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Abstract

This paper develops and estimates a strategic model of the joint e¤ort decisions of students

and teachers in a classroom setting to better understand the reasons for the low mathemat-

ics performance of students on curriculum-based examinations administered in Mexican high

schools. The model allows for student heterogeneity in preferences for knowledge and in initial

mathematics preparation, and for teacher heterogeneity in preferences for student knowledge and

in instructional ability. Survey data of students and teachers, collected as part of a randomized

controlled experiment (the ALI project), include multiple measures of student and teacher e¤ort,

student and teacher preferences, student initial knowledge and teacher ability, all of which are

treated as latent variables with an underlying factor structure. A simulation-based maximum

likelihood estimation procedure is used to recover the parameters of the knowledge production

function and the parameters pertaining to the latent variables and measurement structure. Es-

timation results, based on a sample of 10th grade students, indicate that the most signi�cant

factor accounting for low mathematics performance is the lack of su¢ cient prior preparation and

not the lack of student or teacher e¤ort. Our results suggest a mismatch between the content

of the curriculum and student prior preparation.

�We thank Peter Arcidiacono, Flavio Cumha, Christopher Flinn and Robert Miller for helpful discussions. We

have also bene�tted from workshop presentations at Claremont-McKenna College, Collegio Carlo Alberto, Duke

U., Harvard U., Queens U., The Stocknholm School of Economics and UC San Diego. Funding from NSF grant

SES-127364 is gratefully aknowledged.
yUniversity of Pennsylvania
zRice University and University of Pennsylvania.

1



1 Introduction

There is concern in many countries that students are underachieving. This is particularly true in

Mexico, where, based on both international and national measures, the performance of students is

poor. For example, Mexico ranked last among the 34 OECD countries in the 2009 PISA (Program

for International Student Assessment) examination in mathematics.1 Similarly, only 9.2 percent of

ninth grade students and 15.6 percent of 12th grade students scored at the pro�cient level or above

on the 2008 ninth and twelfth grade national mathematics examination (ENLACE).2

There are many potential explanations for substandard student performance related to student

e¤ort, teacher e¤ort, teacher preparation (subject matter knowledge, teaching methods), school-

level physical resources (libraries, textbooks, computers), and the overall learning environment

within the school (teacher morale, administrative leadership). Their relative importance has been

debated, with initiatives focused on particular potential causes, e.g., redesigning teacher training

programs, redesigning curricula, providing computers. An alternative approach to improving per-

formance is to provide performance-based monetary rewards for students, teachers or both. This

approach recognizes that the reasons for substandard performance may di¤er across schools in ways

that are not transparent. Providing monetary incentives allows educational institutions (and each

student and teacher) to implement policies most suitable to their own circumstance.3 In that vein,

the Mexican Ministry of Education conducted a pilot program called Aligning Learning Incentives

(ALI), beginning in 2008 and extending over a three year period, in which 88 Federal high schools

took part in a randomized experiment to determine the impact of student and teacher incentive

payments on mathematics performance.

Brie�y, the ALI experiment included three treatments randomly assigned to 20 schools each,

consisting of bonus payments determined by performance on end-of-year curricula-based examina-

tions in mathematics paid either to students alone (T1), to teachers alone (T2) or to both students

1PISA assessments, begun under the auspices of the OECD in 2000, are administered in reading, mathematics

and science to 15 year olds. In 2009, 65 nations and territories participated.
2The percentage of students scoring at the pro�cient level (or above) on the ninth grade test increased to 15.8 in

2011 and 20.6 in 2012 and on the 12th grade test to 24.7 and 30.8. The high school graduation rate in Mexico is

about 35 percent.
3Hanushek (1994) discusses the value of performance incentives as a decentralized mechanism for improving school

e¢ ciency.
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and teachers (T3).4 Behrman et. al.�s (2011) analysis of the experimental data found that incentive

payments to teachers were mostly ine¤ective in increasing test score performance (T2) except when

combined with student incentive payments (T3), and that student incentives alone were e¤ective

(T1), but were even more e¤ective when combined with teacher incentives (T3).5 For example,

for the 10th grade in year 3, the e¤ect for T1 is between .3-.4 of a test score standard deviation

and for T3 between .6-.8 of a standard deviation.6 Measured in standard deviation units, these

treatment e¤ects are large relative to the range of estimates reported in the experimental incentives

literature. However, as measured by raw scores, the performance of the treatment groups is less

striking. Students in T3 (T1) answer only 45 (42) percent of the questions correctly as compared

to 38 percent for the controls.7

The �rst order question raised by these results is why these Mexican high school students, even

with large monetary incentives, master less than 50 percent of the curriculum. The goal of this

paper is to provide a framework within which to assess quantitatively the reasons for this level of

performance. For that purpose, we develop and estimate a model of a classroom in which there

are multiple students and a single teacher making e¤ort decisions that a¤ect student performance.

Students begin the academic year with an initial knowledge level, which, in combination with

their e¤ort and their teacher�s e¤ort during the year as well as their teacher�s instructional ability,

produces end-of-year knowledge. We show that this speci�cation of the cognitive achievement

production function can be derived from a cumulative speci�cation (see Todd and Wolpin (2003)) in

which current knowledge depends on all past inputs and on initial ability. Students have preferences

over end-of-year knowledge, while teachers care about the sum of the end-of-year knowledge levels

of their students. The technology is such that student and teacher e¤ort are productive only above

some minimum e¤ort level, where there are both �xed and variable costs of supplying e¤ort above

4The high schools in the experiment are administered by the federal government and account for about 25 percent

of all high school students. The schools selected for the experiment are more rural than federal high schools in general.

Most of the non-federal high schools are administered by the separate states.
5 Incentive payments to students were as large as 1,500 U.S. dollars and a teacher could earn an additional month

of salary or more.
6Unlike all other grade-year combinations, there is a small e¤ect of teacher incentives (T2) of about .1 sd.
7These results are based on a slightly di¤erent sample than in Behrman et. al., namely those students who took

the ALI exam and, in addition, completed a student survey. The estimated treatment e¤ects are based on the same

method adopted for correcting for cheating and are of similar magnitude as in that paper.
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minimum levels.

It is assumed that teacher e¤ort is a pure public input and that student and teacher e¤ort are

complementary in producing student knowledge. Thus, all students in the class bene�t from an

increase in any one student�s e¤ort through the induced increase in teacher e¤ort. Student initial

knowledge and teacher instructional ability augment the marginal products of student and teacher

e¤ort. Student and teacher e¤ort are assumed to be chosen within a Nash game. As in coordination

games more generally, there are potentially multiple equilibria.8 If there is no �xed cost of supplying

e¤ort, then there can be two equilibria, one in which all students and the teacher supply above-

minimum e¤ort and one in which they all supply minimum e¤ort. With student �xed costs, however,

there are up to 2N equilibria, where N is the class size. This makes it computationally infeasible to

determine the full set of equilibria, which requires checking whether each potential equilibrium is

defection-proof. However, we show that the number of potential equilibria can be greatly reduced

under an assumption that the ratio of the �xed-to-variable cost does not vary among students within

a class.9 In that case, students can be ordered in terms of their propensity to choose minimum

e¤ort and there are at most N + 1 equilibria that need to be checked, with di¤erent equilibria

corresponding to di¤erent numbers of students supplying minimum e¤ort. We describe later in the

paper an algorithm for determining the full set of equilibria.

There are only a few previous studies that develop explicit models of teacher or student e¤ort

choices and, to our knowledge, none that implement a model of both student and teacher e¤ort

choices. Du�o, Dupas and Kremer (2008) develop a model in which teachers choose e¤ort levels

and a target level at which to orient their instruction, taking into account their students�previous

performance levels. They test the model�s implications using data from a tracking experiment in

Kenya that randomly assigned some schools to a treatment where classroom assignment depended

on prior performance. They �nd that teacher e¤ort, measured by teacher attendance, is higher

under the tracking regime and that both high and low ability students bene�t from tracking in

terms of performance. In another study, Du�o, Hanna and Ryan (2012) develop a dynamic model

of teacher attendance in India to study compensation schemes and implications for student per-

formance using data from a randomized experiment.10 They �nd that �nancial incentives increase

8See Vives (2005) for a discussion of games with strategic complementarities.
9The ratio of �xed-to-variable cost may vary over classes within the same school and over schools.
10This paper builds on a growing literature that combines structural estimation with randomized control experi-
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teacher attendance and improve student test scores. These models do not, however, incorporate

student e¤ort. Kremer, Miguel and Thorton (2009) reference, but do not explicitly develop, a

model of strategic e¤ort complementarities to interpret the results of a randomized merit schol-

arship program in which Kenyan girls received school fees and a grant depending academic exam

performance. Although the incentives were provided only to high performing girls, they �nd that

girls with low pre-test scores, who were unlikely to win the tournament, also showed improvement

in performance as did boys. Also, teachers in the schools assigned to the scholarship program had

higher attendance. They note that these results are consistent with there being positive class-

room externalities to study e¤ort and potentially a strategic complementary between student and

teacher e¤ort. The model developed and estimated in this paper can help explain the pattern of

experimental results they �nd.11

This paper also contributes to the empirical literature on the estimation of models with strategic

complementarities. Examples include models of the adoption by banks of the automated clearing

house (ACH) system in Ackerberg and Gowrisankaran (2006), the timing of desertions during the

Civil War in De Paula (2009) and the timing of radio commercials in Sweeting (2009). In contrast

to these applications, in the model we estimate the objects of choice (student and teacher e¤ort

levels) are continuous rather than discrete and we assume complete information.

The data we use to estimate the model come from surveys of control-school students and

teachers combined with test score data on curricula-based mathematics examinations administered

under the ALI project. We develop a simulated maximum likelihood estimation procedure that

uses multiple measures of e¤ort and multiple measures and exogenous determinants of the model

primitives, that is, student initial knowledge, teacher instructional ability and student and teacher

preferences for knowledge.12 A probabilistic equilibrium selection rule that depends on equilibrium

ments (see Todd and Wolpin (2006) and the citations within).
11A related literature develops models in which peer group norms in�uence individuals� educational investment

choices. (e.g. Fryer, Austen-Smith, 2005, Brock and Durlauf, 2001 ). Lazear (2001) considers a model of educational

production in which one disruptive student imposes negative spillovers on other students in the class and he uses

the model to study implications for optimal class size. In our model, though, spillover e¤ects on peers arise only

indirectly through teacher e¤ort choices.
12This econometric framework has antecedents in the MIMIC (multiple-indicator multiple-cause) framework (see,

for example, Joreskog and Goldberger (1975)). For recent applications and extensions, see Cunha and Heckman

(2008) and Cunha, Heckman and Schennach (2010).

5



characteristics is posited and estimated, jointly with the other parameters of the model.13 In

addition, the estimation incorporates unobserved heterogeneity in productivity across schools.

The model is estimated for 10th grade students in the control group in the third (and last) year of

the ALI project, for which extensive data on measures of the model primitives are available.14 The

ALI test covers the 10th grade curriculum which includes algebra, geometry and trigonometry.15

One �nding from the estimation is that a student�s end-of-year knowledge, as measured by a

standardized score, is strongly a¤ected by a student�s place in the initial knowledge distribution.

