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Abstract

This paper formulates and solves the problem of a homeowner who wants to sell her house for the
maximum possible price net of transactions costs (including real estate commissions). The optimal
selling strategy consists of an initial list price with subsequent weekly decisions on how much to adjust
the list price until the home is sold or withdrawn from the market. The solution also yields a sequence
of reservation prices that determine whether the homeownershould accept offers from potential buyers
who arrive stochastically over time with an expected arrival rate that is a decreasing function of the list
price. We estimate the model using a rich data set of completetransaction histories for 780 residential
properties in England introduced by Merlo and Ortalo-Magn´e (2004). For each home in the sample,
the data include all listing price changes and all offers made on the home between initial listing and
the final sale agreement. The estimated model fits observed list price dynamics and other key features
of the data well. In particular, we show that a very small “menu cost” of changing the listing price
(estimated to equal 10 thousandths of 1% of the house value, or approximately£10 for a home worth
£100,000), is sufficient to explain the high degree of “stickiness” of listing prices observed in the data.
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1 Introduction

Buying and selling a home is one of the most important financial decisions most individuals make during

their lifetime. Home equity is typically the biggest singlecomponent of the overall wealth of a house-

hold, and given the highly leveraged situation that most households are in (where mortgage debt is a high

fraction of the overall value of the home), the outcome of thehome selling process can have very serious

consequences for their financial well-being.

Given its importance, we would expecta priori that households have strong incentives to be forward-

looking and behave rationally when they sell their home. In particular, it seems reasonable to model the

household’s objective as trying to maximize the expected gains from selling their home net of transactions

costs.

Surprisingly, dynamic rational models of the “home sellingproblem” have been understudied both

theoretically and, most notably, empirically. In pioneering work, Salant (1991) formulated and solved for

the optimal selling strategy of a risk neutral seller using dynamic programming. Salant’s model involves

an initial choice by the household whether to use a real estate agent to help sell their home, versus deciding

to save on the high commissions charged by most real estate agencies and follow a “for sale by owner”

selling strategy. Under either of these options, the sellermust also choose a list price each period the home

is up for sale, and whether to accept an offer for the home whenone arrives, or to wait and hope that

a higher offer will arrive in the near future. Salant showed that the optimal solution generally involves

a strictly monotonically declining sequence of list prices, and that it is typically optimal to begin selling

the home by owner, but if no acceptable offers have arrived within a specified interval of time, the seller

should retain a real estate agent. Under some circumstances, the optimal list price can jump up at the

time the seller switches to the real estate agency, but list prices decline thereafter. To our knowledge, the

implications of Salant’s theoretical analysis have not been investigated empirically.

Horowitz (1992) was the first attempt to empirically estimate a dynamic model of the home seller’s

problem. Unlike Salant, who considered an environment witha finite horizon, Horowitz adopted an

infinite-horizon stationary search framework, and characterized the optimal (time-invariant) list and reser-

vation prices of the seller. Horowitz’s model implies that the duration to sale of a house is geometrically

distributed, and he estimated his model using data on the list price, sale price and duration to sale for a

sample of 1196 homes sold in Baltimore, Maryland in 1978.

Horowitz concluded that his econometric model “gives predictions of sale prices that are considerably
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more accurate than those of a standard hedonic price regression” (p. 126). He also noted that his model

“explains why sellers may not be willing to reduce their listprices even after their houses have remained

unsold for long periods of time” (p.126). The latter conclusion, however, is unwarranted because time

invariance of list and reservation prices are inherent features of Horowitz’s stationary search framework.

Hence, his model is logically incapable of addressing the issue of what is the optimal sequence of list price

choices by a seller over time (and in particular whether listprices should decline or remain constant over

time). Further, his data set does not appear to contain any information on changes in the list price between

when a home was initially listed and when it was finally sold.1

It seems that the question of whether optimal list prices should or should not decline over time can only

be addressed in a non-stationary, finite-horizon frameworksuch as Salant’s, or else in a stationary infinite-

horizon framework that includes variables such as durationsince initial listing, or duration since previous

offer, as state variables.2 Also, it is quite evident that any progress in the specification and estimation of

plausible dynamic models of the home selling problem critically hinges on the availability of richer micro

data containing detailed information on the history of relevant events (e.g., list price revisions and offers

received) during the home selling process.

The model presented in this paper is motivated by the empirical findings of Merlo and Ortalo-Magné

(2004), who introduced a novel data set that to our knowledgeprovides the first opportunity to study the

home selling problem in considerable detail. Merlo and Ortalo-Magné’s study is based on a panel data

of complete transaction histories of 780 residential properties that were sold via a real estate agency in

England between June 1995 and April 1998. For each home in thesample, the data include all listing price

changes and all offers made on the home between initial listing and the final sale agreement (i.e., the data

include all rejected offers on each home, if any, as well as the accepted offer that lead to its sale). Merlo

and Ortalo-Magné characterized a number of key stylized facts pertaining to the sequence of events that

occur within individual property transaction histories, and discussed the limitations of existing theories of

a home seller’s behavior in explaining the data.

The dynamic model of the home selling problem we propose and estimate takes advantage of the

1 Also note that Horowitz’s estimated model explains little of the observed variation in time from listing to sale. Carrillo
(2012) specified and estimated an equilibrium search model of the housing market which fits the observed variation in timefrom
listing to sale well. However, Carillo’s model is also stationary and hence unable to explain observed changes in the listing price
through time.

2 However, once one includes a state variable such as durationsince initial listing, the seller’s problem automaticallybecomes
a non-stationary dynamic programming problem that is essentially equivalent to Salant’s formulation.
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richness of this data set and incorporates several realistic features of the home selling process into a finite-

horizon, dynamic programming model of the behavior of the seller of a residential property. We take the

decision to sell a house via a real estate agency as a given, and consider the decisions of which price to list

the house at initially, how to revise this price over time, whether or not to accept offers that are received,

and whether to withdraw the house if insufficiently attractive offers are realized.3 To make these decisions

the seller forms expectations about the probability a potential buyer will arrive and make an initial offer,

the probability she will make additional offers if any of heroffers are rejected, and the level of each of

these offers. These expectations are revised over time based on the realized event history.

In this paper, we do not explicitly model the behavior of buyers and the bargaining game that leads

to the sale of a house. Typically, when a potential buyer arrives and makes an initial offer for the home,

it is just the first move in abargaining subgamewhere the buyer and the seller negotiate over the sale

price. This negotiation may either lead to a transaction, when the buyer and seller reach an agreement

over the terms of the sale, or end with the buyer leaving the bargaining table when no mutually agreeable

deal can be reached. Rather than modeling this situation as abargaining model with two-sided incomplete

information (where the buyer and the seller each possess private information about their own idiosyncratic

valuation of the home), we capture the key features of this environment by specifying a simplified model

of buyers’ bidding behavior. In particular, we assume that if a potential buyer arrives, she makes up to

n consecutive offers which are drawn from bids distributionsthat depend, among other things, on the list

price and the amount of time the house has been on the market.4 The seller can either accept or reject each

offer, but after any rejection there is a positive probability the buyer “walks” (i.e. she decides not to make

a further offer and move on and search for other properties instead).5

3 One aspect that we do not model in this paper is the seller’s decision whether to use a real estate agent, something that was
a key focus of Salant’s analysis. While we agree that this is avery interesting and important issue, it is one that we cannot say
much about empirically, since Merlo and Ortalo-Magné’s data set only includes properties that were listed and sold viaa real
estate agent.

4 In our empirical work, we assume thatn = 3, which is the maximum number of offers made by a potential buyer on the
same house observed in the data.

5 As is well known, game-theoretic models of bargaining with two-sided incomplete information typically admit multiple
equilibria — and often a continuum of them (e.g., Muthoo (1999)). Furthermore, there are no general results in the literature
that characterize the full set of equilibria for such games,and adopting an arbitrary equilibrium selection rule seemsa rather
unappealing alternative. We avoid these problems by treating buyers asbidding automatausing simple piecewise linear bidding
functions with exogenously specified random termination inthe bargaining process. It should be noted, however, that such bidding
functions could be derived endogenously in the unique equilibrium of a bargaining game with one-sided incomplete information,
where the buyer is uninformed about the seller’s valuation,but the buyer’s valuation of the house is common knowledge. Our
specification also accommodates the possibility of “auctions”, i.e., situations where multiple buyers are bidding simultaneously
for a home, and offers may exceed the list price.
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While treating buyers asbidding automatais obviously a simplification, modeling the offer process

as one-sided, where the potential buyer makes offers that the seller can either accept or reject without

making counteroffers, is not. Contrary to the standard procedure we are accustomed to in the U.S. as well

as many other countries, where the owner of a house for sale can typically respond to a buyer’s offer with

a counteroffer, and there may be multiple real estate agentsrepresenting the various parties involved in the

sale process, the negotiating protocol that pertains to theresidential properties transactions in the Merlo

and Ortalo-Magné English data set is quite different. In England, most residential properties are marketed

under sole agency agreement (i.e., a house is listed with a single real estate agency that coordinates all

market related activities concerning the house from the time it is listed until it either sells or is withdrawn).

Agencies represent the seller only, and a potential buyer who wants to make an offer on a property has to

communicate the offer in writing to the agency representingthe seller of that property. Upon being notified

of the offer, the general practice is for the seller simply toeither accept the offer or reject it, in which case

the buyer has the option of either submitting a revised offeror terminating the negotiation.6

Our model incorporates a fixed “menu cost” of changing the list price. One of the most striking features

of the Merlo and Ortalo-Magné data is that housing list prices appear to be highly (though not completely)

sticky.That is, 77% of the home sellers in the data never changed the initial list price between the time the

house was initially listed and when it was sold. List prices were changed only once in 18% of the cases,

only twice in 4% of the cases, and only three times in the remaining 1% of the cases observed.7 Merlo

and Ortalo-Magné conclude that “listing price reductionsare fairly infrequent; when they occur they are

typically large. Listing price revisions appear to be triggered by a lack of offers. The size of the reduction

in the listing price is larger the longer a property has been on the market” (p. 214). These features of the

data are not specific to England. They are also common in housing markets across the U.S. (e.g., Knight

(2002)).

