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Abstract

The rapid development of both wind power and of shale gas has been receiving significant

attention both in the media and among policy makers. Since these are competing sources

of electricity generation, it is informative to investigate their relative merits regarding job

creation. We use a panel econometric model to estimate the historical job-creating perfor-

mance of wind versus that of shale oil and gas. The model is estimated using monthly county

level data from Texas from 2001 to 2011. Both first-difference and GMM methods show that

shale-related activity has brought strong employment to Texas: 77 short-term jobs or 6.4

full-time equivalent (FTE) jobs per well. Given that 5482 new directional/fractured wells

were drilled in Texas in 2011, this implies that about 35000 FTE jobs were created in that

year alone. We did not, however, find a corresponding impact on wages. Our estimations

did not identify a non-negligible impact from the wind industry on either employment or

wages.
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1 Introduction

There is an ongoing discussion about the relative merits of renewable energy versus those of

the shale industry. Proponents of renewable energy emphasize its potential to provide greater

energy independence and security, as well as its environmental benefits due to reduced CO2

emissions. Another argument concerns the potential of renewable energy to act as a driver of

economic growth. Since energy produced through renewable sources is still more expensive

that that produced through fossil fuels, governments around the world have been providing

tens of millions of dollars in subsidies to the renewable industry. More than half of all states in

the U.S. have put in place Renewable Portfolio Standards to promote electricity generation

from renewable sources.1 Federal production tax credits and grants also contributed to

increases in renewable capacity and generation between 2001 and 2011. Partly as a result,

the renewable energy sector has developed rapidly in the past 12 years. In particular, as seen

in Figure 1, wind was the fastest growing source among non-hydroelectric renewable sources,

as many operators of wind turbines have benefited from tax credit programs. Other sources

of non-hydroelectric renewable electricity generation have included biomass, geothermal, and

wood, but these have remained relatively stable since 2000.2 While economists concentrate

on objectives related to economic efficiency and growth rather than job creation, policy

makers often emphasize the job-creating potential of renewable energy sources. In that

regard, renewable energy has the potential to be an important source, and many of these

jobs are guaranteed to stay domestically, as they involve construction and installation of

physical plants and facilities. Indeed, domestic wind-turbine and component manufacturing

capacity has increased recently. Eight of the ten wind turbine manufacturers with the largest

1Renewable portfolio standards (RPS), also referred to as renewable electricity standards (RES), require
or encourage electricity producers within a given jurisdiction to supply a certain minimum share of electricity
from designated renewable resources.

2In 2011, in the United States, biomass accounted for about 11% of the total renewable electricity gen-
eration, wind accounted for 23%, solar (photovoltaics and concentrating solar power) accounted for 1%, and
geothermal for 3%.
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Figure 1: Non hydro-power renewable energy generation, 1990-2011. Data source: EIA

share of the U.S. market in 2011 had at least one manufacturing facility in the United States

at the end of 2011. By contrast, in 2004 there was only one active utility-scale wind-turbine

manufacturer assembling nacelles in the United States (GE).3 In addition, a number of new

wind turbine and component manufacturing facilities by both foreign and domestic firms

either were announced or opened in 2011. The American Wind Energy Association (AWEA)

estimates that the entire wind energy sector directly and indirectly employed 75,000 full-time

workers in the United States at the end of 2011.

At the same time, another development has been revolutionizing the energy landscape in

North America and around the world. This relates to the commercial viability of the vast

resources of shale gas and oil. This ”shale revolution” is a result of cost-effective technological

developments such as horizontal drilling and hydraulic fracturing. The combination of these

techniques caused U.S. production of shale oil and gas to boom. The Energy Information

3See 2011 Wind Technology Market Report by the U.S. Department of Energy.
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Administration’s 2012 Annual Energy Outlook (EIA 2012) projects that the share of shale gas

as a part of total U.S. natural gas production will increase from 4 percent in 2005 to 34 percent

by 2015 and 49 percent by 2025. As shown in Figure 2, shale gas is the largest contributor

to natural gas production growth; there is relatively little change in production levels from

tight formations, coal-bed methane deposits, and offshore fields. The development of shale