Production function estimates for end-of-year knowledge show that, holding student and teacher

e¤ort and teacher ability at their mean values, a student with initial knowledge two standard

deviations above the mean will have end-of-year knowledge that is 1.6 standard deviations above

the mean.16 A second �nding is that the marginal productivity of both student and teacher e¤ort

is low. A student whose e¤ort is two standard deviations above the mean (equivalent to an increase

of 1.7 hours per week spent studying math), holding initial knowledge, teacher e¤ort and ability at

their mean values, will have a level of end-of-year knowledge that is only .10 standard deviations

above the mean.17 Similarly, a teacher whose e¤ort is two standard deviations above the mean

(equivalent to an increase of 1.4 hours per week spent in class preparation), holding student initial

knowledge, student e¤ort and teacher ability at their mean values, will induce a student�s end-of-

year knowledge to be only .05 standard deviations above the mean.18

Although relative performance is strongly a¤ected by initial knowledge, absolute performance

as measured by raw scores is less a¤ected.19 The percentage of questions answered correctly given

13For other applications of this approach to equilibrium selection rules, see Ackerberg and Gowrisankaran (2006),

Bjorn and Vuong (1984), Jia (2008), Bajari, Hong and Ryan (2010) and Card and Giuliano (forthcoming). See

DePaula (2012) for a discussion and survey.
14Estimation on the T1 and T3 treatment groups is not feasible because the non-linearity of the student incentive

schedule does not allow for a reduction in the size of the potential set of equilinbria.
15The 11th grade curriculum includes analytical geometry and di¤erential calculus. The 12th grade curriculum

includes probability and statistics and, in the third year of the program, integral calculus.
16The standard deviation of initial knowledge is estimated to be equivalent to 44.9 standardized points on the 9th

grade mathematics ENLACE, which has a mean of 500 and a standard deviation of 100.
17A two standard deviation increase in student e¤ort is equivalent to spending an extra 1.7 hours per week studying

math outside of class, double the mean level of (above-minimum) e¤ort.
18A two standard deviation increase in teacher e¤ort is equivalent to spending an extra 1.4 hours per week in class

preparation, approximately a 35 percent increase over the mean level of (above-minimum) e¤ort.
19There were 79 questions on the test.
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initial knowledge equal to two standard deviations above the mean (holding student and teacher

e¤ort and teacher ability at their mean values) is only 10 percentage points higher than the percent-

age correct given initial knowledge equal to the mean. This result is not altered when we account

for e¤ort changes induced by greater initial knowledge; a counterfactual experiment in which all

students have an initial knowledge level at least two standard deviations above the mean would lead

to an average raw score of only 47.6 percent. It appears that, given the technology, the curriculum

is simply too di¢ cult even for students with initial knowledge at the top of the distribution.20

The paper proceeds as follows. Section two presents the model, section three describes the

estimation procedure, section four discusses the data and section �ve presents the main empirical

results. The last section presents the conclusions and discusses the relevance of the control-group

estimation for explaining the ALI treatment results.21

2 The Model

This section presents a model of the production of student knowledge within a classroom setting.

End-of-year student knowledge depends on the student�s initial level of knowledge and e¤ort and

on the teacher�s instructional ability and e¤ort. Student and teacher e¤ort levels are assumed to be

the outcome of a Nash game. The model primitives are teacher ability, teacher preferences, initial

levels of student knowledge, student preferences, and �xed and variable costs of e¤ort for students

and teachers.
20Pritchett and Beaty (2012) argue that the slow pace of learning evident in a number of developing countries is

the result of reliance on overly ambitious curricula.
21 It is not possible to use the control-group estimates to forecast directly the e¤ect of the ALI treatments because

the model does not identify the value that students and teachers attach to money. It is conceptually possible to

use the treatment groups, speci�cally T1 to identify the value of money for students and T2 for teachers, and then

forecast the e¤ect of T3 in which both students and teachers receive performance bonuses. It is not, however, feasible

ro implement this strategy for computational reasons. In the case of T2, the teacher reaction function is non-linear

and, in addition to that, in the case of T1 the invariance property that reduces the potential number of equilibria

does not hold.
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2.1 Structure

Consider a class, denoted by j; with a single teacher and Nj students. Each student, n, begins with

an initial level of knowledge, K0nj , n = 1; :::; Nj and chooses a level of learning e¤ort, "nj : The

teacher has instructional ability at and chooses instructional e¤ort "tj ; a pure public input (the

same for each student). Student and teacher e¤ort augment knowledge only if the levels exceed

some minimum threshold level, denoted as "s and "t: Letting e"n = "n�"s and e"t = "t�"t be student
and teacher levels of above-minimum e¤ort, end-of-year knowledge for student n; Kn, (dropping

the j subscript) is produced according to

Kn = �K0n � (1 + �a
0t e"n
1e"t
2); (1)

where �K0n � 0 is the level of knowledge achieved if either the student or teacher chooses minimum

e¤ort (e"n = 0 or e"t = 0) and � is a normalization that converts units. The Cobb-Douglas component
of (1) represents the proportionate increase in knowledge due to student and teacher e¤ort over

that level produced with minimum student or teacher e¤ort.22

In the value-added speci�cation given in (1), K0n, knowledge in the previous grade, is taken

to be a su¢ cient statistic for initial ability and for all prior inputs of student and teacher e¤ort.

A nice feature of our speci�cation is that it is consistent with a cumulative speci�cation in which

current knowledge depends on all past inputs and initial ability.23 In particular,letting g denote

grade level, the knowledge produced in grade g is

Kgn = !gA0n �
gQ
l=1

(1 + �a

0
tg "


1
ng"


2
tg );

where A0n is the students pre-school ability and !g is one minus the depreciation rate of initial

ability. Note that !gA0n is the level of knowledge a student would have at the end of grade g if the

student were to supply only minimum e¤ort in every grade. Dividing Kgn by Kg�1;n leads to the

value-added speci�cation given in (1) with � = !g= !g�1.

Each student faces a variable cost of e¤ort, cn, and a �xed (start-up) e¤ort cost, gn:24 Students

22 If, for example, �a
0t e"n
1e"t
2 = :5; Kn would be 50 percent greater than the level of knowledge produced with

minimum e¤ort.
23Value-added speci�cations are often adopted in the literature to circumevent the need for histoical data on inputs

and initial abilty.
24There are two reason for introducing the student �xed cost. First, the existence of a �xed cost may rationalize
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maximize their utility from knowledge net of e¤ort cost:

Un(e"n) = �nKn � cn
2
(e"n)2 � gnI(e"n > 0); (2)

where �n is the (constant) marginal utility of knowledge and I(�) is an indicator function that is

one if the argument is positive and zero otherwise. Students supply above-minimum e¤ort, e"n > 0,
if and only if

Un(e"n) > Un(0) = �n�K0n
and minimum e¤ort otherwise.

The teacher is assumed to care about the total amount of knowledge produced in the class.

Given a variable e¤ort cost, ct, and a �xed cost, gt, the teacher maximizes25

Ut(e"t) = �t NX
n=1

Kn �
ct
2
(e"t)2 � gtI(e"t > 0): (3)

Similar to the students, the teacher supplies above minimum e¤ort, e"t > 0, if and only if
Ut(e"t) > Ut(0) = �t� NX

n=1

K0n (4)

and minimum e¤ort otherwise.

Assuming that all student primitives, K0n; �n; cn; gn for all n = 1; :::N and teacher primitives,

at; �t; ct and gt, are public information, the reaction functions for the Nash equilibrium game are:

e"n = (�K0n)
1

2�
1 (
1�a

0
t �nc

�1
n )

1
2�
1e" 
2

2�
1
t if Un(e"n) > Un(0) (5)

= 0 if Un(e"n) � Un(0)
the ALI experimental results, in particular the perhaps puzzling �nding that there is an e¤ect of teacher incentives

only when combined with student incentives. If a substantial number of students are supplying only minimum

e¤ort because of the �xed cost, teacher incentives may induce increased teacher e¤ort only if students supply above

minimum e¤ort, which can be achieved by paying students for performance. Second, and only anecdotally, teachers

in the T2 treatment were unenthusiastic when informed of the teacher bonus, because they felt that performance

pay for them would do nothing to overcome the major obstacle, namely how to motivate the students. On the other

hand, the teachers in the T1 treatment were enthusiastic, even though they were not provided monetary incentives,

precisely because students received incentives.
25We allow for a �xed cost for the teacher in the presentation of the model for completeness, although we assume

it to be zero in the implementation.
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e"t = (
2�a

0
t �tc

�1
t )

1
2�
2

 
NX
n=1

I(e"n > 0)(�K0n)e"
1n
! 1

2�
2

if Ut(e"t) > Ut(0) (6)

= 0 if Ut(e"t) � Ut(0)
for n = 1; :::; N .26 As seen from (6), only the e¤ort levels of students who supply above-minimum

e¤ort a¤ect the teacher e¤ort level. Given the technology (1), the marginal product of teacher

e¤ort is zero for students who put in only minimum e¤ort.

If student n and the teacher both supply above minimum e¤ort, then the unique solution to (5)

and (6) has a closed form given by:

e"�n = 

2�
2

4�2(
1+
2)
1 



2
4�2(
1+
2)
2 �

2
4�2(
1+
2)a

2
0
4�2(
1+
2)
t (�tc

�1
t )


2
4�2(
1+
2) (�K0n)

1
2�
1 (�nc

�1
n )

1
2�
1 � 

NX
n=1

I(e"n > 0)(�K0n) 2
2�
1 (�nc

�1
n )


1
2�
1

! 
2
4�2(
1+
2)

(7)

e"�t = (
1)

1

4�2(
1+
2) (
2)
2�
1

4�2(
1+
2)�
2

4�2(
1+
2)a
2
0

4�2(
1+
2)
t (�tc

�1
t )

2�
1
4�2(
1+
2) � (8) 

NX
n=1

I(e"n > 0)(�K0n) 2
2�
1 (�nc

�1
n )


1
2�
1

! 2�
1
4�2(
1+
2)

:

As seen, a student�s e¤ort depends not only on own attributes, but also, through the teacher�s e¤ort

decision, on the attributes of the other students in the class.27

2.2 Equilibrium Characterization

As noted in the introduction, this model can have multiple equilibria. The equilibrium characteri-

zation depends on the con�guration of student and teacher �xed costs as follows.

1. No student or teacher �xed cost: gn = 0 for all n, gt = 0

If there are no �xed costs, then equations (7) and (8) constitute an equilibrium with I(e"n >
0) = 1 for all n = 1; :::; N . That is, all students and teachers put in above-minimum e¤ort. The

26The perfect information assumption would seem to be a reasonable approximation in the classroom setting, where

students and teachers interact on a daily basis over the school year.
27 In this sense, there are student peer e¤ects on end-of-year knowledge, although they all operate through the

teacher�s e¤ort decision. Introducing direct peer e¤ects in the knowledge production function, although desirable, is

beyond the scope of the current paper.
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equilibrium is not unique, because there is also an equilibrium in which all students and the teacher

choose minimum e¤ort. Given the production function (1), if all students and the teacher choose

minimum e¤ort (e"n = 0 for all n and e"t = 0;) there would be no incentive for any single student

(or even all students as a group) or for the teacher to deviate as the marginal product of e¤ort for

any student or for the teacher is zero. These are the only two equilibria.

