means estimate of the treatment effect instead

of the predictive density p̃j(Yp|Yr, X, S) for the entire holdout sample. In realistic applications

the precise evaluation of p(Yp|Yr, X, S,Mj) for one particular sample is often challenging and

time consuming. Computing this density for all possible realizations Yp is a daunting task.

The difference-in-means estimate θ̂pm, on the other hand, is a univariate statistic in our

application and reporting a predictive density is straightforward. It could easily be graphed

or tabulated. In sum, while the use of a density for Yp is theoretically attractive, it is difficult,

if not infeasible to implement. The current practice in the treatment-effect literature comes

closest to choosing model probabilities based on the θ̂-predictive density, as for example in

Todd and Wolpin (2006) and Duflo, Hanna, and Ryan (2011).

The mechanism unfolds in two stages. First, the policy maker asks the modelers to

provide a predictive density p̃j(θ̂pm|Yr, X, S) for their estimate of the treatment effect given

by (16). Similar to the compensation under the no-holdout mechanism, we assume that

under the holdout (H) mechanism the compensation takes the form:

ΠH

(
p̃j(θ̂pm|Yr, X, S)

)
= ln p̃j(θ̂pm|Yr, X, S). (19)

The predictive densities p̃j(θ̂pm|Yr, X, S) are then used to update the model probabilities:

π̃j,n =
πj,0p̃j(θ̂pm|Yr, X, S)

π1,0p̃1(θ̂pm|Yr, X, S) + π2,0p̃2(θ̂pm|Yr, X, S)
. (20)

Second, once the model probabilities are updated the policy maker makes all the outcome

data available and asks the modelers to re-estimate their models and report p̃j(θ|Y,X, S).

Allowing the modelers to re-estimate the parameters on the full sample avoids an unnecessary

loss of information about θ that would put the mechanism at a clear disadvantage. After all,

the rationale of holdout samples is merely to avoid distortions in model probabilities due to

data-mining. We use p̃j(θ|Y,X, S) to denote the posterior of θ reported by the modelers.

10For the modelers’ inference it is inconsequential, given randomization, whether they have access to the

full sample of regressors or just the subsample that corresponds to Yr. We assumed the former because it

simplifies the notation.
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4.3 The Choice Set of the Modelers

We assume that the modelers can choose between the following two options: (i) do not engage

in data mining and report results from the Bayesian analysis of Mj based on the sample

provided by the policy maker; (ii) engage in a form of data-mining that uses the available

sample to break the model-implied link between βj and θ and shift the prior distribution for

(βj, θ) toward a region of the parameter space favored by the available data.

Option (i): Bayesian Analysis of Mj. Under the no-holdout mechanism the mod-

elers have access to the full sample and report the marginal likelihood for Y , which is

given in (14). Under the holdout mechanism the modelers can compute the predictive

likelihood p(Yp|Yr, X, S,Mj), which in turn implies a predictive density for θ̂pm(Yp, Yr), de-

noted by p(θ̂pm|Yr, X, S,Mj). The corresponding full-sample posterior for θ is given by

p(θ|Y,X, S,Mj). Under a quadratic loss function the point estimate of θ is the posterior

mean.

Option (ii): In-Sample Data-Mining. We represent in-sample data mining as data-based

modification of the prior distribution associated with model Mj. In addition to breaking the

tight link between θ and βj, this form of data mining also shifts the prior toward an area

of the parameter space in which the likelihood function is relatively high. It is supposed to

capture a practice whereby a researcher inspects the data and, depending on the properties of

the data, decides which features (e.g., functional forms for utility and production functions,

adjustment cost mechanisms, household or firm heterogeneity) to include in the model and

which to leave out, without accounting for this specification search subsequently.

In our working example, given data from both the treatment and control samples, the

data-mining prior is constructed as follows. We begin by breaking the link between θ and

βj by considering the unrestricted model

Y = Xjβj + Sθ + U. (21)

Let Zj = [Xj, S] and ψj = [βj, θ]
′. Moreover, we assume that the modeler uses a prior

distribution that is centered at the peak of the likelihood function (which in our model
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coincides with the OLS estimator). Overall, the data-mined model takes the form

M̃j : Y = Zjψj + U, ψj ∼ N

(
ψ̃j, (κZ

′
jZj)

−1
)

(22)

ψ̃j = (Z ′jZj)
−1Z ′jY.