This finding presents a challenge, since the conventional wisdom is that traditional, rational, forward-

6 Another reason for our simplified treatment of buyers is thatthe English data set we use contains very limited information on
the buyers. While the data allow us to follow the decisions ofsellers through time, we have no record of the search and bargaining
behavior of individual buyers except for the sequence of offers on a single property. In other words, we know the number, timing,
and levels of offers made by the same potential buyer on a property, but we do not know whether the same buyer is also making
offers on other properties. We believe that our model may provide a reasonably good approximation to a seller’s beliefs in a fluid
environment where there is a high degree of heterogeneity inpotential buyers, and sellers have a great deal of uncertainty about
the buyers’ motivations and outside options.

7 None of the homeowners made more than one change in their initial list price during the first eleven weeks on the market,
which is the mean duration between initial listing and the sale of the home in the sample.
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looking economic theories are unable to explain extreme price stickiness of this sort, unless there are large

menu costs associated with price revisions.8 While list price changes certainly entail a cost for the seller

(e.g., in England, all documents pertaining to the listing needs to be updated — analogously, in the U.S.,

the new price information must be entered in the Multiple Listing Service data base), this cost is unlikely

to be large.

One of the primary contributions of this paper is to show thata very smallmenu cost, amounting to

10 thousandths of 1% of the estimated house value, or approximately£10 for a home worth£100,000, is

sufficient to generate the high degree of list price stickiness observed in the data with a forward-looking

dynamic programming model with risk-neutral sellers who have rational expectations about the ultimate

selling price of their homes.

There are several reasons why a very small menu cost yields a high degree of list price stickiness in our

model. One reason is that our model assumes that sellers haveaccurateex antebeliefs about thefinancial

valueof their homes. That is, we assume sellers haverational expectationsabout the future selling price.

In the absence of macro shocks or learning about the financialvalue of the house, the fact that offers from

potential buyers fail to arrive (or not) does not have a significant information content that would cause

sellers to revise their beliefs and adjust their list price.

A second reason for the price stickiness in our model is that sellers realize that the list price is just a

starting pointfor negotiations, and the seller is not committed to sellingonly at the list price. In general,

most offers are less than the list price and subsequent bargaining between the buyer and the seller leads to

an increasing sequence of offers until a final transaction price is agreed upon (or the buyer walks away).

However, the final transaction price is generally less than the current list price of the home. Thus, most

of the real “action” in terms of the realized transaction price occurs during this bargaining process, and

the purpose of the list price is mainly to attract potential buyers to the bargaining table. While we do

not model the bargaining process explicitly, our empiricalframework incorporates the key features of this

process, and in particular the fact that when a potential buyer arrives, she may make not just one offer (as it

is assumed in the models of Horowitz and Salant alike), but anincreasing sequence of offers. Indeed, our

estimated model predicts that while list prices are piecewise flat functions of duration on the market (just

8 For example, Salant’s model, which abstracts from menu costs, predicts that list prices should decline monotonically over
the period the home is on the market. However, it is well knownthat the type of non-convexity introduced by a menu cost can
generateregions of inactionwhere it is optimal for the seller not to change the list priceeven though the list price inherited from
the previous period is not the optimal forward-looking listprice that the seller would choose if there was no cost of changing the
list price. The larger the menu cost, the bigger the regions of inaction.
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as we observe in the data), the seller’sreservation valuesdo decline continuously as a function of duration

on the market. The combination of the probability of receiving multiple increasing offers from a potential

buyer once the potential buyer arrives and declining reservation prices results in significantactual price

flexibility that is not evident in the list prices.

A final reason for list price stickiness is that while we find that the rate of arrival of offers is a decreasing

function of the list price, the estimated relationship between the arrival rate and the list price is fairly

inelastic. In effect, it appears that it is a matter of commonknowledge that most of the action in terms

of determining an actual sale price of a home will occur as a result of a bargaining process, and therefore

while we show that the list price is a good predictor of the ultimate transaction price (and indeed, a much

more accurate predictor of the transaction price than a hedonic price estimate), once the initial list price is

set at the time the house is listed, the apparently highly rational manner in which the initial list price was

set largely precludes the need for significant further adjustments over reasonable horizons. Our estimated

model predicts only large reductions in the list price for houses that have been on the market for a very

long time without having received an acceptable offer, consistent with what we observe in the data.

Our estimated model is also consistent with most of the otherkey features of the data, including the

distributions of times to sale, initial list prices, the overall trajectory of list prices, sale prices and the

number of ”matches” between a seller and a potential buyer. An interesting finding of our empirical

analysis is that houses are generallyoverpricedwhen they are first listed. In the English housing data the

degree of overpricing is not huge: the initial list is on average 5% higher than the ultimate transaction

price for the home. However, it is important to point out thatour theoretical model could also generate

underpricingas an optimal seller’s behavior. Underpricing can result when the arrival rate of buyers is

sufficiently sensitive to the list price, and when there is a significant chance that multiple buyers can arrive

at the same time, resulting in an auction situation and potential “bidding war” that tends to drive the final

transaction price to a value far higher than the list price.9

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 introduces our

model of the seller’s decision problem. Section 4 describesthe simplified model of buyer arrival and

9 In the data, initial bids and final transaction prices in excess of the list price are observed in approximately 4% of all sales.
Our model allows for the possibility of such “overbidding” which results from the fact that in England, the seller has no legal
obligation to accept a bid that is greater than or equal to thelist price. Previous models, including both Salant’s and Horowitz’s
models, do not allow for the possibility that a bid or transaction price would ever exceed the list price. For a recent theoretical
model of the housing market were, in equilibrium, transactions can occur above, below, or at the list price see Albrecht,Gautier
and Vroman (2012).
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bidding behavior that constitutes the key “belief objects”in the seller’s decision problem that must be

estimated to empirically implement our model. Section 5 presents estimation results based on a simu-

lated minimum distance (SMD) estimation method. Section 6 provides some concluding comments and

directions for future research.

2 The English Housing Data

This section provides a brief overview of the English housing data analyzed by Merlo and Ortalo-Magné

(2004), reviewing the legal environment, the overall housing market, and the way the real estate agency

operates in the parts of England where the data were gathered.10

In England, most residential properties are marketed undersole agency agreement. This means that a

property is listed with a single real estate agency that coordinates all market related activities concerning

that property from the time it is listed until it either sellsor is withdrawn. Agencies represent the seller only.

Listing a property with an agency entails publishing a sheetof property characteristics and a listing price.

Although not legally binding, the listing price is generally understood as a price the seller is committed to

accept.

The listing price may be revised at any time at the discretionof the seller. If the seller chooses to revise

the listing price, she communicates the decision to the agent, who then adjusts the price on the posted

property sheet and reprints any property detail sheets in stock with the cost charged to the seller. Hence,

changing the listing price only entails a small cost for the seller.

Potential buyers search by visiting local real estate agencies and viewing properties. A match between

the seller and a potential buyer occurs when the potential buyer makes an offer. Within a match, the

general practice is for the seller to either accept or rejectoffers. In the event the seller rejects an offer, the

potential buyer either makes another offer or walks away. Ifagreement occurs, both parties engage the

administrative procedure leading to the exchange of contracts and the completion of the transaction. This

procedure typically lasts three to eight weeks. During thisperiod, among other things, the buyer applies

for mortgage and has the property surveyed. Each party may cancel the sale agreement up to the exchange

of contracts.

10 We refer the reader to Merlo and Ortalo-Magné (2004) for a more in depth analysis, but we do lay out here the key features
of the data that we attempt to account for in this analysis.
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For each property it represents, the agency keeps a file containing a detailed description of the property,

its listing price, and a record of listing price changes, offers, and terms of the sale agreement, as required

by law. The information contained in each individual file is also recorded on the accounting register that

is used by each agency to report to the head office. Although all visits of a property by potential buyers

are arranged by the listing agency, recording showings is not required either by the head office or by law.

However, individual agencies may require their agents to collect this information for internal management

purposes.

The data set we use in our research was obtained from the salesrecords of four real estate agencies in

England. These agencies are all part of Halifax Estate Agencies Limited, one of the largest network of real

estate agents in England. Three of these agencies operate inthe Greater London metropolitan area, one in

South Yorkshire. Our sample consists of 780 complete transaction histories of properties listed and sold

between June 1995 and April 1998 under sole agency agreement. Each entry in our data was validated by

checking the consistency of the records in the accounting register and in the individual files.

Each observation contains the property’s characteristicsas shown on the information sheet published

by the agency at the time of initial listing, the listing price and the date of the listing. If any listing price

change occurs, we observe its date and the new price. Each match is described by the date of the first offer

by a potential buyer and the sequence of buyer’s offers within the match. When a match is successful,

we observe the sale agreed price and the date of agreement which terminate the history. In addition, for

the properties listed with one of our Greater London agencies (which account for about a fourth of the

observations in our sample), we observe the complete history of showings. Since events are typically

recorded by agents within the week of their occurrence, we use the week as our unit of measure of time.

The main features of the data can be summarized as follows. First, listing price reductions are fairly

infrequent; when they occur they are typically large. Listing price revisions appear to be triggered by a

lack of offers. The size of the reduction in the listing priceis larger the longer a property has been on

the market. Second, the level of a first offer relative to the listing price at the time the offer is made is

lower the longer the property has been on the market, the morethe property is currently over-priced, and

if there has been no revision of the listing price. Negotiations typically entail several offers. About a third

of all negotiations are unsuccessful (i.e., they end in a separation rather than a sale). The probability of

success of a negotiation decreases with the number of previous unsuccessful negotiations. Third, in the

vast majority of cases, a property is sold to the first potential buyer who makes an offer on the property

8



(i.e., within the first negotiation), although not necessarily at the first offer. The vast majority of sellers

whose first negotiation is unsuccessful end up selling at a higher price, but a few end up accepting a lower

offer. The higher the number of negotiations between initial listing and sale agreement, the higher the sale

price.

Figure 2.1 illustrates two typical observations in the dataset. We have plotted list prices over the full

duration from initial listing until sale as a ratio of the initial listing price. The dots plot the first offer and

the squares are the second offers received in a match. The stars plot the final accepted transaction prices.

Thus, the seller of property 1046 in the left hand panel of figure 2.1 experienced 3 separate matches. The

first occurred in the fourth week that the property was listed, and the seller rejected the first bid by a bidder

equal to 95% of the list price. The buyer “walked” after the seller rejected the offer. The next match

occurred on the sixth week on he market. The seller once againrejected this second prospective buyer’s

first bid, which was only 93% of the list price. However this time the bidder did not walk after this first

rejection, but responded with a second higher offer equal to95% of the list price. However when the seller

rejected this second higher offer, the second bidder also walked. The third match occurred in the 11th

week the home was on the market. The seller accepted this third bidder’s opening offer, equal to 98% of

the list price. Note that there were no changes in the initiallist price during the 11 weeks this property was

on the market.