2. Positive �xed cost for teacher, zero �xed cost for all students:gt > 0, gn = 0 for all n

Depending on the size of the teacher �xed cost, there will be either one or two equilibria. If

the �xed cost is such that the teacher chooses minimum e¤ort, then all students choose minimum

e¤ort and that is the only equilibrium. If, on the other hand, the teacher chooses above-minimum

e¤ort, then there is an additional equilibrium in which all students choose above-minimum e¤ort.

3. Positive student �xed cost: gn > 0; gt � 0

The con�guration of potential equilibria di¤ers substantially when there is a positive �xed

cost for students, gn > 0: In the case that the teacher supplies minimum e¤ort, so will all of the

students. Alternatively, assume that the teacher supplies above-minimum e¤ort, i.e., that at least

one student supplies above-minimum e¤ort and the teacher�s �xed cost is not large enough for

(4) not to be satis�ed. In that case, the number of potential equilibria, de�ned by the number of

students supplying minimum e¤ort, is 2N : Determining the set of equilibria that arise for a given

composition of students and teacher within a class (de�ned by K0n; �n; cn; gn; �t; ct; at) requires

checking, for each of the 2N possible e¤ort con�gurations, whether any of the N students or the

teacher would deviate, given the e¤ort choice of all of the other students and the teacher.

As noted, any con�guration in which the teacher chooses minimum e¤ort and any student

chooses above-minimum e¤ort cannot be an equilibrium. Thus, we restrict attention to con�g-

urations in which the teacher supplies above-minimum e¤ort. All such con�gurations are fully

described by I(e"n > 0) � e"�n for all n = 1; ::; N (that is, either e"n = 0 or e"n = e"�n) and by e"�t :
To determine whether any particular con�guration is an equilibrium, we need to check whether

the teacher would deviate, that is choose minimum e¤ort, and whether any student will deviate,

that is, whether any student assigned minimum e¤ort would prefer above-minimum e¤ort and any

student assigned above-minimum e¤ort would choose minimum e¤ort. Without any restrictions on
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the parameter space, all 2N con�gurations would need to be checked to determine the equilibrium

set.

However, it is possible to derive su¢ cient conditions under which the number of equilibria is

reduced to at most N +1 and, thus, only that number of con�gurations would need to be checked.

Recall that the minimum e¤ort condition for the student is

e"n > 0 if e�n = Un(e"�n)� Un(0) > 0; (9)

e"n = 0 if e�n = Un(e"�n)� Un(0) � 0: (10)

where e�n is evaluated at above-minimum e¤ort for the teacher ( e"t = e"�t ): Upon substituting (7),
this condition can be written as

e�n(E) = 	(�K0n�nc�1n ; at; �tc�1t ; �; 
1; 
2)Z 
2
2�(
1+
2)
E � gnc�1n 7 0; (11)

where

	(�) = (�K0n�nc�1n )
2

2�
1 �
2

4�2(
1+
2)a
2
0

2�(
1+
2)
t 



1
2�(
1+
2)
1 (
2)


2
2�(
1+
2) (�tc

�1
t )


2
2�(
1+
2) (1� :5
1);

ZE =
NX
n=1

I(e"n > 0)(�K0n) 2
2�
1 (�nc

�1
n )


1
2�
1

and where E corresponds to a potential equilibrium with a particular con�guration of students

supplying minimum e¤ort.

As seen in (11), the value of e�n depends on the particular con�guration E only through ZE .

Note that 	(�) > 0 (assuming 
1 < 2) and Z

2

2�(
1+
2)
E > 0: Denote EN as the con�guration in

which all of the N students are assigned above-minimum e¤ort. Order the students according to

their value of e�n(EN ); with student of order one having the lowest value, student of order two
having the next lowest, etc. In general, the ordering of students will not be the same in other

potential equilibria. However, because ZE is the same for all students and is a su¢ cient statistic

for any given potential equilibrium con�guration, there exist conditions under which the ordering

of students is invariant under all potential con�gurations. A su¢ cient condition is that the ratio of

the student�s �xed to variable cost (gnc�1n ) is the same for all students. The ordering in that case

is fully determined by the value of �K0n�nc�1n : A necessary and su¢ cient condition for the order

invariance in the case that gnc�1n varies in the class is that gnc�1n be inversely related to �K0n�nc�1n :

12



In both cases, a student�s order among the N students in the class corresponds to their order in

the sequence of e�(EN )0s; denoted as e�1 � e�2 � ::: � e�N .
Order invariance implies that instead of 2N potential equilibria, there are only N + 1; namely

where none of the students choose above-minimum e¤ort (E0), only the highest order student

chooses above-minimum e¤ort (E1), only the two highest choose above-minimum e¤ort (E2), etc.

We can denote the potential set of equilibria to be checked as fE0; E1;:::;ENg; where the subscript

indicates the number of ordered students with above-minimum e¤ort.28 In the rest of the discussion,

order invariance is assumed.

2.3 Determining the set of equilibria

Consider the EN con�guration where all students exert above minimum e¤ort. For that to be an

equilibrium, none of the students nor the teacher will want to defect, that is, choose minimum

e¤ort. It is straightforward to check condition (4) to see whether the teacher wants to defect. If

the teacher chooses above minimum e¤ort, then, given the ordering, we now need to check only

whether the student with the lowest value of e�n; the student with value e�1; would choose to defect.
If not (e�1 > 0), then no student with a higher value will defect, and EN constitutes an equilibrium.
If the lowest value student does defect, then EN does not constitute an equilibrium.

Even if EN is an equilibrium, there may be other equilibria in which some students choose

minimum e¤ort. Consider the candidate equilibrium EN�1 in which the lowest e�n value student
chooses minimum e¤ort, e"1 = 0; and all other students choose above minimum e¤ort, e"n = e"�n > 0
for all n > 1: Assume that the teacher also optimally supplies above minimum e¤ort. In that case

student and teacher e¤ort satisfy

e"1 = 0 (12)

e"n = e"�n = 
 2�
2
4�2(
1+
2)
1 



2
4�2(
1+
2)
2 �

2
4�2(
1+
2)a

2
0
4�2(
1+
2)
t (�tc

�1
t )


2
4�2(
1+
2) (�K0n)

1
2�
1 (�nc

�1
n )

1
2�
1 � 

NX
n=2

(�K0n)
2

2�
1 (�nc
�1
n )


1
2�
1

! 
2
4�2(
1+
2)

, n > 1

28The reason that no other con�gurations can be equilibria is that no student with a lower order would choose

above-minimum e¤ort without all of the higher order students also choosing above-minimum e¤ort. A lower order

student in a con�guration in which such a student was assigned above-minimum e¤ort and a higher order student

was assigned minimum e¤ort would always defect to minimum e¤ort.
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e"�t = (
1)

1

4�2(
1+
2) (
2)
2�
1

4�2(
1+
2)�
2

4�2(
1+
2)a
2
0

4�2(
1+
2)
t (�tc

�1
t )

2�
1
4�2(
1+
2) � 

NX
n=2

(�K0n)(�nc
�1
n )


1
2�
1

! 2�
1
4�2(
1+
2)

: (13)

The teacher, in con�guration EN�1, would supply less e¤ort than in EN , because the teacher

cannot a¤ect the e¤ort level of student n = 1: Thus, each student of order n > 1 would also supply

less e¤ort. For the EN�1 con�guration to be an equilibrium, it is necessary that the teacher and no

student want to defect. Assume that the teacher does not want to defect. In terms of the students,

we need to check the minimum e¤ort condition only for the lowest order student (n = 1) and the

second lowest student (n = 2). For student n = 1, the optimal above-minimum e¤ort level that

would be chosen given the e¤ort level of the teacher and the other students is given by

e"�1 = 

2�
2

4�2(
1+
2)
1 (
2)


2
4�2(
1+
2)�

2
4�2(
1+
2)a

2
0
4�2(
1+
2)
t (�tc

�1
t )


2
4�2(
1+
2) (�K0n)

1
2�
1 (�1c

�1
1 )

1
2�
1 � 

NX
n=2

(�K0n)
2

2�
1 (�nc
�1
n )


1
2�
1

! 
2
4�2(
1+
2)

Then, EN�1 is an equilibrium if and only if

e�1(EN�1) < 0; (14)

e�2(EN�1) > 0;

where the e�0s are given in (11) with ZE =PN
n=2(�K0n)

2
2�
1 (�nc

�1
n )


1
2�
1 : Because of the ordering, if

it is optimal for student n = 2 not to choose minimum e¤ort, e�2(EN�1) > 0; it will also be optimal
for higher ordered students not to do so.

The reason that the EN con�guration, where all students and the teacher choose above-minimum

e¤ort, and the EN�1 con�guration, where all students, except for the student with the lowest e�n;
choose above-minimum e¤ort, can both be equilibria is the following. Because teacher e¤ort is

higher in EN , it does not pay for student n = 1 to choose minimum e¤ort, whereas in EN�1, the

lower teacher e¤ort induced by the minimum e¤ort of student n = 1 makes that choice by student

n = 1 optimal. On the other hand, student n = 2 (and higher order students) optimally chooses

above minimum e¤ort even at the lower level of teacher e¤ort in EN�1.

14



It is also possible that EN is an equilibrium, but that EN�1 is not. For that to be the case, if

must be either that student n = 1 prefers above-minimum e¤ort even when teacher e¤ort is lower (in

EN�1) that is, that e�1(EN�1) > 0 or that not only does student n = 1 prefer minimum e¤ort when

teacher e¤ort is lower (e�1(EN�1) < 0), but student n = 2 does also, that is, that e�2(EN�1) < 0.
It is also possible that EN is not an equilibrium, but that EN�1 is an equilibrium. In that case,

student n = 1 prefers minimum e¤ort in both cases (e�1(EN ) < 0 and e�1(EN�1) < 0) and student
n = 2 prefers above minimum e¤ort in both cases (e�2(EN ) > 0 and e�2(EN�1) > 0). Finally, neither
would be an equilibrium if student n = 1 prefers minimum e¤ort in both cases (e�1(EN ) < 0 ande�1(EN�1) < 0) and student n = 2 prefers minimum e¤ort at least in EN�1 (e�2(EN�1) < 1).