The parameter κ scales the prior precision of ψj. Based on model M̃j it is possible to

compute either the marginal likelihood function p(Y |X,S, M̃j) or the predictive density

p(θ̂pm|Yr, X, S, M̃j). The posterior distribution p(θ|Y,X, S, M̃j) under the data-mined model

remains normal, but it has a different mean and variance than the posterior in (13). Defining

MXj
= I −Xj(X

′
jXj)

−1X ′j we obtain:

θ|Y,X, S, M̃j ∼ N

(
θ̃j,
(
(κ+ 1)S ′MXj

S
)−1)

, θ̃j = (S ′MXj
Xj)

−1S ′MXj
Y. (23)

Under a quadratic loss function the point estimate of θ associate with the data-mined model

M̃j is θ̃j. Under in-sample data-mining the cross-equation restrictions that allow for a more

efficient estimation of θ are abandoned and the the stated measure of uncertainty is severely

distorted.

4.4 Optimal Choices of the Modelers

Having described the potential choices of the modelers, we can now discuss their actual

choices in the no-holdout and the holdout mechanisms.

No-Holdout Mechanism. If modeler j chooses Option (i), i.e., he truthfully reports the

results from the Bayesian analysis of Mj, then he is evaluated based on p(Y |X,S,Mj). On

the other hand, if modeler j chooses Option (ii), in-sample data mining, then he is rewarded

based on p(Y |X,S, M̃j). In order to determine the optimal choice of the modeler we now

compare the two marginal likelihood functions. The marginal likelihood associated with

Option (i) is given in (14). The marginal likelihood function associated with Option (ii)

takes the form

p(Y |X,S, M̃j) = (2π)−n/2|1/κ+ 1|−1/2 exp

{
−1

2
[Y ′(I − Zj(Z ′jZj)−1Zj)Y ]

}
, (24)
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where Y ′(I −Zj(Z ′jZj)−1Zj)Y is the sum of squared residuals (SSR) for the unrestricted re-

gression (21). Thus, compared to (14), data-mining has raised the exponential term because

the in-sample fit of the model is improved by eliminating the restriction θ = βj. Moreover,

the data-mining procedure replaced the model-specific penalty term |X̃ ′jX̃j/λ
2+1|−1/2 in (14)

by |1/κ+ 1|−1/2. Thus, provided that

κ ≥ λ2

X̃ ′jX̃j

, (25)

we obtain

p(Y |X,X, M̃j) ≥ p(Y |X,X,Mj). (26)

For κ = 1 condition (25) requires that the prior density in model Mj is more diffuse than

the likelihood function, which is a very mild restriction. We conclude that access to the full

sample creates an incentive for data-based modifications of the original model Mj because,

according to (17),

ΠNH

(
p(Y |X,X, M̃j)

)
≥ ΠNH

(
p(Y |X,X,Mj)

)
. (27)

The modeler chooses Option (ii) and the reported posterior for θ is p̃j(θ|Y,X, S) = p(θ|Y,X,X, M̃j)

given in (23).

Holdout Mechanism. Here the modeler has no information about the holdout sample

Yp. The subjective beliefs of modeler j about θ̂pm are summarized by the posterior density

p(θ̂pm|Yr, X, S,Mj). If the modeler chooses Option (i), then his expected payoff is given by

E
[
ΠH

(
p(θ̂pm|Yr, X, S,Mj)

)∣∣∣∣Yr, X, S,Mj

]
(28)

=

∫
ln[p(θ̂pm|Yr, X, S,Mj)]p(θ̂pm|Yr, X, S,Mj)dθ̂pm.