The right hand panel plots a case where there was a decrease inthe list price by 5% in the fourth week

this property was on the market. After this price decrease another 5 weeks elapsed before the first offer was

made on this home, equal to 90% of the initial list price. The seller rejected this offer and the buyer made

a second offer equal to 91% of the initial list price. The seller rejected this second offer too, prompting the

buyer to make a final offer equal to 94.5% of the initial list price which the seller accepted.

Figure 2.2 plots the number of observations in the data set and the mean and median list prices as a

function of the total number of weeks on the market. The left hand panel plots the number of observations

(unsold homes remaining to be sold) as a function of durationsince initial listing. For example only 54

of the 780 observations remain unsold after 30 weeks on the market, so over 93% of the properties listed

by this agency sell within this time frame. If we compute the ratio of first offers received to the number

of remaining unsold properties, we get a crude estimate of the offer arrival rate (a more refined model and

estimate of this rate and its dependence on the list price will be presented subsequently). There is an 11%

arrival rate in the first week a home is listed, meaning that approximately 11% of all properties will receive

9
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Figure 2.1 Selected Observations from the London Housing Data

one or more offers in the first week after the home is listed with the real estate agency. The arrival rate

increases to approximately 15% in weeks 2 to 6, then it decreases to approximately 12% in weeks 7 to 12,

and then drops to about 10% thereafter, although it is harderto estimate arrival rates for longer durations

given the declining number of remaining unsold properties.

The right hand panel of figure 2.2 plots the mean and median list prices of all unsold homes as a

function of the duration on the market. We have normalized the list prices by dividing by the predicted sale

price from a hedonic price regression using the extensive set of housing characteristics that are available

in the data set (e.g. location of home, square meters of floor space, number of baths, bedrooms, and so

forth). However, the results are approximately the same when we normalize using theactual transaction

prices instead of the regression predictions: this is a consequence of the fact that the hedonic regression

provides a very accurate prediction of actual transaction prices.

We see from the right panel of figure 2.2 that initially housesare listed at an average of a 5% premium

above their ultimate selling prices, and there is an obviousdownward slope in both the mean and median

list prices as a function of duration on the market. However the slope is not very pronounced: even

after 25 weeks on the market the list price has only declined by 5%, so that at this point list prices are

approximately equal to theex anteexpected selling prices. The apparently continuously downward slope

in mean and median list prices is misleading in the sense that, as we noted from figure 2.1, individual list

price trajectories are piecewise flat with discontinuous jumps on the dates where price reductions occur.
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Figure 2.2 Number of Observations and List Prices by Week on Market

Averaging over these piecewise flat list price trajectoriescreates an illusion that list prices are continuously

declining as a function of duration on the market, but we emphasize again that the individual observations

do not have this property.

Figure 2.3 plots the distribution of sales prices (once again normalized as a ratio to the predicted

transaction price) and the distribution of duration to sale. The left hand panel of figure 2.3 plots the

distribution of sales price ratios. There are two differentdistributions shown: the relatively more dispersed

one is the distribution of ratios of sale price to the hedonicprediction of sales price, and the relatively more

concentrated one is the distribution of the ratio of sales price to the initial list price, multiplied by 1.05

(this latter factor is the average markup of the initial listprice over the ultimate transaction price, as noted

above). Both of these distributions have a mean value of 1 (byconstruction), but clearly the distribution of

the adjusted sales price to list price ratio is much more tightly concentrated than the distribution of sales

price to hedonic value ratios. Evidently there is significant information about the value of the home that

affects the seller’s decision of what price to list their home at that is not contained in thex variables used to

construct the hedonic price predictions. The model we present in section 3 accounts for this extraprivate

informationabout the home that we are unable to observe. However even when this extra information is

taken into account, there is still a fair amount of variation/uncertainty in what the ultimate sales price will

be, even factoring in the information revealed by the initial list price: the sales price can vary from as low

of only 53% of the adjusted list price to 32% higher than the adjusted list price.

11



0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

7

8

9

D
en

si
ty

 o
f S

al
es

 P
ric

e

Sales Price Ratio

Distribution of Sales Prices
Min, Mean, Median, Max, Std of Sale Price/Hedonic ( 0.22, 1.00, 0.98, 3.38, 0.30)

Min, Mean, Median, Max, Std of Sale Price*1.05/List Price ( 0.53, 1.00, 1.01, 1.32, 0.07)

 

 
Sales Price/Hedonic Value
Sales Price*1.05/List Price

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Weeks to Sale

E
st

im
at

ed
 D

en
si

tie
s

Distribution of Duration (in weeks) to Sale
Min,Mean,Median and Max ( 1.00,10.27, 6.00,69.00)

Figure 2.3 Distribution of Sale Prices and Duration to Sale

The right hand panel of figure 2.3 plots the distribution of times to sale. This is a clearly right skewed

but unimodal distribution with a mean time to sale of 10.27 weeks and a median time to sale of 6 weeks.

As we noted above, over 90% of the properties in our data set were sold within 30 weeks of the date the

property was initially listed. Scatterplots relating timeto sale to the ratio of the list price to the hedonic

value (not shown) do not reveal any clear negative relationship between the degree of “overpricing” (as

indicated by high values of this ratio) and longer times to sale.

We conclude our review of the English housing data by showingfigure 2.4, which plots the distribu-

tions of the first offer received and the best (highest) offerreceived as a ratio of the current list price for

properties with different durations on the market. The lefthand panel of figure 2.4 shows the distributions

of first offers. We see that in the first week a home is listed, the mean first offer received is 96% of the list

price (which is also the initial list price in this case). However first offers range from a low of only 79% of

the list price to a high of 104% of the list price. We see that even accounting for declines in the list price

with duration on the market, that first offers made on properties tend to decline the longer the property

is on the market. There is a notable leftware shift in the distribution of first offers for offers received on

homes that have been on the market for 20 weeks, where the meanfirst offer is only 91% of the list price

in effect for properties that are still unsold after 20 weeks.

The right hand panel of figure 2.4 shows the distribution of the best offers received in a match. In

the first few weeks the best offers show only modest improvement over the first offers received (e.g. the
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Figure 2.4 Distribution First Offer and Best Offer as a Ratio of List Price

best offer is 97% of the list price, whereas the first offer is 96% of the list price). However we see more

significant improvement in offers received for homes that were still unsold after 20 weeks: the best offer

received is 94% of the current list price, which is 3 percentage points higher than the ratio of the first offer

to the list price.

3 The Seller’s Problem

This section presents our formulation of a discrete-time, finite-horizon dynamic programming problem of

the seller’s optimal strategy for selling a house. The modelwe propose incorporates several features of the

house selling process in England illustrated in the previous section.

Since our data set only includes properties that were listedand sold via a real estate agent, we take the

decision to sell a house (via a real estate agency) as a given,and consider the seller’s decisions of which

price to list the house at initially, how to revise this priceover time, whether or not to accept offers that

are received, and whether to withdraw the house if insufficiently attractive offers are realized. To make

these decisions the seller forms expectations about the probability a potential buyer will arrive and make

an initial offer, the probability she will make additional offers if any of her offers are rejected, and the level

of each of these offers. These expectations are revised overtime based on the realized event history.

We do not explicitly model the behavior of buyers and the bargaining game that leads to the sale of

a house. Rather, we capture the salient features of the bargaining environment by specifying a simplified

13



model of buyers’ bidding behavior. In particular, we assumethat if a potential buyer arrives, she makes up

to 3 consecutive offers (where 3 is the maximum number of offers observed in the data), which are drawn

from bids distributions that depend, among other things, onthe list price and the amount of time the house

has been on the market.11 The seller can either accept or reject each offer, but after any rejection there is a

positive probability the buyer “walks” (i.e., she decides not to make a further offer and move on and search

for other properties instead). As explained above, the procedure where a potential buyer makes offers that

the seller can simply either accept or reject mimics the negotiating protocol in the data.

A decision period is a week, and we assume a finite horizon of 2 years. If a house is not sold after 2

years, we assume that it is withdrawn from sale and the sellerobtains an exogenously specified “continua-

tion value” representing the use value of owning (or renting) their home over a longer horizon beyond the

2 year decision horizon in this model.12

The seller’s continuation value will generally be different from a quantity we refer to as the seller’s

financial valueof their home. This is the seller’s expectation of what the ultimate selling price will be for

their home. While it is clear that the ultimate selling priceis endogenously determined and partly under

control of the seller, we can think of the financial value as a realistic appraisal or initial assessment on

the part of the seller of the ultimate outcome of the selling process. Since the seller’s optimal strategy

will depend on the financial value of the house, if the financial value is to represent a rational, internally

consistent belief on the part of the seller, it will have to satisfy a fixed-point condition that guarantees that

it is a “self-fulfilling prophecy”. Although we do not explicitly enforce this fixed-point constraint in our

solution of the dynamic programming problem, we verify below (via stochastic simulations) that it does

hold for the estimated version of our model.13

Let F0 denote the seller’s perception about the financial value of their home at the time of listing. We

11 We describe this component of our model in detail in the next section.
12 The continuation value may include the option value of relisting the home at a future date, perhaps during a period where

conditions in the housing market are more favorable to the seller. However, we do not model the decision that leads eitherto
“entry” (i.e. the initial decision to sell) or to “re-entry”(in case the property is withdrawn and then re-listed) of a house on the
market.

13 While it is possible to enforce the rationality constraint as a fixed-point condition on our model, from our standpoint itis
useful to allow for formulations that relax the rationalityconstraint. This gives us the additional flexibility to consider models
where sellers do not have fully rational, self-consistent beliefs about the financial value of their homes. Indeed, allowing for
inconsistent or “unrealistic” beliefs may be an alternative way to explain why some home sellers set unrealistically high listing
prices for their homes that would be distinct from the loss aversion approach discussed in the introduction. However, aswe show
below, we do not need to appeal to any type of irrationality orassume that sellers have unrealistic beliefs in order to provide an
accurate explanation of the English housing data.
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assume thatF0 is given by the equation

F0 = exp{Xβ+η0} (1)

whereX are the observed characteristics of the home (the basis for the traditional hedonic regression

prediction of the ultimate sales price discussed in Section2), andη0 reflects the impact of other variables

that are observed by the seller but not by the econometricians that can affect the seller’s perception of their

home’s financial value. These variables could include the seller’s private assessment of aggregate shocks

that affect the entire housing market, regional or neighborhood level shocks, as well as idiosyncratic house-

specific factors. We assume that after consultation with appraisers and the real estate agent, the seller has

a firm assessment of the financial value of their home that doesnot vary over the course of their selling

horizon. Hence,η0 can be interpreted as reflecting the seller’sprivate informationabout the financial value

of their home that is not already captured by the observable characteristicsX.