The same analysis can be repeated to check for other candidate equilibria in sequence, EN�2; :::; E0:

By considering one potential equilibrium at a time, it is possible to identify the entire set of equilib-

ria for any given model parameters. As already noted, E0 is always an equilibrium. To generalize,

the e¤ort levels in the EN�m candidate equilibrium are given by

e"1 = 0;e"2 = 0; :::;e"m = 0 (15)

e"n = e"�n = (
1) 2�
2
4�2(
1+
2) (
2)


2
4�2(
1+
2)�

2
4�2(
1+
2)a

2
0
4�2(
1+
2)
t (�tc

�1
t )


2
4�2(
1+
2) (�K0n)

1
2�
1 (�nc

�1
n )

1
2�
1 � 

NX
n=m+1

(�K0n)
2

2�
1 (�nc
�1
n )


1
2�
1

! 
2
4�2(
1+
2)

, n > m;

e"�t = (
1)

1

4�2(
1+
2) (
2)
2�
1

4�2(
1+
2)�
2

4�2(
1+
2)a
2
0

4�2(
1+
2)
t (�tc

�1
t )

2�
1
4�2(
1+
2) � 

NX
n=m+1

(�K0n)
2

2�
1 (�nc
�1
n )


1
2�
1

! 2�
1
4�2(
1+
2)

: (16)

In determining whether EN�m is an equilibrium, we need to check whether student n = m would

defect, that is, choose above-minimum e¤ort, and, if not, whether student n = m+1 would defect,

that is, choose minimum e¤ort. For the former, we have

e"�m = (
1)
2�
2

4�2(
1+
2) (
2)

2

4�2(
1+
2)�
2

4�2(
1+
2)a
2
0

4�2(
1+
2)
t (�tc

�1
t )


2
4�2(
1+
2) (�K0n)

1
2�
1 (�mc

�1
m )

1
2�
1 � 

NX
n=m+1

(�K0n)
2

2�
1 (�nc
�1
n )


1
2�
1

! 
2
4�2(
1+
2)

: (17)

Assuming the teacher would not defect, EN�m is an equilibrium if and only if

e�m(EN�m) < 0; (18)

e�m+1(EN�m) > 0:
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where the e�0s are given in (11) with ZE = PN
n=m+1(�K0n)

2
2�
1 (�nc

�1
n )


1
2�
1 :

The equilibrium in which all students and the teacher supply above-minimum e¤ort Pareto

dominates all of the others. To see why, consider two equilibria that di¤er by whether a single

student, say student of order j, optimally supplies minimum e¤ort or optimally supplies above-

minimum e¤ort. In the latter case, all of the students supplying above minimum e¤ort, those of

order j + 1 and higher, are better o¤, because the response of the teacher is to supply more e¤ort.

All of the students of order lower than j receive the same utility and so are no worse o¤. Student

j; who optimally supplies more e¤ort in the second equilibrium, is also better o¤, because utility

must be above the utility received with minimum e¤ort in order that it be an equilibrium. Finally,

the teacher is better o¤ when student j supplies more e¤ort.

3 Estimation

As previously described, order invariance of the students in terms of the utility di¤erence between

above-minimum and minimum e¤ort greatly reduces the number of potential equilibria and makes

it computationally feasible to determine the set of equilibria. We will therefore assume that the

�xed-to-variable cost ratio gnc�1n = egn does not vary for students within the same class, which gives
order invariance. Also because �n and cn always appear as �nc�1n and �t and ct as �tc�1t in the

determination of student and teacher optimal e¤ort levels, we de�ne e�n = �nc
�1
n and e�t = �tc

�1
t :

Finally, because gt and ct appear as gtc�1t in the teacher�s decision about whether to supply above-

minimum e¤ort, we let egt = gtc�1t :
Heterogeneity among students within a class potentially arises from di¤erences in initial knowl-

edge and preferences, K0n and e�n. Heterogeneity among students across classes in the same school
and across schools arises from class- or school-wide di¤erences in K0n;e�n and egn: Heterogeneity
among teachers within the same school or among schools arises from di¤erences in e�t and at: In
what follows and in the estimation, we assume that egt = 0:29We also allow for technology di¤erences
across schools. Speci�cally, the production function parameter, �; is assumed to be school-speci�c

and randomly drawn (from our perspective).

29We assume that teachers are su¢ ciently monitored so that they never choose minimum e¤ort (unless all students

choose minimum e¤ort).
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3.1 Latent factor structure

Student and teacher characteristics as well as student and teacher e¤ort and end-of-year knowledge

can at best only be imperfectly measured. We therefore treat K0n;e�n;e�t; egn and at as latent factors
that are measured with error. To be concrete, let beginning knowledge of a student n enrolled in

school h and assigned to class j depend on a set of exogenous initial conditions (X) and on school-,

class- and individual-level error components:

Konjh = X
K0
njh�

K0 + �K0
h + �K0

jh + !
K0
njh: (19)

The �rst error component, �K0
h ; allows for unobserved school-level di¤erences in student initial

knowledge, the second, �K0
jh ; for unobserved class-level di¤erences within a school and the third,

!K0
njh; for idiosyncratic within-class di¤erences: Student preference and �xed costs follow a similar

error structure

e�njh = X�n
njh�

�n + ��nh + ��njh + !
�n
njh; (20)

and

egnjh = �gn0 + �gnh + �gnjh: (21)

Note that the order invariance assumption described in the previous section requires that there is

no within-class error component nor varying X 0s in egnjh. All error components in (19, (20) and
(21) are assumed to be mean zero, orthogonal to each other and to observed characteristics.

With respect to teachers, instructional ability is parameterized as

atjh = X
at
tjh�

at + �ath + �
at
th; (22)

where �ath represents school-level di¤erences in teacher instructional ability and �atth idiosyncratic

within-school di¤erences.30 Similarly, teacher preferences are

e�tjh = X�t
tjh�

�t + ��th + �
�t
th; (23)

where the school- and teacher-level error components are assumed to be orthogonal to each other

and to observable characteristics.31

30A given teacher may have multiple classes, in which case, the teacher-speci�c error component would apply to

all of the classes. Notice that the class designation j is super�uous given the teacher designation.
31All of the student and teacher latent factors are censored from below at zero.
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Student and teacher e¤ort are the outcomes of the e¤ort game, which are fully determined by the

latent primitives. End-of-year knowledge is determined by the primitives that enter the production

function (1) and by the chosen student and teacher e¤ort. We also treat student and teacher e¤ort

and end-of-year knowledge as latents that are measured with error, as described below.32

3.2 Measurement equations

In terms of the latent primitives, there are assumed to be M j measures for j = K0n;e�njh atjh;e�tjh.
The measurement equations are given by

Km
0n = �K0m

0n + �K0m
1n Kon + &

Kom
njh ;m = 1; :::;MK0 (24)

e�mnjh = ��m0n + �
�m
1n
e�njh + &�mnjh for m = 1; :::;M �n ; (25)

e�mtjh = ��m0t + �
�m
1t
e�tjh + &�mtjh for m = 1; :::; ;M �t (26)

amtjh = �am0t + �
am
1t atjh + &

am
tjh for m = 1; :::;Mat : (27)

where the di¤erent measurements of each of the latent factors are denoted with an m superscript.

We do not have measures of egn, so it is treated as a random unobservable.

There are M "
n measures of student e¤ort and M

"
t measures of teacher e¤ort. The e¤ort mea-

surement equations take the form

"mnjh = �"m0n + �
"m
1n "njh + &

"m
njh for m = 1; :::;M "

n; (28)

"mtjh = �"m0t + �
"m
1t "tjh + &

"m
tjh for m = 1; :::;M "

t : (29)

There is one measure of end-of-year knowledge, a test score Tnjh:

Tnjh = Knjh + &
T
njh; (30)

where Knjh is determined by (1). We refer to the e¤ort levels and end-of-year knowledge as

endogenous latent factors.

An observation consists of (i) measures of the e¤ort levels of the Njh students in each class j of

school h; their end-of-year test scores and measures of their initial knowledge and preferences and

32This methodology allows us to reduce the dimension of the e¤ective input space to one for both the student and

the teacher. See Cunha and Heckman (2008) for further discussion.
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(ii) the measures of the e¤ort level, preference and ability of the teacher in each class. Denote the

observation set for class j in school h as

Ojh = f"mnjh; "mtjh; Tnjh;Km
0njh; �

m
njh; �

m
tjh; a

m
tjhg;

for all measures and classrooms.

3.3 Likelihood

Let 
1jh = fXK0
njh; X

�n
njh; X

at
tjh; X

�t
tjhg denote the vector of observable characteristics of the stu-

dents and teacher in class j of school h, 
2h = f�K0
h ; ��nh ; �

at
h ; �

�t
h ; �

gn
h ; �0hg the vector of school-

level unobservables, 
3jh = f�
K0
jh ; �

�n
jh ; �

gn
jh; �

at
th; �

�t
thg the vector of within-school class- and teacher-

level unobservables, 
4jh = f!
K0
njh; !

�n
tjhg the vector of within-class student-level unobservables and


5jh = f&
Kom
njh ; &

T
njh; &

"m
njh; &

"m
tjh; &

�m
njh; &

�m
tjh; &

am
tjhg the vector of measurement errors.

Estimation is carried out by simulated maximum likelihood. Concretely, let the unobservables

in 
ijh (i = 2; 3; 4) each have joint distribution Fi with variance-covariance matrix �i. Denote

the joint distribution of the measurement errors as F5 with variance-covariance matrix, �5. The

likelihood contribution for students n = 1; ::; Njh in class j of school h is the joint density of

Ojh; that is, the measured e¤orts of students and teachers, students�end-of-year (ALI) test scores,

measured student preferences and measured teacher abilities and preferences. For now, we ignore

the restrictions and normalizations that are necessary for identi�cation.

The estimation procedure is as follows:

1. Choose a set of parameter values:

f�; 
0; 
1; 
2; �; �K0 ; ��n ; ��t ; �at ; �gn ;�2;�3;�4;�5;�g;

where � denotes the �0 and �1 parameters in the measurement error equations.

2. Draw school-level shocks, 
2h; for each school, h = 1; :::;H , class- and teacher-level shocks,


3jh;in each school and student-level shocks, 

4
jh; for each class.

3. Given the shocks drawn in (2) and the set of observable variables (X), calculate each student�s

value of Konjh; e�njh; and egnjh;and each teacher�s value of atjh and e�tjh.33
4. Solve for the set of equilibria for each class and for all schools for each of the d = 1; :::D

33Recall that the characteristics of students and of the teacher within a given class, both those observable to the

researcher (
1jh) and those unobservable to the researcher (

2
h;


3
jh;


4
jh), are public information.
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draws. Each equilibrium is characterized by the optimal student and teacher e¤ort levels, and

implied end-of-year knowledge.

5. For each equilibrium and for each draw (d), and given the joint measurement error distrib-

ution, calculate the joint likelihood of observing all of the measured variables for the students and

the teacher, which is given by the joint density of measurement errors. Denote the density value for

the ith (ordered) equilibrium and the dth draw for classroom j in school h as bfijh(d) for d = 1; :::; D.
6. We assume that the equilibrium that is chosen for each draw from the set of equilibria, E(d);

comes from a multinomial distribution.34

The overall likelihood for class j in school h is the weighted average over the likelihoods for

each draw and for each potential equilibrium e¤ort con�guration, namely

Ljh =
1

D

X
d

X
i

I(Eijh 2 Ejh(d))�ijh bfijh(d) (31)

For each draw d, the set of equilibria may di¤er. Thus, the probability that a particular e¤ort

con�guration, Eijh, is the selected equilibrium is given by the product of an indicator for whether

that con�guration is an equilibrium and the probability of selecting that con�guration from the

set of equilibria, �ijh. The parameters of the equilibrium selection rule, �i(�); are jointly estimated

with the rest of the parameters of the model.

7. Repeat for all Jh classes in school h and over all h = 1; ; ; :H schools. The likelihood over the

entire sample is

HY
h=1

JhY
j=1

Ljh (32)

8. Repeat 1-7, maximizing (32) over the parameter vector given in step 1.

3.4 Identi�cation

It is di¢ cult to formally demonstrate identi�cation as the model is currently speci�ed, because of the

non-linearities in the production function and in the derived student and teacher e¤ort functions.