Figure 2: Natural gas production by source, 1990-2035 (TCF). Data source: EIA

gas resources has created an investment boom in the oil and gas industry and led to economic

revitalization in places like North Dakota, Alberta, West Pennsylvania, Texas, and Louisiana

to name a few. During 2007-2011, employment in the oil and gas extraction sector grew at an

annual rate of 7.49 percent, or, 33.5 percent in total. By comparison, during the same period,

total employment declined 3.3 percent below its starting value (Figure 3a). Meanwhile, there

is anecdotal evidence that rich in shale gas states have experienced increased employment,

while the nationwide employment growth rate remains negative (Figure 3b). Furthermore,

the relatively low prices resulting from the expanded natural gas supply are stimulating

downstream investment in manufacturing,4 as well as in electricity generation (Figure 4)

4This is especially relevant for those sectors that are sensitive to energy costs, such as basic chemicals,
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and in transportation.

(a) (b)

Figure 3: Oil and gas extraction employment, 2007-2011

While the aggregate effect on employment from developing different energy sources is an

important question, it cannot be readily answered in the context of traditional macroeco-

nomic models. As these models assume market clearing, they cannot account for variations

in unemployment rates and, thus, are not well suited to study the consequences of alternative

government policies for employment.

Generally speaking, there are two existing approaches focusing on employment impacts

of the energy industry. The first uses the input-output (I/O) model. The second approach

is based on survey responses from employers, and uses simple descriptive techniques.5 In

this study we collect data on the historical job creation per unit of energy produced by each

energy source. We then use this data, together with an econometric model, to estimate the

historical job-creating performance of wind versus that of shale gas. Like the analysis based

on surveys, ours is a bottom-up approach. At the same time, the econometric techniques

used allow us to compare the employment impact in a more systematic and consistent way.

The next section contains the literature review. Section 3 describes the data. The

plastics & rubber, pharmaceuticals, aluminum, pesticides, paints, and fertilizers.
5See Section 2 for a detailed discussion.
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Figure 4: Electricity net summer capacity by source (all sectors), 1949-2011. Data source:
EIA

general econometric model is introduced in section 4, while estimation methods and results

are reported in section 5. Section 6 offers a short conclusion.

2 Literature Review

In the last few years, a large number of reports have emerged studying employment in shale

and in wind. Most of these studies have been completed by non-government organizations

and consulting firms, but there have also been a few peer-reviewed journal publications.

Generally speaking, there are two types of studies that focus on the employment impacts

in the energy industry. The first uses the input-output(I/O) model. This model is intended

to capture the entire economy as an interaction of goods and services between various in-

dustrial sectors and consumers. The second approach is based on survey responses from
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employers. Two widely used I/O studies of the oil & gas industry are the IMPLAN model

(see IHS (2012), UTSA (2012), Considine et al. (2009), and American-Chemistry-Council

(2011)) and the RIMS II model, used by the U.S. Bureau of Economic Analysis (BEA) (see

Scott&Associates (2009)).6 These studies typically find significant positive effects from the

shale oil and gas sectors on jobs, income, and economic growth.

A study of the Eagle Ford Shale (UTSA 2012) estimates the total economic impact on

output from shale activity on the local (14-county) region in 2011. It finds that this was just

under $20 billion dollars and that it supported 38,000 full-time jobs. If the region is extended

to 20 counties, the study finds that 47,097 full-time jobs were supported. A nationwide shale

industry report(IHS 2012) has found that the shale gas industry supported 600,000 jobs

in 2010. This is projected to grow to nearly 870,000 in 2015, and to over 1.6 million by

2035. Two reports on the Marcellus shale by Pennsylvania State University (Considine et al.

2009) and by West Virginia University (Higginbotham et al. 2009) show that the oil and

gas industry in Pennsylvania generates $3.8 billion in value added, and over 48,000 jobs in

2009. In west Virginia, the economic impact of the oil and natural gas industry in 2009

was estimated to be $3.1 billion in total value added, while approximately 24,400 jobs were

created.