Recall the left panel of figure 2.3 that shows that the adjusted list price is a far more accurate predictor

of the ultimate selling price of the home than the hedonic value, exp{Xβ}. In our estimation of the

model, we assume that exp{η0} is a lognormally distributed random variable that is independent ofX, and

we estimateβ via a log-linear regression of the final transaction price onthe X characteristics assuming

that the random variable exp{η0} satisfies the restrictionE{exp(η0)} = 1. This restriction represents the

rationality constraintwe refer to above, which we verify is satisfied by our estimated model.

Due to the fact that the seller’s optimal selling decisions depend critically on the seller’s financial

valueF0, which in turn depends on a very high dimensional vector of observed housing characteristics

X as well as unobserved componentsη0, straightforward attempts to solve the seller’s problem while

accounting for all of these variables immediately presentsus with a significant “curse of dimensionality”.

In principle, we could treat the estimated hedonic value exp{Xi β̂} as a “fixed effect” relevant to propertyi

and solveN = 780 individual dynamic programming (DP) problems, one for each of the 780 properties in

our sample. However, the problem is more complicated due to the existence of the unobserved “random

effect” η0. This is a one dimensional unobserved random variable and inprinciple we would need to solve

each of the 780 DP problems over a grid of possible values ofη0, and thereby approximate the optimal

selling strategy explicitly as a function of all possible values of the unobserved random effectη0, which

would be then “integrated out” in the estimation of the model.

However, by imposing alinear homogeneityassumption, we can solve a single DP problem for the

seller’s optimal selling strategy where the values and states are defined asratios relative to the seller’s
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financial value.In particular, define the seller’s current list pricePt to be the ratio of the actual list price

divided by the seller’s financial valueF0. ThenPt = 1.0 is equivalent to a list price that equals the financial

value, andPt > 1.0 corresponds to a list price that exceeds the financial valueand so forth. The implicit

assumption underlying the linear homogeneity assumption is that, at least within the limited and fairly

homogeneous segment of the housing market in our data set, there are no relevant further “price subseg-

ments” that have significantly different arrival rates and buyer behavior depending on whether the houses

in these segments are more expensive “high end” homes or not.The homogeneity assumption reflects a

reasonable assumption that arrival rates and buyer biddingbehavior are driven mostly by whether a given

home is perceived to be a “good deal” as reflected by the ratio of the list price to the financial value. How-

ever, as we discuss below, the actual bid submitted by a buyerwill depend on the buyer’s private valuation

for the home (also expressed as a ratio of the financial valueF0).

Let St(Pt ,dt) denote the expected discounted (optimal) value of selling the home at the start of week

t, where the current ratio of the list price to the financial value isPt , and where the duration since the

last match isdt , with dt = 0 indicating a situation where no matches have occurred yet.Here, a match is

defined as a buyer who makes an offer on the home. We will get into detail about the timing of decisions

and the flow of information shortly, but already we can see that this formulation of the seller’s problem

has three state variables: 1) the current total time on the market t, 2) the duration since the last match

dt , and 3) the current list price to financial value ratioPt . The value functionSt(Pt ,dt) provides the value

of the home as a ratio of the financial value, so to obtain the actual value and actual list price we simply

multiply these values byF0. ThusF0St(Pt ,dt) is the present discounted value of the optimal selling strategy,

andF0Pt is the current list price, both measured in UK pounds (£). Via this “trick” we can account for

substantial heterogeneity in actual list prices and sellervaluations by solving just a single DP problem “in

ratio form.” However, an important implication of this assumption is that timing of list price reductions and

the percentage size of these reductions implied by the seller’s optimal selling strategy are homogeneous of

degree 0 in the list price and the financial value.

Our model of the optimal selling decision does not require the seller to sell their home within the 2

year horizon: we assume that the seller has the option to withdraw their home from the market at any time

over the selling horizon. Since we do not model the default option of not selling one’s house, we do not

attempt to go into any detail and derive the form of the value to the seller of withdrawing their home from

the market and pursuing their next best option (e.g., continuing to live in the house, or renting the home).
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Instead we simply invoke a flexible specification of the “continuation value”Wt(Pt) of withdrawing a home

from the market and pursuing the next best opportunity.14

The seller has 3 main decisions: 1) whether or not to withdrawthe property, 2) if the seller opts not

to withdraw the property, there is a decision about which list price to set at the beginning of each week

the home is on the market, and 3) if a prospective buyer arrives within the week and makes an offer, the

seller must determine whether or not to accept the offer, andif the seller rejects the offer and the buyer

makes a second offer, whether to accept the second offer, andso on up to (possibly) a third and final offer.

We assume that the first two decisions are made at the start of each week and that the seller is unable to

withdraw their home or change their list price during the remainder of the week. Within the week, if one

or more offers arrive, the seller decides whether or not to accept them.

The Bellman equation for the seller’s problem is given in equation (2) below.

St(Pt ,dt) = max

[

Wt(Pt),max
P

[ut(P,Pt ,dt)+δESt+1(P,Pt,dt)]

]

(2)

The Bellman equation says that at each weekt, the optimal selling strategy involves choosing the larger

of 1) the continuation value of (permanently) withdrawing the home from the market, or 2) continuing to

sell, choosing an optimal listing priceP. The functionESt+1(P,Pt ,dt) is the conditional expectation of the

weekt +1 value functionSt+1 conditional on the current state variables(Pt ,dt) and the newly chosen list

priceP. Pursuant to the “forward-looking” perspective that we discussed in the introduction, in the version

of the model we actually estimate, this expectation dependsonly onP and not on the previous week’s list

pricePt . That is, the current list priceP is a sufficient statistic affecting the arrival rate of buyers and the

magnitude of bids submitted. However, one could imagine a world with information lags where arrival

rates and offers could depend on previous list prices, including the last week list pricePt . While it is not

hard to allow for such lags without greatly complicating thesolution of the model (at least provided we

only allow a single week lag), we have found that it was not necessary to account for information lags to

enable the model to provide a good approximation to the behavior we observe in the English housing data.

The functionut(P,Pt ,dt) captures two things: 1) the fixed “menu cost” to the seller of changing their

14 Alternatively, we could allow for different types of sellers who have different continuation values and specifyWt (Pt ,τ),
where the parameterτ could denote the seller’s “type.” Fortunately, however, although our model can allow for other types of
unobserved heterogeneity beyond the privately observed component of the financial valueη0, we did not need to appeal to any
type of unobserved heterogeneity in seller types in order for the model to provide a good approximation to the behavior we
observe in the English housing data.
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list price, and 2) the “holding cost” to the seller of having their home on the market.

ut(P,Pt ,dt) =







−ht(dt)−K if P 6= Pt

−ht(dt) if P= Pt

(3)

The functionht(dt) is the net disutility (in money equivalent units) of having to keep the house in a tidy

condition and to be ready to vacate it on short notice so the real estate agent can show it to prospective

buyers.K is the fixed menu cost associated with changing the list price. This fixed cost can include the

cost of posting new advertisements in a newspaper and/or websites, and printing up new flyers with the

new listing price, and other bureaucratic costs involving in making this change (i.e. consulting with the

realtor to determine the best new price to charge). We would expect thatK should be a small number since

none of the costs listed above would be expected to be large inabsolute terms.

We now write a formula forESt+1(P,Pt ,dt) that represents the value of the within week events when

a match occurs. To keep the notation simpler, we will omitPt from this conditional expectation, since as

we noted above, we did not need to includePt to capture any information lags that might affect arrival

of buyers or the bids they might make. In order to describe theequation forESt+1, we need to introduce

some additional information to describe the seller’s beliefs about the arrival of offers from buyers, the

distribution of the size of the offers, and the probability that the buyer will walk away (i.e. not make a

new offer and search for other houses) if the seller rejects the buyer’s offer. Given the negotiation protocol

described above, within a given week there are at most 3 possible stages of offers by a potential buyer and

accept/reject decisions by the seller. To simplify notation, we writeESt+1 for the case where at most one

buyer arrives and makes an offer on the home in any week.15

Let λt(P,dt) denote the conditional probability that an offer will arrive within a week given that the

seller set the list price to beP at the start of the week and the duration since the last offer is dt . Let O j

be the highest offer received at stagej = 1,2,3 of the “bargaining process.” Letf j(O j |O j−1,P,dt) denote

the seller’s beliefs about the offer the buyer would make at stage j given that the buyer did not walk in

response to the seller’s rejection of the buyer’s offer in stage j −1. If the seller accepts offerO j , let Nt(O j)

denote the net sales proceeds (net of real estate commissions, taxes, and other transactions costs) received

by the seller. The seller must decide whether to accept the net proceedsNt(O j), thereby selling the home

and terminating the selling process, or reject the offer andhope that the buyer will submit a more attractive

15 Note however that our framework also accommodates the possibility of “auctions”, i.e. situations where multiple buyers are
bidding simultaneously for a home.
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offer, or that some better offer will arrive from another potential buyer in some future week.

If a seller rejects the offerO j , there is a probabilityω j(O j ,P,dt) that the buyer will “walk” and not

make a new offer as a function of the last rejected offer,O j , and the current state(P,dt). With this notation

we are ready to write the equation for the within week problemwhich determinesESt+1 and completes

the Bellman equation. We have

ESt+1(P,dt) = [1−λt(P,dt)]St+1(P,dt +1)+λt(P,dt)

∫
O1

max
[

Nt(O1),ES1
t+1(O1,P,dt)

]

f1(O1|P,dt)dO1.