To simplify, we consider the case of a class with a single student and a production function that

is strictly linear in logs (that is, Cobb-Douglas). In addition, we assume there are no �xed costs.

34As further described below, the probability that equilibrium Ei 2 E(d) is chosen, �i; may be a function of the

characteristics of Ei, for example, the fraction of students choosing minimum e¤ort.
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In this case, there are only two possible equilibria, one where the student and the teacher choose

above-minimum e¤ort and one in which they both choose minimum e¤ort. To simplify further,

suppose that the equilibrium selection rule is that the equilibrium with above-minimum e¤ort,

being Pareto dominant, is selected with probability one.

The production function in this example is

logKn = log �+ � logK0n + 
0 log at + 
1 loge"n + 
2 loge"t; (33)

where now e"n = "n="s and e"t = "t="t: Solving the e¤ort game between the (single) student and

teacher, equilibrium student and teacher e¤ort are given by

loge"n = �0n(
1; 
2) +
1

2� (
1 + 
2)
log �+

�

2� (
1 + 
2)
logK0n +


0
2� (
1 + 
2)

log at

+
2� 
2

4� 2(
1 + 
2)
log �n +


2
4� 2(
1 + 
2)

log �t; (34)

loge"t = �0t(
1; 
2) +
1

2� (
1 + 
2)
log �+

�

2� (
1 + 
2)
logK0n +


0
2� (
1 + 
2)

log at

+

1

4� 2(
1 + 
2)
log �n +

2� 
1
4� 2(
1 + 
2)

log �t; (35)

where the �0�s are functions of 
1 and 
2
35: Upon substituting equilibrium student and teacher

e¤ort ((34) and (35)) into the production function (33), we get end-of-year knowledge as a function

of the exogenous determinants of student end-of-year knowledge and student and teacher e¤ort,

namely,

logKn = �0K(
1; 
2) +
2

2� (
1 + 
2)
log �+

2�

2� (
1 + 
2)
logK0n +

2
0
2� (
1 + 
2)

log at

+

1

2� (
1 + 
2)
log �n +


2
2� (
1 + 
2)

log �t: (36)

To motivate the identi�cation problem, suppose that a perfect measure of both student and

teacher e¤ort were available for multiple student-teacher pairs, but that there is no measure for

either teacher instructional ability or student initial knowledge. Under that scenario, the problem

in estimating (33) is that the e¤ort game implies that both student and teacher e¤ort will depend

on unobserved teacher ability and on student initial knowledge. One approach would be to �nd

instruments for student and teacher e¤ort (which would also be ameliorative if student and teacher

e¤ort were measured with error). In the model as speci�ed, preference shifters (X�
njh and X

�
tjh)

35Student and teacher variable costs are normalized to one.
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that do not also a¤ect student initial knowledge or teacher instructional ability would be valid

instruments. However, if initial knowledge and teacher ability are generated through prior e¤ort

decisions that would also depend on preferences, and if preferences have some permanence, then

exclusion restrictions of this kind would not be appropriate. The e¤ort levels of other students in

the class would also not be valid instruments, because they depend, in the model, on the initial

knowledge and preferences of all students in the class (see (7)) as well as on teacher ability. Similarly,

the e¤ort levels of other teachers in the school would not be valid if teachers are not randomly

allocated to schools.

The measurement structure previously detailed provides an alternative identi�cation strategy.

To �x ideas, �rst assume that we have perfect measures of K0n; at; �n and �t and one measurement

(m = 1) each for student and teacher e¤ort and for Kn (see (30)). Given the linear in logs form,

modify (28) and (29) so that measurement errors are proportional and impose the normalizations

�"10n = �"10t = 0 and �
"1
1n = �"11t = 1: Assuming that the reported measures of e¤ort are inclusive of

minimum e¤ort, the measures of student and teacher e¤ort are:

log "1n = log "s + loge"n + &"1n (37)

log "1t = log "t + loge"t + &"1t : (38)

It is easily seen that 
1; 
2; �; 
0 are (over-)identi�ed. Summing the coe¢ cients on log�n and

log�t in any of the three equations, (34), (35) or (36), provides an estimate of 
1+
2;which combined

with the separate coe¢ cients on each variable identi�es the rest of the parameters.36 Then, given

that the constant term in (36) is identi�ed from test scores, � is identi�ed and the minimum e¤ort

parameters, "s and "t, are identi�ed from the e¤ort measurement equations.37

Suppose, instead, that the measures of K0n; at; �n and �t are not perfect, but follow the struc-

ture posited previously, modi�ed as above so that measurement errors are multiplicative. In

that case, the parameters are identi�ed as long as there are at least two measures of each with

independent measurement errors. To illustrate, suppose that there are two measures of log �n;

log �1n = �
1
0+�

1
1 log �n+ &

1
n and log �

2
n = �

2
0+�

2
1 log �n+ &

2
n: If we solve for log �n using log �

1
n with

36The measurement error variances of the student and teacher e¤ort measures and the test score are also identi�ed.
37 Identi�cation of the minimum e¤ort levels, the constant term in the e¤ort measurement equations, is unusual.

Identi�cation is achieved because the theory implies that the same parameters govern the knowledge production

function and the e¤ort supply equations.
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the normalizations that �10 = 0 and �
1
1 = 1, substitute it into (36) and then use the second measure

as an instrument for the �rst measure, we can consistently estimate the parameter on log �n in

(36): A similar argument can be made for consistently estimating the parameters associated with

logK0n; log at and log �t in (36). The production function parameters can then be recovered as

previously argued.38 The same argument could have been applied to the e¤ort equations (34) and

(35). Thus, the production function parameters are overidenti�ed from cross-equation restrictions.

Given orthogonality of all measurement errors with each other and with the observable determi-

nants, the variances and covariances of the latents are identi�ed from standard arguments (e.g.,

Goldberger (1972)).

Extending these arguments to the non-linear setting with multiple students in a class and to

multiple equilibria is not straightforward. Our conjecture is that they lead to further overidentifying

restrictions, although the argument is heuristic. The non-linearity appears in two places, in the

production function and in the derived equilibrium e¤ort functions. With respect to the latter, that

basic di¤erence between the linear representation in (34) and (35) and that of the exact model,

(7) and (8), is the term
PN
n=1 I(e"n > 0)(�K0n) 2

2�
1 (�nc
�1
n )


1
2�
1 : That term implies that the initial

knowledge and student preference of all students in the class a¤ect the e¤ort levels of each student

and the teacher. It thus adds variables, but no new parameters, presumably aiding identi�cation.

With respect to the production function, the term �K0n re�ects the end-of-year knowledge for

students who supply minimum e¤ort (which we have shown to be identi�ed). The existence of

equilibria in which some or all students supply minimum e¤ort should aid in identifying �:

4 Empirical Implementation

We estimate the model using data on the measures of latent model primitives, measures of student

and teacher e¤ort and a measure of end-of-year knowledge. As part of the ALI experiment, in

addition to the curriculum-based end-of-year tests, extensive surveys were administered to both

students and teachers that included questions that measure the latent factors in the model. Table

one provides a list of the variables used in the estimation and a categorization according to their

38Given at least one determinant (an X variable) of log �n and the cross-equation restrictions in the model; it is

not necessary to normalize the slope coe¢ cient in the �rst measurement equation. The same is true for log �t; but

not for logKn or log at:
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respective latent factors. As seen in the table, as is required for identi�cation, each of the latent

factors that determines e¤ort levels and end-of-year knowledge has at least two measures and one

determinant.39 The determinants of the latent factors (the X�s) are background information on

students and teachers collected in the surveys.40

We estimate the model using data on control-group students in the 10th grade in the third

(and last) year of the ALI program. We choose that subsample because there are more and better

measures of the latents available in the student and teacher surveys in the third year and because

all of those students have taken the national ninth grade ENLACE in the previous year. The

academic year is divided into two semesters. It is not possible to estimate the model accounting for

multiple semesters and for compositional changes within classes. To avoid this problem, we base

the estimation on class assignments in the second semester.41 We use data on the latent measures

from the second semester (separate surveys were administered at the end of each semester) both

with respect to the students and the teacher.42

Estimation is carried out with the distributional assumptions that �2 (the school-level covari-

ance matrix) and �4 (the student idiosyncratic covariance matrix) are both joint normal. To aid in

identi�cation, we place some a priori zero covariance restrictions on �2; speci�cally, the non-zero

covariances include the following pairs: (K0; �n), (K0; gn), (K0; at) and (�t; at). Because of the

small number of classes and (10th grade) teachers within each school, we were unable to identify

39Table 3 below provides more detail.
40Missing values for height (217 observations), primary school grade point average (376 observations) and parental

education (21 observations) are imputed from regressions. The regression imputation for height is done separately

for boys and girls and includes age and dummies for schools. The regression (probit) for parental education includes

school dummies. The regression for primary school grade point average includes age, gender, parental education and

school dummies. In each simulation draw of the model, we also draw from the residual variances of these regressions

to obtain imputed values.
41Most students stay together in both semesters, although some drop out between semesters and the same teacher

does not always stay with the same group of students, even when the composition of the class does not change. On

average, 76 percent of the students were in the same class together in both semesters. In about one-half of the classes,

over 90 percent of the students in their second semester class were also together in the same class in the �rst semester.

In 35 percent of the second semester classes, all of the students had the same teacher in the �rst semester. In 38

percent, none of the students had the same teacher as in the �rst semester.
42The exceptions are the �rst three measures of student preferences reported in table 1, which are based on questions

from the �rst semester survey.
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the covariance matrix of class (or teacher) - level unobservables.43 We therefore set �3 to zero.

Thus, all between-class variation within schools in teacher instructional ability and preferences is

due to systematic di¤erences in observables across classes as is also the case for student initial

knowledge and preferences.

It is also necessary to specify an equilibrium selection rule. We speci�ed the probability that

an equilibrium is selected as a multinomial logit that depends on equilibrium characteristics, in

particular on the fraction of students choosing minimum e¤ort, an indicator variables for whether

the equilibrium is the one in which all students choose minimum e¤ort and for whether the equi-

librium is the one that is pareto dominant (the equilibrium in which the most students supply

above-minimum e¤ort).44

4.1 Estimation Results

4.1.1 Parameter Estimates

Table 2 presents estimates of the production function parameters (and standard errors) along with

selected summary statistics of the predicted latent variables.45 All of the production function

parameters are precisely estimated. The parameters indicate that the minimum e¤ort level of end-

of-year knowledge (Kn) increases with initial knowledge (K0n) that is, � > 0, and that the marginal

products of teacher and student e¤ort are decreasing in class size (
11; 
21 < 0): Minimum e¤ort

for students is estimated to be the equivalent of 1.64 hours per week of time spent studying math

and minimum e¤ort for teachers the equivalent of 0.78 hours per week of class preparation time.