If, one the other hand, the modeler engages in in-sample data mining and chooses Option (ii),

then the expected payoff is:

E
[
ΠH

(
p(θ̂pm|Yr, X, S, M̃j)

)∣∣∣∣Yr, X, S,Mj

]
(29)

=

∫
ln[p(θ̂pm|Yr, X, S, M̃j)]p(θ̂pm|Yr, X, S,Mj)dθ̂pm.

Note that the payoff is a function of the predictive density associated with the data-mined

model M̃j, whereas the expectation is taken using the modeler’s subjective beliefs which are

based on the original model Mj.
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According to a result that dates back at least to Winkler (1969), the compensation scheme

based on the log predictive density induces the modeler to reveal his subjective beliefs. To

see why, notice that Jensen’s inequality implies that∫ (
ln

[
p(θ̂pm|Yr, X, S, M̃j)

p(θ̂pm|Yr, X, S,Mj)

]
p(θ̂pm|Yr, X, S,Mj)

)
dθ̂pm ≤ ln

[∫
p(θ̂pm|Yr, X, S, M̃j)dθ̂pm

]
= 0.

Thus, the expected payoff from reporting the results from the Bayesian analysis of model

Mj exceeds the expected payoff from data mining and the modeler chooses Option (i) under

the holdout mechanism.

So far, we have provided a qualitative characterization of the behavior of the two model-

ers. The policy maker, in our environment, can now minimize his prediction risk by choosing

between the no-holdout and the holdout mechanism. With regard to the holdout mechanism

he has to determine the optimal size and composition (in terms of observations from the

treatment and control group) of the holdout sample. The next section provides a numerical

illustration.

5 Numerical Illustration

This section provides a numerical illustration in which we compare risks under the holdout

and the no-holdout mechanism. For the holdout mechanism we consider various sample

splitting schemes that differ with respect to the relative sized and composition of the holdout

sample. The simulation design is presented in Section 5.1 and the numerical results are

discussed in Section 5.2.

5.1 Policy Experiment, Loss Function, and Parameterization

The policy maker is assumed to have conducted an experiment with n = 1, 000 observations,

500 from a randomly selected treatment group that received the subsidy, s = s̄ = 2, and

500 are from a control group that did not receive the subsidy, s = 0. We reparameterize the

prior variance such that λ = λ̃n. The implication of this reparameterization is that all the
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statistics that we compute subsequently have a well-defined limit as the sample size n −→∞.

Thus, the exact sample size n, used in the simulations is not crucial. Each individual i has

two observable characteristics, xi,1 and xi,2. Let xi = [xi,1, xi,2]
′. We assume that

xi ∼ iidN(0,Γ), Γ =

 2 0.4

0.4 2

 . (30)

Thus, the correlation between the two characteristics is 0.2. These assumptions complete

the specification of p(X,S) = p(X)p(S).

The policy maker assigns probabilities π1,0 = π2,0 = 1/2 to the two models M1 and M2.

We set the precision of the prior densities for θ in models M1 and M2 to λ̃2 = 1. This

choice of λ̃ implies that in a regression of Y on Xj the likelihood function is about twice as

informative as the prior.11 From the policy maker’s perspective the distribution of the data

takes the form

p(Y,X, S) =
1

2
p(Y,X, S|M1) +

1

2
p(Y,X, S|M2), (31)

where

p(Y,X, S|Mj) = p(X)p(S)

∫
p(Y |θ,X, S,Mj)p(θ|Mj)dθ.

The unconditional probability, integrating out the data under p(Y,X, S), that the highest

posterior probability model corresponds to the “true” model is

π1,0

∫
I{π1,n≥π2,n}p(Y,X, S|M1)d(Y,X, S) (32)

+ π2,0

∫
I{π1,n<π2,n}p(Y,X, S|M2)d(Y,X, S) = 0.68,

where the posterior model probabilities πj,n are functions of (Y,X, S) and I{x≥a} is the

indicator function that is equal to one if x ≥ a and is equal to zero otherwise. Thus, as

in real-life applications, there is substantial model uncertainty in our simulation design.