(4)

The functionES1
t+1(O1,P,dt) is the expectation of the subsequent stages of the within-week “bargaining

process” conditional on having received an initial offer ofO1 and conditional on the beginning of the week

state variables,(P,dt). We can write a recursion for these within-week expected value functions similar to

the overall backward induction equation for Bellman’s equation as a “within-period Bellman equations”

ES1
t+1(O1,P,dt) = ω1(O1,P,dt)St+1(P,1)+

[1−ω1(O1,P,dt)]
∫

O2

max
[

Nt(O2),ES2
t+1(O2,P,dt)

]

f2(O2|O1,P,dt)dO2. (5)

and

ES2
t+1(O2,P,dt) = ω2(O2,P,dt)St+1(P,1)+

[1−ω2(O2,P,dt)]
∫

O3

max[Nt(O3),St+1(P,1)] f3(O3|O2,P,dt)dO3. (6)

What equation (6) tells us is that after receiving 2 offers and rejecting the second offerO2, the seller

expects that with probabilityω2(O2,P,dt) the buyer will walk, so that the bargaining ends and the seller’s

expected value is simply the expectation of next periods’ value St+1(P,1). However, with probability

1−ω2(O2,P,dt), the buyer will submit a third and final offerO3 which is a draw from the conditional

density f3(O3|O2,P,dt). Once the seller observesO3, she can either take the offer and receive the net

proceedsNt(O3), or reject the offer, in which case the potential buyer leaves for sure and the seller’s

expected value is the next week value function,St+1(P,1). Note that the second argument, the duration

since last offer, becomes 1 at weekt +1 reflecting that an offer arrived at weekt.

4 A Simplified Model of Bidding by Prospective Buyers

As explained above, in this paper, we do not explicitly modelthe behavior of buyers and the bargaining

game that leads to the sale of a house. Instead, we specify a simplified model of the bidding behavior of
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prospective buyers that incorporates important features of the data.

One important fact about observed bidding behavior is thatthere is a positive probability that a

prospective buyer will submit an offer equal to the current list price. In the English housing data, over

15 percent of all accepted offers are equal to the list price and over 10 percent of allfirst offers are equal

to the list price. Thus, any estimation of the offer distributions needs to account for mass points in the

distribution, particularly at the list price. Further, we also observe offers inexcessof the seller’s list price.

For example, over 2% of all first offers are above the list price, and nearly 4% of all accepted offers are

higher than the list price prevailing when the offer was made.

The “semi-reduced form model” of buyers’ bidding behavior we specify derives the distribution of

offers from two underlying “semi-structural” objects: 1) aspecification of buyers’ bid functions,b(v, l ,F),

and 2) a specification of the distribution of buyer valuations, H(v|F, l), wherev is the buyer’s private

valuation of the home,F is the financial value of the home, andl is the current list price.16 In order to

maintain the homogeneity restriction, we assume thatl andF only enterb andh in a ratio form, i.e. as

P= l/F. Thus, in the subsequent notation we will write these objects asb(v,P) andH(v|P).

The simplest specification for bid functions that we could think of that yields an offer distribution with

a mass point at the current list price of the house is the following class of piecewise linear bid functions:

b(v,P) =



















r1(P)v if v∈ [v,v1)

P if v∈ [v1,v1+k(P))

r2(P)v if v∈ [v1+k(P),v]

(7)

wherev andv are the lower and upper bounds, respectively, on the supportof the distribution of buyer

valuations (to be discussed shortly). To ensure continuityof b(v,P) as a function ofv, r1 and r2 must

satisfy the following restrictions

P = r1(P)v1

P = r2(P)(v1+k(P)) (8)

This implies that

v1 =
P

r1(P)

16 Here, we put “structural” in quotes because a fully structural model of buyer behavior would derive the buyers’ bid functions
from yet deeper structure, like, for example, the solution to their search and bargaining problem. See, e.g., Albrecht,Anderson,
Smith and Vroman (2007) for a theoretical model of the housing market with matching and bargaining.
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r2(P) =
P

P/r1(P)+k(P)
(9)

Thus, the bid functions are fully determined by the two functions r1(P) and k(P). The first function

determines how aggressive the bidder will be in terms of whatfraction of the buyer’s true valuation the

buyer is willing to bid, for the first bid (we will consider specifications for 2nd and 3rd bid functions

below). The closerr1(P) is to 1 the more “aggressive” the buyer is in her bidding (i.e., the closer the bid

function is to truthful bidding). We assume that the buyer interprets the list pricel as a signal from the

seller about what the seller’s reservation value is and as a signal of how reasonable the seller is. If the

list price ratioP is substantially bigger than 1, the buyer will interpret this as a sign of an “unreasonable”

list price by the seller, and so the buyer will respond by shading her bid to a higher degree. Conversely, a

seller that “underprices” their home by setting a list priceless than the financial value will result in more

aggressive bidding by buyers, i.e.r1(P) will be closer to 1 whenP< 1. Thus, we posit thatr ′1(P)< 0, so

that a seller who considers overpricing their home will expect that buyers will shade their first bids to a

greater degree.

The bid functions have a flat segment equal to the list price for valuations in the interval[v1,v1+k(P)].

As we noted above, this flat section is empirically motivatedby the fact that we observe a mass point in

bid distributions at the list price. By adjusting the lengthof this flat segmentk(P) we can affect the size of

the mass point in the bid distribution and thereby attempt tomatch observed bid distributions.

We posit thatk′(P) < 0 for reasons similar to the assumption thatr ′1(P) ≤ 0: a seller who overprices

her home by setting a list price bigger than 1 will result in a shorter range of valuations over which buyers

would be willing to submit a first offer equal to the list price. Conversely, if a seller underprices her

home by setting a list price less than 1, there should be a wider interval of valuations over which the

buyer is willing to submit a first offer equal to the list price. Observe that since the probability of a first

offer equal to the list price is the probability that valuations fall into the interval[v1,v1 + k(P)], it is not

strictly necessary fork′(P)≤ 0 in order for the probability of making an offer equal to the list price to be a

declining function ofl , which is another feature we observe in the English housing data. However initially

we will assume thatk′(P)≤ 0, but we can obviously consider relaxations of this condition later.

The left hand panel of Figure 4.2 plots examples of bid functions for four different values ofP. These

bid functions were generated from the following specifications for the functionr1(P) andk(P):

r1(P) = .98(1− γ(P))+ .85γ(P)
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k(P) = .12(1− γ(P))+ .07γ(P) (10)

where

γ(P) =
P−v
v−v

. (11)

We see that the bid function for the highest list price, i.e. for a list price ofP = 1.62 given by the blue

dotted line in the left hand panel of figure 4.2, involves the most shading and lies uniformly below the bid

functions at other list prices. It follows that the list price of P= 1.62 isdominatedin terms of revenue to

the seller by lower list prices. However, at more moderate list prices, the bid functions generally cross each

other and so there is no unambiguous ranking based on strict dominance of the bid functions. For example

if we compare the bid function for a list price ofP= 1 with the bid function with a list price ofP= 1.09

(the former is the orange dotted line and the latter is the solid red line in the left hand panel of figure 4.2),

we see that the bid function for the lower list priceP = 1 is higher for buyers with lower valuations and

also for buyers with sufficiently high valuations, but the bid function withP= 1.09 (corresponding to a 9%

markup over the financial value of the home), is higher for an intermediate range of buyer valuations. Thus

the question of which of the two list prices result in higher expected revenues depends on the distribution

of buyer valuations: if this distribution has sufficient mass in the intermediate range of buyer valuations

where the bid function for the higher list priceP= 1.09 exceeds the bid function for the lower list price

P= 1, then the

expected bid from setting the higher list price will exceed the expected bid from setting a lower list

price. Of course this statement isconditionalon a buyer arriving and making a bid: we need to factor in the

impact of list price on the arrival rate to compute the overall expected revenue corresponding to different

list prices.

The right hand panel of figure 4.2 shows how the bid functions change in successive bidding stages.

Bid functions for later bidding stages dominate the bid functions for earlier bidding stages, resulting in a

monotonically increasing sequence of bids that is consistent with what we almost always observe in the

English housing data. However, there are intervals of valuations where the bids lie on the flat segment of

the bidding function, so this model can generate a sequence of bids where a previous bid (equal to the list

price) is simply resubmitted by the bidder. This is also something we observe in the English housing data.

We complete the description of the semi-reduced form model of buyers’ behavior by describing as-

sumptions about the distribution of buyers’ valuations forthe home,H(v|P). We assume thatH(v|P) is

in the Beta family of distributions and thus it is fully specified by two parameters(a,b), as well as its
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Figure 4.2 Piecewise linear bid functions for different list prices and bidding stages

support,[v,v]. We do not place any restriction on the distribution of valuations. In particular, it might be

the case that buyers who have relatively higher than averagevaluations for a given home may choose to

make offers: this would argue for a “positively biased” specification whereE{v|P}> P. The direction of

the bias might also depend on the list price: overpriced homes that have been on the market for a long time

might be more likely to attract “vultures” (i.e., buyers with lower than average valuations who are hoping

to get a good deal if the seller “caves”).17

Let B(v|a,b) be a beta distribution on the[0,1] interval with parameters(a,b). We can derive the

distribution of bids from this distribution by first rescaling this distribution to the[v,v] interval to get the

distribution of valuationsH(v) given by

H(v) = Pr{ṽ≤ v}= B((v−v)/(v−v)|a,b) . (12)

The left hand panel of figure 4.3 plots an example of a beta distribution of valuations on the interval

[v,v] = [.5,3] for different values of the(a,b) parameters. These parameters give us the flexibility to affect

both the mode and the tail behavior of the distributions independently of each other. For fixeda, increases

in b decrease the expected valueE{v} and move the mode towards zeroandthin out the upper tail, whereas

for fixedb, increases ina increase the mode, the mean, and thickens the upper tail ofH(v) although larger

17 We could imagine many other types of stories or scenarios which may be incorporated into the analysis by allowing for a
more general model of valuations of the formft(v|P,d) where the distribution of valuations of buyers who make an offer on a
home with a price ratio ofP also depends on the duration since the last offerd and the length of time that house has been listed,
t. We leave these generalizations to future work.
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Figure 4.3 Beta distribution of buyer valuations and implied probabilities of bidding the list price

changes are required ina to produce comparably dramatic shifts inH(v) compared with changes inb, at

least fora> 1.

The right hand panel of Figure 4.3 plots the implied probability that an offer equals the list price, as

a function ofP at successive stages of the within week bargaining process for buyers whose distribution

of valuations is a beta distribution on the support[.85,1.8] with parameters(a,b) = (4.5,12). We see that

these implied probabilities are roughly in line with the data for the limited range of list prices that we

observe in the English housing data (i.e. a mean first offer that is roughly equal to the financial value, i.e.

E{b(v,P)} ≃ 1, where the mean value ofP is approximately equal to 1.05. This implies thatr1(P)≃ .95

whenP≃ .95. Actually, for the specification ofr1(P) given above, we haver1(1.05) = .9248.