Mean initial knowledge is equivalent to a (standardized) score of 529.0 on the 9th grade Enlace

and initial knowledge has a standard deviation of 44.9.46 Mean end-of-year knowledge (Kn) is

43 In 50 percent of the schools there was only one 10th grade teacher and in 36 percent only two. Further, there

was only one class in 36 percent of the schools and only two in 62 percent of the schools. It should be noted that

teacher e¤ort measures are not class-speci�c for teachers with multiple classes. In forming the likelihood, we assume

that, where a teacher has multiple classes, the teacher reports e¤ort for a randomly selected class, where all classes

are given equal probability.
44This speci�cation most closely resembles that in Ackerberg and Gowrisankaran (2006).
45The entire set of parameters and their standard errors are shown in appendix table A.1.
46 In terms of the second measure of initial knowledge, mean initial knowledge is equivalent to a grade in the ninth

year mathematics course of 82.4 percent.
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equivalent to a standardized score of 496.6 on the ALI test and has a standard deviation of 54.5.47

Mean student e¤ort (above the minimum) is equivalent to 1.82 hours per week of math study

time. Mean teacher e¤ort (above the minimum) is equivalent to 3.19 hours per week spent on class

preparation. There is considerable variation in above-minimum student e¤ort, with a coe¢ cient of

variation of .47, but much less variation in above-minimum teacher e¤ort for which the coe¢ cient

of variation is .22. Student-speci�c primitives vary signi�cantly more than those of teachers. The

coe¢ cient of variation in student preferences is .47, but only .17 for teacher preferences and the

coe¢ cient of variation in teacher instructional ability is only .03.

Our estimate of the equilibrium selection probability function implies that the equilibrium in

which all students supply minimum e¤ort is selected only when it is the only equilibrium and that

the pareto dominant equilibrium is selected more often than the other equilibria.48 That outcome is

estimated to arise in only 0.6 percent of classes. In 45.7 percent of the classes, at least one student

supplies minimum e¤ort and in the remaining 53.7 percent of classes, all of the students supply

above-minimum e¤ort. The average fraction of students in a class who are at the minimum e¤ort

level is .097.49

4.1.2 Model Fit

Table 3 compares actual and predicted statistics for each latent variable measure. It also shows the

fraction of the measure�s variance that re�ects variation in the latent (one minus the fraction due

to measurement error). The measures are categorized according to their corresponding latent. The

�rst row shows the �t for the ALI test, the measure of end-of-year (10th grade) math knowledge

47Based on an analysis of answer sheets, Behrman et. al. (2012) report that 3.7 percent of students in the control

group engaged in copying. We account for this in our estimation by including an indicator variable in the test score

measurement equation for whether a student was identi�ed as a copier. Our estimate indicates that copiers increased

their test scores by 14.2 points on average. The predicted mean test score incorporating cheating is 497.1 (see table

3).
48 Including the fraction of students choosing minimum e¤ort as an additional determinant of the equilibrium

selection probability did not improve the �t of the model and so was omitted from the �nal speci�cation. Thus,

all equilibria other than the the pareto dominant equilibrium and the all minimum-e¤ort equilibrium have equal

probability.
49We discuss below the relevance of these results for providing an explanation for the treatment e¤ects estimated

in Behrman et. al. (2012).
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(Kn). As seen, the model �ts the mean and standard deviation well. According to the model

estimates, 29.8 percent of the variance in the ALI test is accounted for by the variation in math

knowledge (and the residual by measurement error). In comparison, 18.6 and 16.9 percent of the

variance of the two measures of initial knowledge (K0n); the ninth grade Enlace score and the

student�s grade in their ninth grade mathematics class, is accounted for by the variation in initial

math knowledge.50

The �t for the measures of both the other exogenous and endogenous latent factors is generally

quite good, although measures vary in their precision with respect to the corresponding latent.

For example, the actual mean hours per week of study time devoted to mathematics, one of the

measures of student e¤ort, is 3.90, while the predicted mean is 3.83 hours; the actual standard

deviation of the measure is 3.20 hours and the prediction is 3.24 hours. Moreover, hours of study

time is censored from below at zero and from above at 10; the actual and predicted proportions

at zero hours are 19.7 and 20.7 and at 10 hours, 8.9 and 6.0.51 Hours of study time is, however, a

noisy measure of student e¤ort, with the noise component of the measure accounting for 93 percent

of its variance. Another measure of student e¤ort, the percent of time the student reports paying

attention in class, which can take on values within the ranges 0-24 percent, 25-49 percent, 50-74

percent and 75-100 percent, is also �t well; the actual percentages are 5.3, 12.6, 35.0, and 47.3

while the predicted percentages are 6.0, 13.6, 35.4, 45.0. The measure is less noisy than hours of

study time, with the variance component of the latent factor accounting for 12.8 percent of the

total variance of the measure.52 The �t for the measures of teacher e¤ort are similarly good and

the noise component of the measures of similar magnitudes. The least noisy measure of teacher

e¤ort is the number of hours per week spent on class preparation, for which the noise component

is 91.1 percent of the total variance. With respect to student preferences, the three measures have

50Regressions of the ENLACE score and the 9th grade mathematics class grade on their observable determinants

(listed in table 1) yield R-squares of 5 and 11 percent.
51As noted in table 1, hours per week of study time was modi�ed to account for the "quality" of study time.

Students who reported that they always texted or chatted on line while doing their homework (20 percent of the

sample) were assigned a study time of zero hours. The ALI test score of those students is about 28 standardized

points lower for any reported number of weekly hours of study time.
52Measures that are ordered categorical (or binary) are treated as themselves coming from underlying continuous

latent variables. The proportion of variance that the measure explains of the model latent (in this case the preference

for knowledge, �n) is with respect to the continuous latent of the measure.
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degrees of precision of 28.9, 13.4 and 1.7 percent, while the two measures of teacher preferences have

degrees of precision of 62.1 and 38.7 percent. The two measures of teacher instructional ability,

based on student reports as was also the case for teacher preferences, have degrees of precision that

are much lower, only 2.4 and 0.14 percent.

It is important to recognize that the extent of total variation accounted for by measurement

error is in itself not critical for assessing the performance of the model or its ability to account

for knowledge acquisition. As seen in table 2, all of the parameters of the production function

are estimated with precision, indicating that the variance in the latents, student initial knowledge,

teacher ability, student and teacher e¤ort are su¢ ciently large, although the measures of the latents

are noisy.

4.1.3 Characteristics of the Knowledge Production Function

Table 4 summarizes quantitatively the features of the production function for end-of-year knowl-

edge. Each row shows the e¤ect of ceteris parabus changes in each of the determinants of end-of-year

knowledge, ranging from a two standard deviation decrease (relative to the mean) to a two stan-

dard deviation increase. When each determinant is varied, the other determinants are held constant

at mean values. For reference, knowledge is 498.7 standardized points evaluated at the mean of

the knowledge determinants. As seen in table 4, an increase in initial knowledge from two stan-

dard deviations below the mean to two standard deviations above would increase 10th grade math

knowledge by 169.6 points or about 3 standard deviations. In contrast, increased teacher instruc-

tional ability (within the sample range) is considerably less productive; the same size change would

increase 10th grade knowledge by 5.6 points, or about .1 of a standard deviation.

With respect to e¤ort, the comparable (four standard deviation) change in student e¤ort would

increase 10th grade math knowledge by 14.7 points (.27 sd). However, there is a relatively large

change in knowledge when a student moves above the minimum e¤ort threshold; a change in

student e¤ort from minimum e¤ort to two standard deviations below the mean, approximately a

one standard deviation increase in e¤ort, would increase math knowledge by 11.4 points (.21 sd).

With respect to teacher e¤ort, the change from two standard deviations below the mean to two

standard deviations above the mean increases knowledge by only 2.4 points (.04 sd).

The last two rows of the table show the e¤ects of changing class size and technology (�).
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Increasing class size from 16 to 52 students would reduce knowledge by only 3.1 points (.06 sd).

Finally, improving a school�s technology from two standard deviations below the mean of � to

two standard deviations above the mean would increase student knowledge by 110.8 points (2.0

sd), almost two-thirds of the gain that would occur from the same size change in student initial

knowledge.

4.1.4 Accounting for Low Performance

The results in table 4 do not provide a complete picture as to the causes of low performance,

because changes in student initial knowledge or in teacher ability will a¤ect student and teacher

e¤ort, and table 4 holds e¤ort levels constant. In addition, the impact of changing student and

teacher preferences cannot be determined solely from the production function estimates. To account

fully for low performance, we perform a series of counterfactuals where we change the composition

of the classes in the control schools in terms of student and teacher primitives. In each case, we set

a student or teacher primitive to be at least two standard deviations above the mean relative to its

actual value. The results are reported in table 5.

The �rst column shows the baseline mean student and teacher e¤ort levels and student end-of-

year knowledge (both standardized and raw score). The second column shows those same statistics

for the case in which initial knowledge is at least two standard deviations above the mean for all of

the students in each class.53 As seen, there are small e¤ects on e¤ort, re�ecting the relatively low

payo¤ to e¤ort in producing knowledge; student e¤ort increases by the equivalent of .19 hours per

week of study time and teacher e¤ort by .34 hours per week of class preparation time. End-of-year

knowledge increases by 85.8 standardized points (1.57 sd).

The second column shows the impact of increasing teacher instructional ability so that all

teachers are at least two standard deviations above the mean. The e¤ect on student and teacher

e¤ort is similar to that for the change in student initial knowledge. However, because the marginal

product of teacher ability is low, student knowledge increases only by 3.7 standardized points (.07

sd). Thus, improving teacher instructional ability, at least within the range of abilities in the data,

is not a viable mechanism to improve student knowledge.

53Each of the counterfactuals was obtained by setting the particular latent to be two standard deviations above

the mean whenever the latent was drawn below that level.
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The counterfactual simulations related to changing preferences also lead to small e¤ects on

end-of-year knowledge. Unlike student initial knowledge and teacher ability, the e¤ect of changing

preferences on knowledge arises only through the e¤ect on e¤ort. As seen, setting the lower bound

on student preferences at two standard deviations above the mean increases average student e¤ort

by the equivalent of 1.07 hours of study time per week and average teacher preparation time by

the equivalent of .38 hours. Even with these increases in e¤ort, however, average end-of-year

knowledge increases by only 4.7 standardized points (about .09 sd). Setting the lower bound on

teacher preferences has essentially no e¤ect on average student e¤ort and increases average teacher

e¤ort by .55 hours per week of class preparation time. The overall e¤ect on student knowledge

is essentially nil, only 0.5 standardized points. The last column shows the e¤ect on end-of-year

knowledge if all schools adopted the technology of the most productive schools (as measured by

a value of � that is two standard deviations above the mean). The e¤ect of this change is a

small increase in student and teacher e¤ort. However, end-of-year knowledge increases by 56.2

standardized points (1.03 sd).

Tenth year math knowledge is measured in standardized ALI test score points, a relative scale.

To get a better idea of what these changes mean in terms of an "absolute" scale, we can translate

standardized points to the percentage correct raw score. As seen the raw score in the baseline is

37.8 percent. Using the raw score measure, the change above in student initial knowledge implies

a change in 10th year math knowledge equivalent to a raw score of 47.6 percent (approximately an

additional 8 questions correct out of a total of 79). Thus, even if all students were in the top 2.5

percent in terms of the current distribution of initial knowledge, on average less than one-half of

the questions would be correctly answered.