The Jobs and Economic Development Impact (JEDI) model developed by the National

Renewable Energy Laboratory (NREL) is a series of spreadsheet-based I/O models that

estimate the economic impacts of constructing and operating power plants, fuel production

facilities, and other projects at the local (usually state) level. Slattery et al. (2009) employs

the JEDI Wind Energy Model to examine the economic impact of the large-scale wind-farm

construction. They then test the model validation using data from NextEra’s Capricorn

Ridge and Horse Hollow facilities. They find that the JEDI model overestimates local share

6The IMPLAN model uses a national input-output dollar flow table called the Social Accounting Matrix
(SAM) to model the way a dollar injected into one sector is spent and re-spent in other sectors of the
economy. RIMS II provides I/O multipliers that measure the effects on output, employment, and earnings
from any changes in a region’s industrial activity.
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of jobs during the construction phase in smaller, rural counties, and that it underestimates by

more than 50% the number of jobs in large, urban counties. This is because the JEDI model

sets the same local share value to all counties, and it does not consider urban effects. In

addition, the JEDI model assumes 100% local share for operations and maintenance (O&M)

jobs, which might be implausible, especially in small rural counties.

I/O models provide the most complete picture of the economy as a whole. They cap-

ture employment multiplier effects, as well as the macroeconomic impacts of shifts between

sectors. Hence they could account for losses in one sector (e.g., conventional oil industry)

created by the growth in another sector (e.g., wind energy ). One drawback is that col-

lecting data for an I/O model is highly labor-intensive. As a result, the calibration process

for default multiplier parameters may be biased due to lack of information. Bottom up

estimates, on the other hand, are based on industry/utility surveys, on outlooks by project

developers and equipment manufacturers, and on primary employment data from companies

across manufacturing, construction, installation, and O&M. For wind energy, most reports

are analytical-based studies, and only calculate direct employment impacts. A case study

on the economic effects of the Gulf wind project in Texas reports the estimated creation of

250 - 300 jobs during the peak construction period (9 months), and 15 - 20 permanent jobs.7

A report on the wind industry from the Natural Resources Defense Council (NRDC)

measures the number of direct jobs that a typical wind farm may create across the entire value

chain. They analyze each of the 14 key value-chain activities independently to determine

the number of workers involved at each step in the wind farm building. They find that

one typical wind farm of 250MW would create 1079 jobs over the lifetime of the project.

Similarly, the Renewable Energy Policy Project (REPP) has developed a spreadsheet-based

model using data based on a survey of current industry practices. They use it to calculate

the number of direct jobs from wind, solar photovoltaic, biomass, and geothermal activities

7Gulf Wind: Harnessing the Wind for South Texas
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that would result from the enactment of a Renewable Portfolio Standard . They find that

every 100 MW of wind power installed creates 475 jobs in total (313 manufacturing jobs, 67

installation jobs, and 95 jobs in O&M).

3 Data

We use data from the state of Texas. Texas has rich shale gas and oil resources and, at the

same time, it is the national leader in wind installations and a manufacturing hub for the

wind energy industry. According to EIA, Texas accounted for 40 percent of U.S. marketed

dry shale gas production in 2011, making it the leading unconventional gas producer in the

U.S. Meanwhile, Texas leads the nation in wind-powered generation capacity and it is the first

state to have reached 10,000 megawatts of wind capacity. Next, we discuss the variables that

will be included in our empirical analysis, our data sources, and some summary statistics.