As mentioned in the introduction, we interpret the fact that the agents are equipped with

specifications that cannot be perfectly be distinguished based on the available data as the

outcome of the model development stage, that we did not incorporate into our analytical

framework. Neither of the two specifications would be strongly rejected by the data.

11Omitting the regressor S, the Hessian (multiplied by -1) of the log likelihood function is given by

X ′jXj ≈ 2n and the Hessian (multiplied by -1) of the log prior density is nλ̃2 = n.
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The policy maker contemplates raising the subsidy from s̄ = 2, the level in the experi-

ment, to s∗ = 4. To assess that new policy, the policy maker considers the prediction of the

effect of subsidy level s∗ on an individual with given characteristics x∗1 and x∗2. The prediction

is evaluated under a quadratic loss function and we will focus on the difference ∆(ŷ), defined

in (11), between the risk associated with the Bayes prediction and the prediction that the

policy maker is able to implement based on the information provided by the modelers.

To make the subsequent exposition more transparent, we take the following short cut.

Throughout the analysis we replace model averaging by model selection, restricting the model

weights to be zero or one. This leads to the following post-model-selection Bayes predictor

ŷ∗ =

 (x∗1 + s∗)θ̂∗1 if π1,n ≥ π2,n

(x∗2 + s∗)θ̂∗2 otherwise
, (33)

where θ̂∗j denotes the (full-sample) posterior mean of θ under model Mj, defined in (13).

Likewise, the policy maker computes a post-model-selection predictor based on the results

elicited from the two modelers:

ŷ =

 (x∗1 + s∗)θ̂1 if π̃1,n ≥ π̃2,n

(x∗2 + s∗)θ̂2 otherwise
. (34)

θ̂j is the posterior mean associated with the reported density p̃j(θ|Y,X, S):

θ̂j =

 θ̂∗j if modeler chooses Option (i)

θ̃j if modeler chooses Option (ii)
,

where θ̃j was defined in (23). We set

x∗1 =
√

2 and x∗2 = 0.2
√

2, (35)

i.e., we are setting x∗1 equal to its standard deviation and x∗2 equal to its expected value

conditional on x∗1 =
√

2. These choices correspond to the first column of the Cholesky factor

of Γ. Note that x∗1 6= x∗2 generates an automatic penalty for selecting a model that differs

from the highest posterior probability model.

The policy maker can choose the size and composition of regression and holdout samples.

We characterize the regression sample Yr in terms of r ∈ (0, 1], the fraction of the outcome
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Table 1: Composition of Estimation Sample Yr, n = 1, 000

τ = τmin τ = 0.5

Control Treatment Control Treatment

r = 0.2 200 0 100 100

r = 0.5 500 0 250 250

r = 0.8 500 300 400 400

r = 1.0 500 500 500 500

data, and τ , the fraction of observations from the treatment group.12 We restrict our atten-

tion to two choices of τ : τ = 0.5 and τ = τmin(r), where nrτmin(r) is the smallest number

of observations from the treatment group that can be assigned to the regression sample. If

r = 0.2 then the regression sample consists of 200 observations (recall n = 1, 000). Since Y

contains 500 observations from the treatment group τmin(r) = 0. If r = 1 then τmin(r) is

equal to 0.5. Table 1 summarizes the composition of Yr for selected values of r and the two

choices of τ . By varying r and τ the policy maker can control the variability of the regressor

Sr in the regression sample.

In the remainder of this section we analyze the size of integrated risk differentials ∆(ŷ)

under the no-holdout and the holdout mechanism. Recall that the integrated risk differential

is obtained by averaging over the data (Y,X, S) under the marginal distribution p(Y,X, S)

defined in (31). For expositional purposes, we also report results obtained by averaging

conditional on a particular value of θ. Under the holdout mechanism we can vary the size

r of the regression sample and its composition τ . To understand the shape of the risk

differential as a function of r and τ we also examine expected frequencies of choosing the

highest posterior probability model.