These counterfactuals demonstrate that: (i) the initial preparation of students in terms of their

incoming math knowledge has a large impact on 10th grade math performance, as measured by

the standardized score, but a modest impact when measured by the raw score; (2) within the

range of instructional abilities and preferences of teachers observed in the data, employing "better"

teachers would have a small impact on student end-of-year knowledge; (3) increasing the enjoyment

that students receive from acquiring math knowledge has a considerable impact on student e¤ort

and a smaller impact on teacher e¤ort, but induces only a small increase in student end-of-year

knowledge; (4) schools di¤er substantially in the technology of knowledge production and that can
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have a quantitatively important e¤ect on end-of-year knowledge.

5 Conclusions

This paper developed and estimated a strategic model of the joint e¤ort decisions of students and

teachers in a classroom setting to understand the reasons for low mathematics performance of

Mexican high school students on curriculum-based examinations. The model allows for student

and teacher heterogeneity in preferences for knowledge acquisition and in student initial mathe-

matics preparation and teacher instructional ability. Student and teacher e¤ort are assumed to

be complementary inputs, which, with strategic behavior, leads to the existence of multiple Nash

equilibria including one in which all students and the teacher supply �minimal" e¤ort. In addi-

tion, students face a �xed cost of supplying e¤ort above the minimum, which leads to additional

potential equilibria in which some fraction of students in a class supply minimal e¤ort. We showed

that as long as the �xed cost is the same for students within a class (for example, related to the

physical environment of the classroom), the number of equilibria cannot exceed one plus the class

size, which makes both the solution of the model and estimation tractable.

Survey data of students and teachers collected as part of the ALI project provide multiple

measures of student and teacher e¤ort, student and teacher preferences, student initial knowledge

and teacher ability, all of which we treat as latent variables. An end-of-year curriculum based test

provides a measure of 10th year mathematics knowledge. A simulation-based maximum likelihood

estimation procedure is used to recover the parameters of the knowledge production function as

well as parameters governing the latent variable and measurement structures.

Estimation results indicate that the most important factor accounting for low performance is

the lack of su¢ cient prior mathematics preparation. Based on the production function estimates,

a ceteris parabus increase in student e¤ort from its mean to one standard deviation above the

mean, an increase equivalent to almost one extra hour per week of time devoted to studying math,

would increase end-of-year knowledge by only .04 of a standard deviation. A similar increase in

teacher e¤ort would increase knowledge by less than .01 of a standard deviation. In contrast, a one

standard deviation increase in student initial knowledge increases end-of-year knowledge by .78 of

a standard deviation.
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We also used the model to perform counterfactual experiments that change the composition of

classes in terms of student and teacher primitives, incorporating the implied optimal changes in

student and teacher e¤ort. Increasing student initial knowledge in all classes to be at least two

standard deviations above the mean increases end-of-year knowledge by 1.6 standard deviations

above the mean, a ten percentage point increase in the raw score from 38 to 48 percent correct.

In addition, the e¤ect of giving all schools a technology that is two standard deviations above the

mean would increase end-of-year knowledge by over one standard deviation, a 6.5 percentage point

increase in the raw score. On the other hand, changes in student or teacher preferences or in teacher

ability led to no more than a .09 standard deviation change in end-of-year knowledge.

An implication of these results is that there is a mismatch between the 10th grade mathematics

curriculum and the mathematics preparation of incoming high school students. Because of this

mismatch, increasing e¤ort per se of either students or teachers does not lead to substantial increases

in end-of-year knowledge. It thus appears that simply having a rigorous curriculum will not by itself

improve knowledge.54 Increasing the level of preparation in mathematics coming into 10th grade

can signi�cantly increase relative performance, even given the low productivity of e¤ort. However,

given the production technology, our estimates imply that even with a signi�cant improvement in

incoming knowledge (measured on a relative scale), less than one-half of the 10th grade curriculum,

as measured by the ALI test, would be mastered on average.

Lastly, the introduction of this paper described the results of the ALI experiment, which pro-

vided performance-based monetary incentives to students and/or teachers. Although the model

was estimated only on the control group, the results provide some insights about the results of

the ALI experiment. One of the puzzling �ndings is that teacher incentives were only e¤ective in

combination with student incentives. One rationale for incorporating a �xed cost of student e¤ort

into our knowledge production function was that it created the potential for equilibria in which

large fractions of students choose minimum e¤ort. In that case, teacher e¤ort might only respond to

incentives when students were also o¤ered incentives that induced them to choose above-minimum

e¤ort, potentially providing an explanation for the pattern of ALI treatment e¤ects. Although our

production function estimates results imply that inducing students not to choose minimum e¤ort

54Although the results could re�ect a lack of curriculum coverage by teachers, eighty percent of teachers, accounting

for 85 percent of the students, report that they cover 75 percent or more of the curriculum.
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can have a considerable impact on end-of-year knowledge, only a small proportion of students (10

percent) in a class on average are estimated to choose minimum e¤ort. The estimated �xed costs

are therefore not large enough to be an important explanation for the pattern of treatment e¤ects

under the ALI experiment.

Our estimates also reveal that the productivity of student and teacher e¤ort are low. Given that,

the di¤erences between the treatment and control groups in the reported e¤ort levels of students

and teachers are not to be large enough to explain the observed di¤erences in the ALI examination

scores. For example, based on the number of hours per week studying math, student e¤ort is, on

average, .7 of a standard deviation higher for T3 than for the controls. That di¤erence by itself

would lead only to an increase in end-of-year knowledge of about .03 of a standard deviation, much

less than the increase observed under the experiment.

Finally, our estimates showed that there are important di¤erences across control schools in the

knowledge production technology. In fact, the T3 treatment e¤ect is of similar magnitude to what

would arise if all schools in T3 had a level of productivity that was two standard deviations above the

mean level of the control schools. This �nding is consistent with the ALI incentive program having

induced improvements in the productivity of treatment schools without aggregating school-speci�c

causes of low performance.55

55Standard measures of school-level instructional infrastructure such as computer and library resources do not di¤er

across treatment and control schools.

33



References

[1] Ackerberg, Daniel A. and Gautam Gowrisankaran (2006): �Quantifying Equilibrium

Network Externalities in the ACH Banking Industry," The RAND Journal of Economics 27

(3): 738-761.

[2] Austen-Smith, David and Roland G. Fryer (2005): �An Economic Analysis of Acting

White," Quarterly Journal of Economics 120 (2): 551-583.

[3] Bajari, Patrick, Han Hong and Stephen P. Ryan (2010): �Identi�cation and Estima-

tion of a Discrete Game of Complete Information," Econometrica 78: 1529-1568.

[4] Behrman, Jere R., Susan W. Parker, Petra E. Todd and Kenneth I. Wolpin

(2013): �Aligning Learning Incentives of Students and Teachers: Results from a Social Ex-

periment in Mexican High Schools," PIER working paper 13-004.

[5] Bjorn, Paul A., Quang H. Vuong (1984): �Simultaneous Equations Models for Dummy

Endogenous Variables: A Game Theoretic Formulation with Application to Labor Force Par-

ticipation," SSWP 537, California Institute of Technology.

[6] Card, David And Laura Giuliano (2011): �Peer E¤ects and Multiple Equilibria in the

Risky Behavior of Friends," Review of Economic and Statistics, forthcoming.

[7] Cunha, Flavio and James J. Heckman (2008): �Formulating, Identifying and Estimating

the Technology of Cognitive and Noncognitive Skill Formation," Journal of Human Resources

43: 738-782.

[8] Cunha, Flavio, James J. Heckman and Susanne M. Shennach (2010): �Estimating

the Technology of Cognitive and Noncognitive Skill Formation," Econometrica 78: 883-931.

[9] De Paula, Aureo (2009): "Inferences in a Synchronization Game with Social Interactions,"

Journal of Econometrics 148: 56-71

[10] De Paula, Aureo (2012): Econometric Analysis of Games with Multiple Equilibria,"

CEMAP working paper CWP29/12.

34



[11] Duflo, Esther, Pascaline Dupas and Michael Kremer (2008): �Peer E¤ects, Teacher

Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya,

NBER working paper No. 14475.

[12] Duflo, Esther, Rema Hanna and Stephen Ryan (2012): "Incentives Work: Getting

Teachers to Come to School," American Economic Review, 102: 1241-1278.

[13] Durlauf, Steven N. and William A. Brock (2001): �Interaction-based models, in

Handbook of Econometrics, Vol. 5, eds. James J. Heckman and Edward Leamer, Ch.

54, 3297-3380.

[14] Goldberger, Arthur S. (1972): �Structural Equation Methods in the Social Sciences,"

Econometrica 40: 979-1001.

[15] HanusheK, Eric A. (1994): Making Schools Work, Brookings Institution: Washington

D.C.

[16] Kremer, Michael, Edward Miguel and Rebecca Thornton (2009): �Incentives to

Learn, NBER working paper #10971.

[17] Lazear, Edward (2001): �Educational Production, Quarterly Journal of Economics, 116

(3): 777-803.

[18] Jia, Panle (2008): �What Happens When Wal-Mart Comes to Town; An Empirical Analysis

of the Retail Discounting Industry," Econometrica 76: 1236-1316.

[19] Joreskog, Karl G. and Arthur S. Goldberger (1975): �Estimation of a Model with

Multiple Indicators and Multiple Causes of a Single Latent Variable," Journal of the American

Statistical Association 70: 631-639.

[20] Pritchett, Lant and Amanda Beatty (2012): �The Negative Consequences of Overam-

bitious Curricula in Developing Counties," Center for Global Development Working

Paper 293.

[21] Sweeting, Andrew (2009): "The Strategic Timing Incentives of Commercial Radio Sta-

tions: An Empirical Analysis using Multiple Equilibria," The RAND Journal of Economics 40

(4): 710-742.

35



[22] Vives Xavier (2005): �Complementarities and Games: New Developments," Journal of Eco-

nomic Literature 43: 437-479.

36



 
Table A.1 

Parameter Estimates  
Production Function  

Parameter  Value  s.e. Parameter Value  s.e. 
δ .900   .441 γ0 2.09   .139 
σδ .050  .020 γ1 .308  .117 
κ .051   .004 γ11 -.0017  1.71E-5 
εs 1.64  .110 γ2 .197  5.60E-4 
εt .780  .051 γ21 -.0023  2.38E-6 
      
     

Primitives: Standard Deviation(σ) and Correlations(ρ) 
Parameter  Value  s.e. Parameter Value  s.e. 

School-level   School-level   
σξ

k0
 21.8 961 ρ( ξ

k0
, ξ

θn) .471 .002 
σξ

at .009 .00046 ρ( ξ
k0

, ξ
gn) -.075 .00014 

σξ
θn .191 .008 ρ( ξ

k0
, ξ

at) .372 .0031 
σξ

θt .017 .002 ρ( ξ
at

, ξ
θt) .901 .030 

β0
gn , σξ

gn .001, 7.52 1.13,.558    
Student-level   Student-level   

σξ
k0 4.41 .373 ρ( ξ

k0
, ξ

θn) .855 .0011 
σξ

θn  .100 .0072  
  

Measurements  
Parameter  Value  s.e. Parameter Value  s.e. 