In Texas, there are 254 counties.8 For each county i = 1, . . . , 254, we have collected

observations for T = 132 months, or a total of 11 years (2001 - 2011), making the panel

balanced. We will use total employment in all industries as a dependent variable. We did not

use data from specific industries since, besides direct job creation, we want to measure total

employment effects, including indirect job-creation. This includes jobs created in upstream

and infrastructure supplying industries, as well as induced jobs, such as jobs added in sectors

supplying consumer items (food, auto, housing, etc.) and services. Another dependent

variable of interest is the average weekly wage, since, according to economic theory, it should

also be impacted by an increase in the demand for workers. We use monthly employment data

and quarterly wage data from the Quarterly Census of Employment and Wages (QCEW)

Database of the Bureau of Labor Statistics (BLS).9 The latter has been adjusted to a real

8Out of these, 77 are urban counties.
9The QCEW employment and wage data is derived from micro data summaries of 9.1 million employer

reports of employment and wages submitted by states to the BLS in 2011. These reports are based on
place of employment rather than place of residence. Average weekly wage values are calculated by dividing
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wage using the implicit price GDP deflator (IPD) from BEA.10

In order to evaluate the impact from shale and wind development on employment and

on the local economy, we need to first devise a method for measuring the activity in the

shale and wind industries. The key explanatory variables we will use are the number of

unconventional wells completed and the newly installed wind capacity in each county and

each month, respectively.

Of course, other variables could also be used to reflect other aspects of activity in the

shale industry. These include the number of permits issued, rig counts, the number of wells

spudded, and total shale gas production. We chose the number of wells completed because

the well completion date indicates the end of the construction period for each well. We

suspect that more direct and on-site jobs are created during that period. To fully describe

the impact of shale on employment, especially the multiplier effects on job creation in the

local economy, we allow well drilling activities to affect employment with a lag, and we study

both pre-completion and post-construction effects.

In the shale industry, the entire process from spudding to producing marketed output can

take up to 3-4 months. Horizontal drilling itself currently takes approximately 18-25 days

from start to finish. Then wells are fractured to release the gas before the well is completed.

The well is then connected to a pipeline, which transports the gas to the market. Among

these activities, hydraulic fracturing and the last step before completion are the most labor

intensive. Hence, we expect drilling activities to have a peak impact on employment in the

pre-completion period and, in particular in the month of well completion.

We use the Drilling Info Database for well information. We concentrate our study on

wells that are both directional/horizontally drilled and hydraulically fractured.11 Thus, we

quarterly total wages by the average of the three monthly employment levels and then dividing the result
by 13, as there are 13 weeks in a quarter.

10The implicit price GDP deflator is the ratio of the current-dollar value of GDP to its corresponding
chained-dollar value multiplied by 100.

11This filter option is only available for Texas data.
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Figure 5: Number of completed new wells per county per year, Jan, 2001 - Dec, 2011

exclude conventional oil/gas wells from our data set. There were 31050 directional/horizontal

and fractured wells completed in 174 Texas counties during 2001 - 2011, including 25467 gas

wells, 4963 oil wells, and 620 wells classified as ”other types.” Figure 6 indicates that shale

gas developed very quickly in the past 12 years, from 1 well per month in Jan, 2001 to around

500 in 2011. The completion date and location of each well are used to count the number

of wells completed in each county each month. We then compute the cumulative number of

wells, assuming that this number is 0 at the starting point of Jan, 2001.

To measure wind activity in each county we will use the installed nameplate capacity

online per month. We are not using power generation as more jobs are created during the

construction period than during the O&M period. The installed capacity and online year

for wind projects in Texas through the 2007-2011 is taken from the American Wind Energy
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Association (AWEA). For wind projects before 2007, we used EIA electricity data on plant

level output and a wind industry progress report by Wind Today. To find the online month

and county location for each wind project, we needed to refer to additional sources, such as

specific project information from individual projects’ websites, as well as local news stories

for the projects’ online years. For those wind farms that cover several neighboring counties,

we divided installed capacity equally between each of the counties involved. Until 2011, we

found that 125 wind projects had been constructed in 40 counties, with a total installed

capacity of 10006MW (compared to 6 counties and 920MW in 2001).
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Figure 6: New wind capacity installed during Jan, 2001 - Dec, 2011