The implied distribution of offers,f (O|a,b,P), is given by

f (O|a,b,P) = Pr{b(ṽ,P)≤ O}

= Pr
{

ṽ≤ b−1(O,P)
}

= B
(

b−1(O,P)−v)/(v−v)|a,b
)

. (13)

Due to the presence of the flat segment, the usual notion of an inverse of the bid function does not exist.

However, if we interpret the inverse of the bid function at the valueP as the interval[v1,v1 + k(P)], we

obtain a distribution of offers that has a mass point at the list price, consistent with what we observe in the

English housing data.

In summary, we can write the distribution of offers implied by our semi-reduced form specification of
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Figure 4.4 Expected bids as a function of the list price and bidding stage

bidding behavior explicitly in terms of the functionsr1(P) andk(P) as

f (O|a,b,P)=



















B((O/r1(P)−v)/(v−v)|,a,b) if O∈ [v,P)

B((k(P)+P/r1(P)+k(P)−v)/(v−v)|a,b)−B((P/r1(P)−v)/(v−v)|a,b) if O= P

B((O(P/r1(P)+k(P))−v)/(v−v)|a,b) if O∈ (P,v]
(14)

Using this distribution function, we can compute theexpected bid function E{b̃|P} as

E{b̃|P} =

∫
O f(dO|a,b,P)

=
∫ v

v
b(v,P)H(dv). (15)

Note that the expectation depends both on the list price and on the financial value because offers are

interpreted as ratios of list price to the financial value of the home.

Figure 4.4 plots the expected bid functions for several different specifications of the distribution of

valuations. We see that the expected bid functions are unimodal and are maximized at list prices that are

higher than 1, providing an incentive for the seller to “overprice” when the seller sets a list price. Of course

this is not the full story, since the seller must also accountfor the effect of the list price on arrival rates

of buyers. The dynamic programming problem takes both factors into account, as well as other dynamic

considerations and the fixed menu costs involved in changingthe list price.
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5 Empirical Results

This section presents econometric estimates of our model ofthe home selling problem via a simulated

minimum distance (SMD) approach. In general terms, the objective of the estimation method is to find

estimates of the unknown parameters of our semi-reduced form model of bidding behavior and of the other

structural parameters of the model that enable the predicted optimal selling strategy from our dynamic

programming model to best fit the actual selling behavior that we observe in the data.

As we noted in Section 3, we have adopted a “full solution” approach to estimation — that is, we

estimate the seller’s belief parameters by repeatedly numerically resolving for the optimal selling strategy

for different trial values of the parameters in an inner dynamic programming subroutine while an outer

optimization algorithm searches for parameters that minimize a quadratic form in a vector of actual versus

simulated moments of interest from the real and simulated housing data. We found that the full solution

approach resulted in much more sensible outcomes, because this approach enforces the requirement that

the implied optimal selling strategy should be close to the selling behavior we observe.

The SMD estimator, sometimes also referred to as a “simulated method of moments estimator”, es-

timates the vector of unknown model parametersθ by minimizing a distance function constructed as a

quadratic form between anN×1 vector of moments about housing transactions that we actually observe

in the English housing data, call thism, and a conformableN×1 vector of simulated moments, call this

mS(θ), formed by creating an artificial data set with the same set of780 homes with the same set of ob-

servable characteristicsX and same hedonic values exp{Xβ} (where theβ coefficients are computed from

a first stage regression using the data, independent of the housing model), but simulatedStimes and the in-

dividual moments from eachIID simulation are averaged to form the vector of simulated momentsmS(θ).

Then the SMD criterion is

θ̂ = argmin[m−mS(θ)]′W[m−mS(θ)] (16)

whereW is anN×N positive definite weighting matrix. The specification of themodel we consider has 30

unknown parameters that we estimate usingN = 137 moments and the optimal weighting matrix equal to

the inverse of the variance-covariance matrix of these 137 moments. We chose the 137 moments to reflect

a wide array of features in the English housing data, and the actual moments used will be listed in detail

below.

Before we present our estimates and discuss the overall fit ofthe model, it is useful to describe the para-
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metric specification that we estimated. Recalling the discussion in section 4, we can write the piecewise

linear bid functions as functions of the parameter vectorθ as follows

r1s(P) = r1s(θ)(1− γ(P))+ r1s(θ)γ(P)

ks(P) = ks(θ)(1− γ(P))+ks(θ)γ(P) (17)

where

γ(P) =
P−v
v−v

, (18)

ands denotes thesth stage of the bargaining subgame,s= 1,2,3. Thus,r1s(P) is the bid ratio (the ratio

of the buyer’s valuationv that the bidder is willing to bid) in the first linear segment of the bid function in

stages of the bargaining subgame. Similarly,ks(P) is the length of the flat segment of the bid function at

the list price. This determines the probability that the buyer will submit a bid equal to the list price. The

final segment of the bid function isr2s(P). We assume that this is given by

r2s(P) = r2s(θ)r1s(P), (19)

so that we need only three additional coefficients(r21, r22, r23) to specify the upper linear segment of the

bid functions corresponding to bids in excess of the list price.

Thus, there are a total of 15 coefficients required to specifythe piecewise linear bid functions: the 6 co-

efficients(r1s(θ), r1s(θ)), s= 1,2,3 determining the first linear segment of the bid functions below the list

price, the 6 coefficients(ks(θ),ks(θ)), s= 1,2,3 determining the length of the flat segments corresponding

to bids equal to the list price, and the 3 remaining ratio terms (r2s(θ)), s= 1,2,3 determining the slope of

the positively sloped component of the bid function for bidsabove the list price. Due to concerns about

identification, we only estimated the first 7 coefficients (denoted(θ1, . . . ,θ7)), and fixed the remaining 8

coefficients.18

The next set of parameters pertain to the arrival probabilities and the probabilities that a buyer will

walk if a previous offer was rejected. The arrival probabilities are given by

λt(P,dt) =
exp(Λ)

1+exp(Λ)
(20)

18 In particular, we initially iterated on all 15 coefficients until there was no longer any significant improvement in the value of
the criterion function, and then fixed the last eight coefficients at those values prior to obtaining standard errors for the remaining
model parameters. These values arek12 = 0.156,k13 = 0.165,k11 = 0.073,k12 = 0.089,k13 = 0.095,r21 = 0.762,r22 = 0.795,
andr23 = 0.845.
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where

Λ = θ8+θ9P+θ10I{2≤ t ≤ 5}+θ11I{6≤ t ≤ 10}+

θ12I{dt = 1}+θ13I{dt = 2}+θ14I{dt = 3}+θ15I{dt ≥ 4}+

θ16P∗ I{dt = 1}+θ17P∗ I{dt = 3}+θ18P∗ I{dt ≥ 4} (21)

Similarly, the probability of walking is also specified as a binomial logit model involving 6 coefficients

(θ19, . . . ,θ24) where, for example, the stage 1 probability of walking (i.e.the probability the buyer leaves

after the seller rejects the buyer’s first offer) is given by

ω1(O1,P,dt) =
exp(θ19+θ20(O1/P))

1+exp(θ19+θ20(O1/P))
. (22)

The expressions forω2(O2,P,dt) and ω(O3,P,dt) are the same as above, but involve the coefficients

(θ21,θ22) and(θ23,θ24), respectively.

Parameterθ25 is K, the fixed menu cost of changing the list price, andθ26 is σ, the standard deviation

of η0 in equation (1). The next two parameters,(θ27,θ28), are the parameters of the Beta distribution of

buyer valuations,(a,b).19 Finally, θ29 is the weekly “holding” cost to the seller of having her home on the

market,ht , andθ30 is the seller’s subjective discount factorδ.

As per our previous discussion about the difficulty of identifying the continuation value given that none

of the 780 sellers in our sample withdrew their homes from themarket (i.e., all were eventually successful

in selling their homes), we simply assumed thatWt(Pt) = .2 (i.e., the continuation value is 20% of the

seller’s estimate of the financial value of the home). The only other parameters in our model are the fixed

and variable costs associated with selling the home, mainlydue to real estate fees and other closing costs.

The real estate commissions charged by the British real estate agency we are studying are admirably low

by U.S. standards, the commission rate is only 1.8% of the sale price of the home. We assume that the

entire commission is paid by the seller but the buyer pays forall other fixed selling expenses associated

with the final closing, including the seller’s legal fees andtaxes. Thus, we used the following specification

for the net sale proceeds from selling the home as a function of the accepted offerO

Nt(O) = .982∗O. (23)

19 Due to concerns about identification we did not attempt to estimate the support of the distribution and set[v,v] = [1.0,1.8].
Recall these values are ratios of the financial value of the home, sov= 1.8 indicates a buyer whose private valuation of the home
is 1.8 times its financial value.
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Figure 5.1 Estimated Optimal Selling Strategy

Table 5.1 presents the SMD parameter estimates and standarderrors. We illustrate some of our empir-

ical findings in figure 5.1 below. As we noted in the introduction, our main empirical finding is that our

model of optimal selling by a rational seller is able to fit thekey features we observe in the English housing

data, particularly the observed stickiness in list prices.The left hand panel of figure 5.1 plots the optimal

list prices, reservation values and the value function corresponding to the estimated parameters from the

model. The top blue line is the optimal list price, and noticethat it is nearly flat as a function of weeks on

the market.

There are no significant drops in the list price over the entire 80 week selling horizon other than in

the final period where the list price is plotted as being cut tozero, though this actually corresponds to the

seller’s decision to withdraw the home from the market if shehas not sold it 79 weeks after initially listing

the house for sale. The optimal initial list price isP∗ = 1.0356 (recall that the list price is represented

as a ratio of the actual list price of the home in£ to the seller’s unobserved financial value of the home),

corresponding to a 3.6% “markup” over the price the seller realistically expects to receive from selling her

home. The model predicts that there are series of small reductions in thenotional, unconditional optimal

list priceover the first several weeks. These reductions lower this notional optimal list price from its initial

P∗ = 1.0356 in the first week to toP∗ = 1.0056 by week 10, and ultimately toP∗ = 0.9797 in the last week

before the home is withdrawn from the market.

Recall that apart from the the initial list priceP∗ = 1.0356, these subsequentnotional unconditional
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optimal list prices arenot theactual list pricesthat the seller will choose due to the presence of the small

fixed transaction cost involved in changing the list price. This is illustrated in the right hand panel of

figure 5.2 that shows the substantialinaction regionabout the notional unconditional optimal list price of

P∗ = 1.0337 at the start of the second week the house is on the market.As long as thecurrent actual list

price is sufficiently close to this notional optimal list priceP∗ = 1.0337 (i.e. any actual list price in the

interval [1.01,1.05]), it will not be optimal for the seller to incur the fixed transaction cost to adjust the list

price. Since the initial (actual) list priceP∗ = 1.0356 is in this inaction region, it follows that the seller

will not find it optimal to adjust the actual list price to the notional unconditional optimal valueand thus

the actual list price will remain at its initial valueP= 1.0356 that the seller set when the house first went

on the market.