12Given the symmetry of our experimental design, it is immaterial whether τ is defined in terms of the

treatment or control group.
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5.2 Ranking of Mechanisms

Figure 1 depicts the risk differentials ∆(ŷ), defined in (11), under the no-holdout mechanism

(long dashed green lines) and under the holdout mechanism (solid blue and short dashed red

lines, respectively). In the left panel we use the prior distribution to average over all θ values

when computing risk differentials, whereas in the right panel we condition on θ = 3/(
√
nλ̃).

This particular value of θ, which is large in the sense that it lies in the far right tail of the prior

distribution, amplifies the risk differentials. Two important results emerge from Figure 1.

First, the risk differentials are substantially larger under the no-holdout mechanism than

under the holdout mechanism. Second, under the holdout mechanism the risk differentials

have a U shape as a function of the the size of the estimation sample r. For large values

(in absolute terms) of θ, as in the case of the right panel of Figure 1, the U shape is very

pronounced whereas the profile is fairly flat for values of θ near zero (not shown in the

figure). The differentials are uniformly smaller if the modelers receive the minimum number

of observations from the treatment sample. For τ = τmin the minimum is obtained for

r = 0.5, whereas for τ = 0.5 the minimum is achieved at, approximately, r = 0.3.

We begin by examining the large risk differentials under the no-holdout mechanism. The

discrepancy between the predictors ŷ and ŷ∗ can arise from the policy maker not being able

to choose the highest posterior probability model based on the information that he receives

from the modelers and from discrepancies between the posterior mean estimator θ̂∗j and

the estimator θ̃j associated with the data-mined model M̃j. It turns out that the latter

discrepancy is the main determinant of the risk differential.

Whenever competing models are a priori equally likely, the highest-posterior probability

model is the one that attains the highest marginal likelihood p(Y |X,S,Mj), which was given

in (14). Because in our simulation the regressors X1 and X2 have equal variance and we are

using identical priors for θ, the penalty term |1 + X̃ ′jX̃j/λ
2|−1/2 is approximately identical

for models M1 and M2. Thus, the log marginal likelihood differential is determined by the

goodness-of-fit term. Abstracting from the effect of the prior distribution, the goodness-of-fit

is determined by the SSR of a (restricted, βj = θ) regression of Y on X̃j = Xj + S. Under

the no-holdout mechanism both modelers engage in data mining (Option (ii)) and report
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Figure 1: Risk Differentials under Holdout and No-Holdout Mechanisms

Integrating Out θ Cond. on θ = 3/(
√
nλ̃)

Notes: As risk differentials we report ∆(ŷ) defined in (11). In the right panel we replace p(Y |X,S) by
p(Y |X,S, θ) when computing the risk differential. Solid blue and (short) dashed red lines depict outcomes
under the holdout mechanism, whereas (long) dashed green line depicts outcome under the no-holdout mech-
anism. Fraction of observations from treatment sample: τ = τmin is solid blue, τ = 0.5 is (short) dashed
red.

p(Y |X,S, M̃j) in (24). The penalty term is identical for the two models and the goodness-

of-fit term corresponds to the SSR associated with an (unrestricted) regression of Y on Xj

and S. It turns out that in our simulation design the model ranking based on the restricted

and unrestricted SSR is almost identical.

The loss differentials under the no-holdout mechanism are by and large generated by the

discrepancy between θ̂∗j and θ̃j. Because the assignments to treatment and control groups

are independent of the characteristics X1 and X2

θ̃j ≈ (S ′S)−1S ′Y = θ̂pm.

Thus, the policy maker does not learn anything from engaging the two structural model-

ers, because the modelers, in essence, abandon the cross-coefficient restrictions implied by

their models. In our linear setting, the cost associated with ignoring the cross-coefficient

restrictions is increasing in the variability of the regressors Xj relative to the variability of S.
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Figure 2: Probability of Finding the Highest-Post.-Prob. Model under Holdout Mechanism

Integrating Out θ Cond. on θ = 3/(
√
nλ̃)

Notes: Fraction of observations from treatment sample: τ = τmin is solid blue, τ = 0.5 is (short) dashed
red.