Since regression test statistics do not have the usual asymptotic distributions when vari-

ables are non-stationary, we first need to investigate the stationarity properties of our vari-

ables before we use them in regression analysis. To test for non-stationarity in our panel
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data setting, we consider the following model written in difference form:

∆yit = ρyi,t−1 +

pi∑
L=1

δi∆yi,t−L + α0 + α1t+ uit, t = 1, 2, . . . (1)

We then test the hypothesis that ρ = 0. Note that the term α0+α1t allows for a constant and

deterministic time trend. When ρ = 1, the series yit has a unit root and it is a random walk.

The random walk process is simply a sum of all past random shocks, which also implies that

the effect of any one shock lasts forever. When ρ < 1, yt is stationary and the correlation

between variables declines as they get farther apart in time.12

We use the Im, Pesaran, and Shin (IPS) test (Im et al. 2003) to test for ρ = 0. This

test is based on the estimation of the above augmented Dickey-Fuller (ADF) regressions

for each time series. A statistic is then computed using the t-statistic associated with the

lagged variable. Note that this procedure does not require ρ to be the same for all counties.

The null hypothesis is that all series have a unit root, and the alternative is that some have

a unit root while others have different values of ρi < 0. To run the test, we must first

determine the optimal number of lags, pi, for each time series in the panel. If we assume

too few lags, uit will be serially correlated and the test statistics will not have the assumed

distribution. If we assume too many lags, the power of the test statistic declines. Since we

are working with monthly data, we set the maximum pi at 14, which is slightly larger than

an annual cycle. We then use both the Swartz information criteria (SIC) and the Akaike

information criteria (AIC) to determine the optimal value of pi. We also used a test based on

Hadri (2000) as a complement. The Hadri statistic does not rely on the ADF regression. It

constitutes the cross-sectional average of the individual KPSS statistics (Kwiatkowski et al.

1992), standardized by their asymptotic mean and standard deviation. It tests the null

hypothesis that all panels are stationary, while the alternative is that some panels contain

12Specifically, yt is covariance stationary, which means that the correlation between yt and yt+h only
depends on h.
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unit roots. For both the employment and the wage series, we found that the p-value of the

IPS test is close to zero. Hence, H0 is rejected and we conclude that some counties may have

no unit roots. On the other hand, the Hadri test rejects H0 as well, implying that at least

one county has a unit root. Hence, we conclude that the employment and wage series have

unit roots in some counties, while others are stationary. We then applied the Dickey-Fuller

Generalized Least Squares test (DF-GLS) (at 5% level) and the KPSS test (at 10% level)

to each county. We found that in 156 counties, the DF-GLS test cannot reject a unit root,

while the KPSS test shows the presence of a unit root.13

4 Econometric Modeling

We estimate a regression relationship via a panel data approach using a data set of 254

counties in Texas covering the years 2001-2011. Working with panel data allows us to study

dynamic relationships, which we cannot do using a single cross section. It also allows us

to test for the presence of specific effects in counties with shale and wind activities versus

those without. One potential problem with time series analysis is that many exogenous

factors might change at the same time, making it difficult to attribute an outcome to any

one particular change. The panel enables us to interpret differences between counties since

other factors are presumed to affect all counties symmetrically. Comparing to time series

and cross sections using over-time data from the same counties is useful as it allows us to

look at dynamic relationships which we cannot do with a single cross section. In addition, a

panel data set also allows us to control for unobserved cross section heterogeneity.

13Among the 156 counties, 46 are urban. That is, employment in 60% of the urban counties and 62%
of the rural counties may have unit roots. On the other hand, based on results from both tests, only 34
counties have stationary employment series.
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4.1 Assumptions

We start with a static linear unobserved effects model.

yit = xitβ + θt + ci + uit, t = 1, 2, . . . , T, (2)

where yit is a scalar, xit is a 1×K vector for t = 1, 2, . . . , T , and β is a K×1 vector. Here, ci

indicates a time-invariant unobservable effect, and θt represents a series of time fixed effects.