K0: Initial knowledge   at : Teacher ability   
   ENLACE score      Teacher always knows  

     the subject   
  

      Constant  0.00 -         Constant 0.0 - 
      Slope  1.00 -         Slope 1.0 - 
      Variance 8947 3582         Variance .021 .0015 
      
    
Math 9th year grade  

     Teacher always has 
     control of class   

  

      Constant  3.26 38.6        Constant .357 26.2 
      Slope  .0094 .0028        Slope .308 3.77 
      Variance .836 .335        Variance .040 7.01 
      
Θn: Student  preferences   Θt:Teacher preferences   
    
Likes math  

     Teacher always cares if  
      student learns      

  

       Constant 0.00 -        Constant 0.0 - 
       Slope  1.20 .076        Slope 5.82 .410 
       Cutoff 1  -.852 .161        Variance .019 .0076 
       Cutoff 2 – Cutoff 1  .776 15.0    
       Cutoff 3 – Cutoff 2 2.03 2.60    
       Variance 1.00 -    
      
      

 



Table A.1 cont. 
   Hours/week studies 
     non-math subjects 

     Teacher wants students to 
      pay attention 

  

       Constant 0.00 -        Constant .056 6.36 
       Slope 5.73 47.77        Slope 4.82 8.67 
       Variance 23.1 9.96        Variance .020 .312 
      
   Student does only 
     what is expected 

     

       Constant 0.00 -    
       Slope .401 .193    
       Cutoff 1 -1.27 6.94    
       Cutoff 2 - Cutoff 1 1.61  2.12    
       Cutoff 3 - Cutoff 2 .556 .349    
       Cutoff 4 - Cutoff 3 .940 1.00    
       Variance 1.00 -    
      
en: Student effort   et: Teacher effort   
   Hours/week studies 
     math  

     Hours/week of class 
      preparation 

  

       Constant 0.00 -        Constant 0.00 - 
       Slope 1.00 -        Slope 1.00 - 
       Variance 17.1 3.40        Variance 5.28 9.88 
      
   Days attend math  
       Class 

     Hours/week tutoring 
       outside of class 

  

       Constant 80.5 17.1        Constant 2.23 35.6 
       Slope 3.28 1.37        Slope .267 313 
      Variance 11.7 6.30        Variance 8.15 12.6 
      
   Percent of time pays 
      attention in class 

     Gave only multiple 
     choice tests (Y or N) 

  

       Constant 0.00 -        Constant -.078 505.2 
       Slope    .453 .073        Slope -.106 89.8 
       Cutoff 1 -.854 .184        Variance 1.00 - 
       Cutoff 2 - Cutoff 1 .761 19.4    
       Cutoff 3 - Cutoff 2 1.06 13.8       
                
   Put much effort into 
       ALI exam (Y or N) 

     Prepared students for 
      ALI test (Y or N) 

  

       Constant -1.16 3.17        Constant -1.62 .160 
       Slope  .364 .351        Slope .288 53.5 
       Variance  1.00 -        Variance 1.00 - 

 
   Attempted difficult 
     ALI questions (Y or N)  

     

       Constant -.172 .985    
       Slope .325 2.18    
       Variance 1.00 -    

 
 



Table A.1 cont. 
T: ALI Test Score    
   Constant 0.00 -  
   Slope   1.00 -  
   Variance 7503 229.3  

 
Determinants (X’s) 

      
Parameter  Value  s.e. Parameter Value  s.e. 

K0: Initial knowledge   at : Teacher ability   
   Gender -13.4 .905       Has education degree .017 2.78 
   Height .410 .022       Has masters degree -.004 .0058 
   Age -6.61 2.05       Years teaching .0039 .0014 
   Primary school gpa 40.2 4.75       Years teaching square -.00016 .000012 
   Parents education less 
     than high school  

-.858 .054       Constant .835 .054 

   Constant  228.5 12.0 Θt:Teacher preferences   
         Has education degree .009 .0024 
Θn: Student  preferences         Has masters degree .020 .0021 
   Gender -.006 .0068       Years teaching .0015 4.07 
   Primary school gpa 1.34 .086       Years teaching square -.00007 .0000086 
   Parents education less 
     than high school 

.287 .026       Constant .129 .079 

   Constant -3.11 .176    
      
T: ALI test score      
     Copier 14.2 .953    
      
Equilibrium selection 
    probability 

     

   Dummy all students 
        minimum effort 

-12.0 9.09    

   Dummy pareto 
     dominant equilibrium 

1.16 .289    

      
 

 



Table 1 
Measures and Determinants of Latent Variables. 

 
Student Entering Knowledge (K0n) 
      Determinants: gender, height, primary school average, parental education, age. 
      Measures: 9th grade mathematics ENLACE score, 9th grade mathematics class grade.    
 
Student Knowledge Preference (θn) 
      Determinants: gender, primary school average, parental education.  
      Measures: extent to which likes math generally, hours per week study non-math subjects, frequency 
                         skips math, extent to which does only what is required. 
 
Student Effort (en) 
      Measures: hours per week study matha, percent time pay attention in class, extent of effort on ALI 
                          test, attempt to answer difficult questions on ALI test. 
 
Teacher Instructional Ability (at) 
       Determinants: has education degree, has masters degree, teaching experience. 
       Measures: fraction of students who say that teacher “always” knows subject well,  
                          fraction of students who say teacher “always” has good control of class. 
 
Teacher Preference for Student Knowledge (θt)      
       Determinants: has education degree, has masters degree, teaching experience. 
       Measures: fraction of students who say that teacher “always” cares that they learn the material, 
                          fraction of students who say teacher “always” cares that they pay attention in class. 
 
Teacher Effort (et) 
        Measures: hours per week spent planning for classes, hours per week help students outside of class, 
                           gave only multiple choice tests, prepared students for ALI test. 
 
Student Final Knowledge (Kn) 
       Measure: ALI test score.   
                            
 
_____________________________________________________________________________________ 

a. Interacted with one minus a dummy variable equal to one if  the student always chatted and/or 
texted while doing homework, zero otherwise. 

 
 



 
Table 2 

Production Function Parameter Estimates and Predicted Summary Statistics 
 

Parameter  Value (s.e.) Parameter Value (s.e.) 
κ        .051     (.004) γ1         .308    (.117) 
δ        .900     (.441)  γ11      -.0017    (1.71E-5)  
εs        1.64     (.110) γ2         .197    (5.60E-4) 
εt         .780     (.051) γ21      -.0023    (2.38E-6) 
γ0        2.09     (.139)   
    

  
  

Predicted Summary Statisticsa 

Statistic Value Statistic Value 
μK0 529.0 μK  496.6   
σK0 44.9 σK 54.5 
μθn .701 μen 1.82 
σθn .327 σen .848 
μat .838 μet 3.19 
σat .025 σet .689 
μθt .132  
σθt .023  

   
  

Statistic Value 
Fraction of classes in which:  
     All students supply minimum effort .006 
     Some students supply minimum effort  .457 
     No students supply minimum effort .537 
Average fraction of students in a class  
    supplying minimum effort 

.097 

  
  

a. Based on 2000 simulations of each class 



Table 3 
Model Fit 

 Actual Predicted  
 μ  σ μ  σ  σ 2

True /  σ 2
Total 

Measure of 10th Year Math 
   Knowledge (K) 

     

    ALI Test 500.5 99.8 497.1 102.3 .298 
      
Measures of Student Effort (en):      
    Hours/week study math 3.90 3.20 3.83 3.24 .070 
        Percent equal 0 19.7 - 20.7 -  
        Percent equal 10 8.9 - 6.0 -  
      
      
    Days attended math class 79.6 1.10 79.8 0..79 .571 
      
    Percent of time pay 
     attention in class 

     
.128 

          0 – 24 5.3 - 6.0 -  
         25 – 49 12.6 - 13.6 -  
         50 – 74 35.0 - 35.4 -  
         75 – 100 47.3 - 45.0 -  
      
    Puts much effort into ALI test (%) 33.1 - 31.6 - .087 
      
    Tried to answer difficult questions  
      on ALI test (%) 

67.3 - 65.7 - .070 

      
Measures of Teacher Effort      
    Hours/week of class preparation 3.99 2.31 3.97 2.40 .089 
      
    Hours/week tutor outside of class 3.05 2.94 3.08 2.92 .004 
      
    Gave only multiple choice tests (%) 37.4 - 33.9 - .005 
      
    Prepared students for ALI test (%) 21.3 - 24.5 - .038 
      
Measures of Student Initial 
   Knowledge (K0) 

     

    Ninth grade Enlace standardized 
      score 

530.9 104.2 529.0 102.5 .186 

      
    Ninth grade mathematics grade 8.26 1.03 8.23 1.01 .169 
      
Measures of Student Preference for 
   Knowledge (θn) 

     

    Hours/week studies non-math 
       subjects 

4.62 3.48 4.35 3.60 .289 



Table 3 (continued) 
Likes math (%)     .134 
      Never 5.2 - 5.7 -  
      Almost never 13.1 - 13.9 -  
      Sometimes 65.6 - 65.4 -  
      Always 16.1 - 15.0 -  
      
Student does only what is expected     .017 
      Strongly agree 6.2 - 6.2 -  
      Agree  45.1 - 46.3 -  
      Neither agree or disagree 20.8 - 20.5 -  
      Disagree 21.4 - 20.9 -  
      Strongly disagree 6.6  6.1 -  
      
Measures of Teacher Preferences for 
   Student Knowledge (θt) 

     

  Fraction of students in class who 
       respond that: 

     

    Teacher always cares if they learn .779 .172 .757 .176 .621 
      
    Teacher always wants students to 
        pay attention in class 

.693 .179 .689 .174 .387 

      
Measures of Teacher Instructional 
   Ability (at) 

     

  Fraction of students in class who 
       respond that: 

     

    Teacher always knows the subject .818 .159 .827 .131 .024 
      
    Teacher always has control of class .608 .204 .612 .196 .0014 
      

 



Table 4 
Properties of the Knowledge Production Function:  

Predicted Knowledge at Alternative Values of Student and Teacher Inputsa 

 μ-2σ μ-σ μ + σ μ +2σ 
     
K0 413.7 456.1 540.9 583.3 
     
en 487.5b 495.2 500.8 502.5 
     
et 497.1 b 497.9 499.0 499.5 
     
at 495.8 497.1 499.9 501.4 
     
Nc 500.1 499.3 497.8 497.0 
     
δ 443.1 470.8 526.2 553.9 
     

a. Knowledge evaluated at means is 498.5. 
b. Knowledge at minimum student or teacher effort is 476.1. 
c. Class sizes are 16,25,43,52. Mean class size is 34. 



Table 5 
The Effect of Changes in Student Initial Knowledge, Teacher Instructional Ability, Student and Teacher 

Preferences, and Technology on 10th Grade Mathematics Knowledgea 

 Baseline ΔK0  Δat Δθn  Δθt Δδ 
       
en 1.82 2.01 1.98 2.89 1.84 

 
1.95 

       
et 3.19 3.53 3.47 3.57 3.74 

 
3.45 

       
Kn       
  Std. Score 496.6 582.4 500.3 501.3 497.1 552.8 
Raw Score (%)  37.8 47.6 38.3 38.4 37.9 44.3 

 Change from 
   Baseline in SD 

 
- 

 
1.57 

 
.068 

 
.086 

 
.009 

 
1.03 

    
a. All students at least two standard deviations above the sample mean for each change. 
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