Given the binary nature of the treatment indicator, the latter is equal to s̄2/4 = 1, whereas

the former is set equal to 2 in our simulation design. Overall, this leads to a loss differential

of about 9.5 (see Figure 1), which is substantially larger than the loss differential under the

holdout mechanism.

Under the holdout mechanism ŷ = ŷ∗ whenever the policy maker is able to deter-

mine the highest-posterior-probability model based on the limited information contained

in p(θ̂pm|Yr, X, S,Mj). Thus, we will focus on the probability of the policy maker finding

the highest-posterior-probability model, which is depicted in Figure 2. As a function of the

size r of the regression sample, this probability has an inverted U-shape, which mirrors the

U-shaped risk differentials in Figure 1. As before, in the left panel we average over θ when

simulating the trajectories (Y,X, S), whereas in the right panel we condition on θ being

equal to three prior standard deviations: θ = 3/
√
nλ̃. Conditional on θ = 3/

√
nλ̃, the prob-

ability that Mj is the highest posterior probability model if data have been generated from

Mj is approximately one. Thus, the right panel can also be interpreted as the probability of

selecting the “true” model using p(θ̂pm|Yr, X, S,Mj).
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To understand the inverted U-shape, the following algebraic manipulations are instruc-

tive. Given the linear structure of our setup, the distribution of θ̂pm|(Yr, X, S) is normal.

Because X1 and X2 are the same variance and are uncorrelated with S the variance asso-

ciated with the posterior predictive distribution of θ̂pm|(Yr, X, S) is (in large samples) the

same for models M1 and M2. Thus, differences across models in the predictive distribution

are due to differences in the posterior means of θ̂pm. Conditional on Mj the posterior mean

of θ̂pm is given by

E[θ̂pm|Y,X, S,Mj] = (S ′S)−1S ′

 Yr

X̃j,p(X̃
′
j,rX̃j,r + λ̃2)−1X̃ ′j,rYr

 ,
where S = [S ′r, S

′
p]
′. This formula highlights that the estimated model is used to predict the

missing observations Yp by

X̃j,pE[θ|Yr, X, S,Mj] = X̃j,p(X̃
′
j,rX̃j,r + λ̃2)−1X̃ ′j,rYr.

The imputed observations together with Yr are then used to predict θ̂pm. Using the definition

of θ̂pm, we can write

(
θ̂pm − E[θ̂pm|Y,X, S,Mj]

)2
(36)

=
(
Y ′p − Y ′r X̃j,r(X̃

′
j,rX̃j,r + λ̃2)−1X̃ ′j,p

)
Sp(S

′S)−1S ′p
(
Yp − X̃j,p(X̃

′
j,rX̃j,r + λ̃2)−1X̃ ′j,rYr

)
,

(36) needs to be compared to the goodness-of-fit term that appears in the definition of the

marginal likelihood in (14).13

Because the goal of the holdout mechanism is to discourage data mining, (36) contains no

information about the fit of the model on the regression sample Yr. The forecast errors for Yp

are projected on the space spanned by Sp, which leads to an additional loss of information.

If Yr is small, then the estimate of θ that is used to predict Yp is very different from the

full-sample estimate that underlies the calculation of the goodness-of-fit in (14). In other

words, the inverted U-shape in Figure 2 is obtained because for small values of r the selection

criterion suffers from imprecise estimates of θ. Large values of r, on the other hand, yield

13Recall that we adopted the convention that all regressors have been demeaned. Thus, regardless of r

and τ , Sp 6= 0.
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short holdout samples which make it more difficult to measure the predictive performance

of M1 versus M2.

The composition of the regression sample, which is controlled by τ , affects the variability

of the X̃j,r, X̃j,p, and Sp. If the regression sample is homogeneous, i.e., it only contains

observations from the control (or treatment) group, the variance of X̃j,r is relatively small.