We emphasize that the estimated value of the fixed “menu costs” of changing prices,K, is very small

in our model. From table 5.1 we see that the point estimate isK = .0001, or 10 thousandths of 1% of the

seller’s financial value of the home. This would be£10 for a home with a financial value of£100,000.

While K is not precisely estimated (its estimated standard error isalso equal to 0.0001), our model strongly

rejects the hypothesis thatK = 0 because settingK = 0 leads the model to predict much more frequent

(weekly) changes in list prices than we actually observe in the English housing data.

The other three solid color lines in the left hand panel of figure 5.1 are the seller’s reservation values at

the three stages in the “bargaining process” of our model. Wesee that even though list prices are essentially

flat as a function of duration since listing, the reservationprices decline more or less continuously over

time, and their rate of decrease accelerates after a house has been on the market unsold for over one year.

At this point the price the seller is willing to accept drops rapidly, falling to 80% of the seller’s estimate of

the financial value, even though the seller maintains the list price at slightly above his/her estimate of the

financial value of the home and the notional, unconditional optimal list price value is stillP∗ = 1.002 at

week 52.

In summary, our model predicts that the seller will optimally choose a 3.6% markup in the initial list

price, setting it toP= 1.0356 times the seller’s estimated financial value of their home. We have shown

that even a very small menu cost implies a wide inaction region where it is optimal for the seller to leave

her initial choice of list price unchanged. In fact, in simulations of the optimal strategy, it will not be

optimal for a seller who has not received any acceptable offers on his/her home to reduce the list price

until the 8th week that the home is on the market.At that point gain from reducing the list price from
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Figure 5.2 Simulated Outcomes of the Optimal Selling Strategy

the initially optimal value ofP= 1.0356 to the optimal value that prevails in week 8,P= 1.0068 is large

enough to overcome the menu cost, and so the seller makes a large, discontinuous cut in the list price at

this time.

Figure 5.2 illustrates the foregoing discussion by plotting two simulated realizations of the optimal

selling strategy. In the left hand panel we see that the seller maintains his/her initial list price for the first 7

weeks, but no offers were received. Then in the 8th week the seller reduced the list price by nearly 3%. In

the 12th week a buyer arrives and makes an initial bid that is below 90% of the initial list price, which the

seller rejects. This is illustrated by the red dot in the lefthand panel of figure 5.2. Then the buyer increased

his offer with a bid equal to 95% of the list price, which is above the seller’s reservation value so the seller

accepts this offer at this point (illustrated by the blue square with a star around it).

The right hand panel of figure 5.2 illustrates the history-dependence in the optimal list price strategy.

In this case, there are no changes in the list price over the full 12 week duration from the initial listing until

the home was sold. Why were there no list price reductions in this case? We see that for observation 345,

an offer was received by the seller in week 5, but the initial offer (red dot) indicated a very “low ball” offer

of just over 84% of the list price, which the seller rejects. The buyer then makes a counter offer equal to

90% of the list price which the seller also rejects, and a finaloffer of 92% of the list price which the seller

also rejects, and the buyer walks after making the third rejected offer. Though this bargaining match was

unsuccessful, it raised the expectations for simulated seller 345 in comparison to simulated 34 who had no
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offers until week 12. Due to the greater optimism about subsequent offers resulting from the arrival of an

offer in week 8, the simulated seller 345 decided not to reduce her list price and also caused seller 345 to

reject an initial offer in week 12 that simulated seller 134 would have rejected.

The other significant point to notice about the optimal selling strategy at this point is that the seller’s

reservation valuesdeclineat each successive stage of the “bargaining process.” The reason we obtain

this prediction in our model is due to the assumptions underlying the bidding automata that constitute our

model of buyer behavior. Our seller does use all informationto determine the “type” of the buyer based

on the buyer’s initial bid. Indeed, we presume that the seller also knows the coefficients of the piecewise

linear bid function used by the buyer and inverts this function to determine the buyer’s bid (unless the buyer

bids at the seller’s list price, in which case the seller onlyknows that the buyer’s valuation is on the flat

segment of the piecewise linear bid function). However, because of the exogenous probability that a buyer

will walk if the seller rejects the buyer’s previous bid, themodel tells us that it is optimal for the seller to

lower his/her reservation price when evaluating a new offerby the same buyer. The intuition is that the

seller regards the buyer as a “fish nibbling at the bait” and itwould be better to sell now at a somewhat

lower price than to try to be too greedy and risk the chance that the buyer would walk if the seller rejected

the buyer’s new offer. If the current buyer leaves, the seller knows that it could be many weeks before the

next interested buyer arrives who is willing to make an offeron the home.

Before we turn to a discussion of the overall fit of the model, it is useful to illustrate some of the rich

implications of our model for some counterfactual parameter values. Figure 5.3 illustrates the impact on

the value function and reservation prices if we change the seller’s beliefs about the rate of arrival of buyers

to make the arrival rate significantly more sensitive to the list price than our estimation results indicate are

the case. In our binary logit specification of the arrival rate, there are eleven coefficients: a constant term

θ8 that governs the overall rate of arrival, a coefficient on thelist priceθ9, and nine other dummy variables

that are designed to capture differences in the rate of arrival of buyers during the time a home is listed

for sale,(θ10, . . . ,θ18). Our parameter estimates result in an estimated constant term of θ̂8 =−1.9526 and

an estimated coefficient of the list price equal toθ̂9 = −0.4536. In figure 5.3 below we illustrate how

the solution changes when we change these coefficients toθ8 = −1.0 andθ9 = −1.5. The sum of these

two coefficients is−2.5, which is slightly lower than the sum of of the two estimatedcoefficients, thus

implying a somewhat lower rate of arrival of buyers under thecounterfactual of setting a list price atP= 1.

The changes in the optimal selling strategy resulting from this seemingly small change in the seller’s
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Figure 5.3 Optimal Selling Strategy Under Different Arriva l Rate Beliefs

beliefs are striking: while the initial list price is somewhat smaller than the previous (estimated) model

illustrated in figure 5.1 (i.e.P = 1.0017 versusP = 1.0356), the optimal solutions diverge dramatically

after the 9th week on the market. In the version of the model where the arrival rate is more sensitive to the

list price, the seller reduces the list price toP= 0.7 in the 9th week and keeps this value in all subsequent

weeks of the selling horizon. We also see an interesting situation with an “inverted” selling strategy, i.e.,

where the seller’s reservation values arehigher than the list price. This is an example of anunderpricing

strategythat we discussed in the introduction: the seller lowers thelist price significantly below the seller’s

belief about the true financial value of the home in order to “get buyers through the door”. Once the buyers

actually come to view the home they are willing to pay more than the list price, and this is reflected by the

seller’s reservation price functions, which are not dramatically lower than the reservation prices illustrated

in the left hand panel of figure 5.1. Indeed, simulations of this model show that the seller expects to earn

96% of the financial value from following this underpricing strategy — only slightly lower than what the

seller would expect to earn under the original model using the estimated arrival rate parameters.

Turning our attention to the fit of the model, the SMD criterion we used in estimation was based on

a total ofN = 137 individual moments. Table 5.2 compares each simulated and actual moment. By and

large, table 5.2 shows that the model captures a broad array of features in the England housing data, not

just the stickiness of list prices. Starting with the first moment in table 5.2, we see that the SMD parameter
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estimates do satisfy the “rationality constraint” that theseller’s financial value is an unbiased expectation

of the ultimate selling price. The first row of the table compares the mean of the ratios of the actual sale

price for each of the 780 houses sold to the hedonic price exp{Xβ} (in the Actual column) to the mean of

the same ratio from 5IID simulations of the model with the same 780 houses and the samehedonic values

(in the Simulated column), but with the difference being that the simulated transaction price is generated

from our model. We see that the actual moment has a mean of nearly 100%, which is to be expected given

that the hedonic value is by construction an unbiased predictor of the actual sales price. The fact that the

simulated moment is also equal to 1 indicates that the rationality constraint (i.e., that the financial value

is a conditional expectation of the actual sales prices), does hold in our model. To see this recall that the

financial value is given byF = exp{Xβ+η0} whereη0 captures unobservable characteristics of the home.

Recall that we assumedη0 to be normal with meanµ and standard deviationσ, but we constrainedµ such

that for any value ofσ, the mean of the lognormally distributed random variable exp{η0} is 1. This implies

that if the hedonic price component of the financial value exp{Xβ} is an unbiased predictor of the sales

price of the home, then so will the financial valueF = exp{Xβ+η0}. We regard the fact that the best

fitting parameter estimates “automatically” enforce the rationality constraint (without us having to impose

it) as further evidence in favor of the hypothesis that the selling behavior that we observe in the data can

be well approximated by a model of rational sellers.

The estimated model is also capable of reproducing many of the other key features of the data, includ-

ing: the fraction of sales that occur with no changes in the listing price (moment 2); the distribution of

times to sale (moments 9-48); the distribution of listing prices (moments 84-119); the number and timing

of ”matches” between a seller and a potential buyer (moments8 and 49-69). On the other hand, the model

does not do quite as well in terms of matching the fraction of accepted offers equal to, below, and above

the list price (moments 4-5), or the distribution of acceptance rates across offers at different percentages

of the list price (moments 123-130).

6 Conclusions

In spite of advances in theoretical research on the behaviorof buyers and sellers in the housing market

(see, e.g., Albrecht et al. (2007, 2012), Arnold (1999), Salant (1991), Taylor (1999), Yavaş (1992), and

Yavaş and Yang (1995)), the lack of adequate data has limited the scope of empirical research on housing
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transactions. Existing data sets typically include property characteristics, time to sale, initial listing price,

and sale price. They do not contain information on the buyer’s side of the transaction (e.g., the timing and

terms of offers made by potential buyers), or on the seller’sbehavior between the listing and the sale of a

property (e.g., the seller’s decision to reject an offer or to revise the listing price). This explains why most

of the empirical literature on housing transactions has either focused on the determinants of the sale price

or on the role of the listing price and its effect on the time tosale (see, e.g., Anglin et al. (2003), Carillo

(2011, 2012), Glower et al. (1998), Haurin (1988), Horowitz(1992), Kang and Gardner (1989), Knight et

al. (1998), Miller and Sklarz (1987) and Zuehlke (1987)).

In this paper, we have taken advantage of the availability ofa rich data set containing detailed informa-

tion on the sequence of all relevant events since the initiallisting of a house through its sale (including all

list price changes and all offers received) for a large sample of residential transaction histories in England,

to specify and estimate a dynamic model of the “home selling problem” which incorporates several realis-

tic features of this important process. We have shown that the estimated model is capable of reproducing

many important features of the data, including the relatively high degree of “stickiness” of listing prices.

One of the main limitations of our analysis is that we focusedattention on the dynamic problem of the

seller and did not explicitly model the behavior of buyers and the bargaining game that leads to the sale of

a house. Incorporating these additional features into a dynamic equilibrium model of housing transactions

represents a challenge both from a theoretical point of viewand in terms of data availability. We intend to

take on this challenge in future work.
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Table 5.1 Parameter Estimates and Standard Errors
Parameter Description Estimate Standard Error

θ1 r11 0.8531 0.0123
θ2 r12 0.8953 0.0111
θ3 r13 0.9047 0.0105
θ4 r11 0.4920 0.0099
θ5 r12 0.5259 0.0115
θ6 r13 0.5927 0.0164
θ7 k11 0.1699 0.0075
θ8 arrival prob constant −1.9526 0.0250
θ9 coefficient ofP −0.4536 0.0113
θ10 coefficient ofI{1≤ t ≤ 5} 0.7581 0.0227
θ11 coefficient ofI{6≤ t ≤ 10} 0.65321 0.1980
θ12 coefficient ofI{dt = 1} 1.5420 0.5250
θ13 coefficient ofI{dt = 2} 1.6030 0.2980
θ14 coefficient ofI{dt = 3} 1.5700 0.0655
θ15 coefficient ofI{dt ≥ 4} 1.8247 1.2900
θ16 coefficient ofP∗ I{dt = 1} −0.6577 0.4850
θ17 coefficient ofP∗ I{dt = 3} −0.6872 0.0667
θ18 coefficient ofP∗ I{dt ≥ 4} −0.6373 0.0247
θ19 walk prob constant(s= 1) −6.0095 0.2340
θ20 coefficient ofO1/P 3.5210 0.2540
θ21 walk prob constant(s= 2) −3.9552 0.0564
θ22 coefficient ofO2/P 4.9346 1.7000
θ23 walk prob constant(s= 3) −7.6150 0.4380
θ24 coefficient ofO3/P 8.6788 3.1500
θ25 K (menu cost) 0.0001 0.0001
θ26 σ (standard deviation ofη0) 0.2561 0.0357
θ27 a beta parameter 3.8943 0.0065
θ28 b beta parameter 13.3433 0.0543
θ29 h (holding cost) 0.0104 0.0075
θ30 δ (subjective discount factor) 0.0016 0.0019
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Table 5.2 Actual and Simulated Moments

Moment Simulated Actual Moment Simulated Actual
Mean sale price to hedonic ratio 1.008 0.997 % unsold after 33weeks 0.029 0.050
% sales with 0 list price changes 0.787 0.773 % unsold after 34weeks 0.028 0.044
% sales with 1 list price change 0.163 0.208 % unsold after 35 weeks 0.024 0.040
% accepted offers equal to list 0.219 0.153 % unsold after 36 weeks 0.022 0.037
% accepted offers below list 0.764 0.808 % unsold after 37 weeks 0.021 0.033
% sales with 1 match 0.828 0.767 % unsold after 38 weeks 0.019 0.031
% sales with 2 matches 0.092 0.180 % unsold after 39 weeks 0.018 0.028
Mean number of matches 1.300 1.438 % unsold after 40 weeks 0.014 0.027
Mean duration to sale 9.583 10.274 Mean time to 1st match 8.129 8.917
% unsold after 1 weeks 0.944 0.924 % 1st matches≤ 2 weeks 0.229 0.237
% unsold after 2 weeks 0.824 0.806 % 1st matches≤ 3 weeks 0.359 0.342
% unsold after 3 weeks 0.717 0.710 % 1st matches≤ 4 weeks 0.464 0.435
% unsold after 4 weeks 0.628 0.633 % 1st matches≤ 5 weeks 0.536 0.515
% unsold after 5 weeks 0.565 0.547 % 1st matches≤ 6 weeks 0.617 0.578
% unsold after 6 weeks 0.491 0.490 % 1st matches≤ 7 weeks 0.665 0.622
% unsold after 7 weeks 0.428 0.445 % of 1st matches≤ 8 weeks 0.710 0.665
% unsold after 8 weeks 0.381 0.409 % 1st matches≤ 9 weeks 0.755 0.699
% unsold after 9 weeks 0.337 0.365 % 1st matches≤ 10 weeks 0.783 0.737
% unsold after 10 weeks 0.300 0.318 % 1st matches≤ 15 weeks 0.863 0.841
% unsold after 11 weeks 0.273 0.292 % 1st matches≤ 20 weeks 0.915 0.888
% unsold after 12 weeks 0.251 0.268 % 1st matches≤ 25 weeks 0.942 0.914
% unsold after 13 weeks 0.228 0.250 Mean time to 2nd match 5.007 4.456
% unsold after 14 weeks 0.201 0.227 % 2nd matches≤ 2 weeks 0.882 0.886
% unsold after 15 weeks 0.183 0.197 % 2nd matches≤ 5 weeks 0.940 0.937
% unsold after 16 weeks 0.163 0.191 % 2nd matches≤ 15 weeks 0.996 0.987
% unsold after 17 weeks 0.145 0.169 Mean time to 3rd match 4.532 4.690
% unsold after 18 weeks 0.135 0.156 % 3rd matches≤ 2 weeks 0.942 0.978
% unsold after 20 weeks 0.112 0.138 % 3rd matches≤ 5 weeks 0.981 0.990
% unsold after 21 weeks 0.103 0.133 % 3rd matches≤ 10 weeks 0.992 0.992
% unsold after 22 weeks 0.096 0.128 % sales≤ 0.5 0.003 0.027
% unsold after 23 weeks 0.087 0.122 % sales≤ 0.6 0.029 0.072
% unsold after 24 weeks 0.079 0.117 % sales≤ 0.7 0.095 0.149
% unsold after 25 weeks 0.073 0.106 % sales≤ 0.8 0.224 0.253
% unsold after 26 weeks 0.071 0.097 % sales≤ 0.9 0.392 0.371
% unsold after 27 weeks 0.065 0.085 % sales≤ 1.0 0.553 0.521
% unsold after 28 weeks 0.053 0.076 % sales≤ 1.1 0.695 0.660
% unsold after 29 weeks 0.051 0.069 % sales≤ 1.2 0.790 0.801
% unsold after 30 weeks 0.045 0.059 % sales≤ 1.3 0.850 0.879
% unsold after 31 weeks 0.036 0.055 % sales≤ 1.4 0.914 0.927
% unsold after 32 weeks 0.031 0.053 % sales≤ 1.5 0.950 0.958
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Table 5.2 Actual and Simulated Moments (cont’d)

Moment Simulated Actual Moment Simulated Actual
% sales≤ 1.6 0.967 0.972 Offer Acceptance rates:
% sales≤ 1.7 0.983 0.982 1st offer/list≤ 0.9 0.097 0.522
% sales≤ 1.8 0.991 0.988 1st offer/list in ( 0.9, 0.95] 0.383 0.484
Mean list/hedonic price week 1 1.034 1.050 1st offer/list in( 0.95, 0.96] 0.618 0.517
Mean list/hedonic price week 2 1.037 1.050 1st offer/list in( 0.96, 0.97] 1.000 0.488
Mean list/hedonic price week 3 1.040 1.049 1st offer/list in( 0.97, 0.98] 1.000 0.792
Mean list/hedonic price week 4 1.032 1.050 1st offer/list in( 0.98, 0.99] 1.000 0.897
Mean list/hedonic price week 5 1.034 1.052 1st offer/list in( 0.99, 1] 1.000 0.939
Mean list/hedonic price week 6 1.027 1.051 Match prob week 1 0.085 0.108
Mean list/hedonic week 7 1.031 1.044 Match prob week 3 0.171 0.156
Mean list/hedonic week 8 1.027 1.036 Match prob week 6 0.170 0.155
Mean list/hedonic week 9 1.032 1.038 Match prob week 15 0.1020.153
Mean list/hedonic week 10 1.034 1.040 Match prob week 20 0.115 0.061
Mean list/hedonic week 11 1.035 1.025 % list/hedonic≤ 0.5 att = 0 0.001 0.015
Mean list/hedonic week 12 1.046 1.030 % list/hedonic≤ 0.6 att = 0 0.022 0.037
Mean list/hedonic week 13 1.044 1.022 % list/hedonic≤ 0.7 att = 0 0.079 0.100
Mean list/hedonic week 14 1.031 1.025 % list/hedonic≤ 0.8 att = 0 0.190 0.197
Mean list/hedonic week 15 1.042 1.040 % list/hedonic≤ 0.9 att = 0 0.346 0.322
Mean list/hedonic week 16 1.033 1.030 % list/hedonic≤ 1.0 att = 0 0.514 0.462
Mean list/hedonic week 17 1.028 1.030 % list/hedonic≤ 1.1 att = 0 0.665 0.582
Mean list/hedonic week 18 1.025 1.021 % list/hedonic≤ 1.2 att = 0 0.763 0.728
Mean list/hedonic week 19 1.032 1.012 % list/hedonic≤ 1.3 att = 0 0.832 0.828
Mean list/hedonic week 20 1.037 1.016 % list/hedonic≤ 1.4 att = 0 0.901 0.897
Mean 1st offer/list 0.954 0.947 % list/hedonic≤ 1.5 att = 0 0.933 0.935
Mean 2nd offer/list 0.947 0.955 % list/hedonic≤ 1.6 att = 0 0.962 0.965
Mean 3rd offer/list 0.924 0.964 % list/hedonic≤ 1.7 att = 0 0.973 0.974
% of 1st offers equal to list 0.191 0.114 % list/hedonic≤ 1.8 att = 0 0.988 0.983
% of 1st offers below list 0.795 0.858 % list/hedonic≤ 1.9 att = 0 0.992 0.990
Offer/list, accepted 1st offers 0.972 0.957 % list/hedonic≤ 2.0 att = 0 0.997 0.991
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