For τ = τmin the probability of selecting the best model peaks for r = 0.5 and almost

reaches about 0.65 if θ is integrated out. For τ = 0.5 the probability of selecting the highest-

posterior-probability model is less than for τ = τmin. Conditioning on θ = 3/
√
nλ̃, the

effect of the composition of the regression sample is more pronounced. For τ = τmin the

probability peaks at r = 0.5 and almost reaches one. For τ = 0.5 the probability peaks

at r = 0.3 but only reaches about 0.85. In sum, we conclude that in our environment the

holdout mechanism dominates the no-holdout mechanism and it is best for the policy maker

to set r = 0.5 and τ = τmin, that is, to provide the modeler with the control (or treatment)

sample only.

The result about the optimal composition of the holdout sample may appear counter-

intuitive. Mixing observations from the control and the treatment group in the holdout

sample increases the precision of the estimate of θ. However, to mimic the full Bayesian

solution it is not the precision of the treatment effect per se that matters. Instead, the

model ranking based on
(
θ̂pm − E[θ̂pm|Y,X, S,Mj]

)2
has to match the model ranking based

on the goodness-of-fit term in (14). Combining control and treatment group observations

increases the correlation among the regressors X̃1,r and X̃2,r (recall that X̃j = Xj +S) which

makes it more difficult to distinguish the model specifications. To assess the robustness of

this finding, we reduced the variance of the regressors X1 and X2 by a factor of 10 in the

simulation design, which makes it more difficult to identify θ based on a homogeneous re-

gression sample. Nonetheless, the result was qualitatively the same: the choice of τ = τmin

dominates τ = 0.5.

The exact magnitude of the loss differentials is, of course, sensitive to the parameteri-

zation of the experiment. Moreover, in actual applications the structural models are much

more complicated than the simple linear regressions considered in this paper. Nonetheless,
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we believe that our setup captures the essence of the problem. The relative variability

of Xj and S captures the information content in the cross-equation restrictions, which in

practice could be large or small. In our illustration, the posterior variance of θ under the

restricted (βj = θ) regression is twice as large as under the unrestricted regression. The

correlation between X1 and X2 controls the similarity of the two structural models. The

higher the correlation, the more similar the models, and the lower the stakes in determining

the highest-posterior-probability model, because both models will deliver very similar pre-

dictions. If both modelers engage in data mining, then the estimates of the treatment effect

given the observed treatment level s̄ are identical across modelers and identical to the simple

difference-in-means estimator that the policy maker is able to compute himself. In this sense,

data mining makes the two structural models more similar. In more realistic settings the

overall fit of the two data-mined models would probably also become more similar. In our

stylized framework the overall fit remains different because we impose that the two modelers

use different regressors.

6 Conclusion

We developed a principal-agent framework that allows us to characterize potential costs of

data mining and potential benefits of holdout samples designed to discourage data mining.

In our environment the full Bayesian posterior mean prediction is first-best. However, the

tasks of decision making and model estimation is divided among a policy maker and a set

of modelers. The policy maker would like to implement the first-best Bayesian decision. To

that end, it is assumed that the modelers are rewarded based on the fit of the models that

they provide. This compensation scheme creates an incentive for the modelers to engage in

data-mining and to overstate the fit of their models. In our numerical illustration we find

that the policy maker minimizes risk by withholding 50% of the sample from the modelers

and only makes available observations either from the control group or the treatment group.

Holdout samples have not, to our knowledge, been used by actual policy makers as a

tool for model selection. Indeed, in the few examples based on randomized controlled trials
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(RCT), the use of a holdout sample has been initiated by the researchers themselves.14 In

those cases, having access to data from both the treatment and control groups, researchers

have chosen holdout samples comprised of observations solely from one or the other group

rather than observations from a mixture of both groups. This choice is consistent with

the findings from our numerical illustration. For our results to apply, however, it must be

assumed that those researchers acted exactly as the modelers in our setting, that is, as if

they did not have access to the holdout sample during the estimation of their models.

Although our results are based on a numerical illustration, it is our speculation that they

would hold more generally, at least in the RCT setting. If that is the case, then we would

also argue that the use of a holdout sample given data from an RCT (a growing empirical

methodology) should be standard practice. We believe that if this practice were established

profession-wide, researchers would maintain the necessary distinction between the estimation

sample and the holdout sample.
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