To make the model more realistic, we allow for arbitrary dependence between the un-

observed effects, ci, and the observed explanatory variables, xit. For example, underground

geology characteristics would be included in ci, and these would very well be correlated with

the number of wells drilled in county i. Also, wind capacity highly depends on the climate,

and especially the wind resource of the county, which is also part of the variable ci.

We also assume that the explanatory variables are strictly exogenous conditional on the

unobserved effect, ci. This terminology, introduced by Chamberlain (1982), requires that

E(uit|xi, ci) = 0, t = 1, 2, . . . , T. (3)

That is, once xit and ci are accounted for, xis has no partial effect on yit, for s 6= t. In addition,

uit has zero mean conditional on all explanatory variables in all time periods. This is a

stronger assumption than contemporaneous exogeneity, which requires that E(uit|xit, ci) = 0.

This says nothing about the relationship between xs and ut for s 6= t. Sequential exogeneity,

which requires that E(uit|xit,xi,t−1, . . . ,xi1, ci) = 0, for t = 1, 2, . . . , T , is stronger than

contemporaneous exogeneity. It implies that xs is uncorrelated with ut for all s ≤ t, but

imposes no constraints on the correlation between xs and ut for s > t.

It is standard to assume zero contemporaneous correlation; i.e., that uit is uncorrelated

with the number of wells drilled, or the wind capacity installed at t. But what about the

correlation between uit and, say, xi,t+1? Does future well drilling activity or wind-farm
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construction depend on past shocks to the county’s employment? We do not believe that

such feedback is important for our study, since total employment in a county is not the main

goal of energy companies. Therefore, it seems reasonable to assume that past employment

has a negligible effect on energy companies’ future plans.

Another issue is that the explanatory variables could have lasting effects, so that a cor-

relation might exist between uit and past xi,t−1, . . .xi,1, leading to a failure of sequential

exogeneity. This be the case if well-drilling activity and wind-activity have lasting effects

on local employment. One way to deal with this kind of correlation is to include lags of the

explanatory variables into the model. Strict exogeneity would then hold, if enough lags are

included.14

A test of strict exogeneity is based on Wooldridge (2002), 10.7.1.

∆yit = ∆xitβ + witγ + ∆uit, t = 2, . . . , T, (4)

In the above equation, wi,t is a subset of xi,t. Under strict exogeneity, none of the xits

should be significant explanatory variables in the first difference (FD) equation. That is, we

should find support of the hypothesis H0: γ = 0. Carrying out this test, the F statistic on

γ is 0.32, with p − value = 0.5695. Thus, we could not reject H0. The strict exogeneity

assumption fails in models with unobserved effects and lagged dependent variables. The

reason is that yit is correlated with uit and would show up as part of explanatory variables

at t+ 1, implying that E(uit|xi,t+1) 6= 0. Additional care is required when we include lagged

dependent variables as explanatory variables on the right hand side.

We have not ruled out serial correlation in the idiosyncratic error uit, that is, Corr(uit, uis) 6=

0, t 6= s. Specifically, here we will only consider serial correlation across time, excluding any

cross-sectional correlations a priori. If one allows for the uits to be serially correlated over

14Another remedy is to use instrumental variables. This method is somewhat involved, as it relies on
finding suitable instruments.
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time, the usual pooled ordinary least squares (OLS) and fixed effects (FE) standard errors

are not valid, even asymptotically. To test for the existence of serial correlation in the uits,

we use the Breusch-Godfrey/Wooldridge’s LM test and the Wooldridge first difference test

(Wooldridge 2002). Rather than interpreting serial correlation as a technical violation of

the OLS assumption, we will think of time series data in the context of economic dynamics.

This leads us to the inclusion of lagged variables.

4.2 The Finite Distributed Lag (FDL) Model

Since we expect that drilling and wind activity can have lasting effects on local employment,

we include lags of explanatory variables into the model. A finite distributed lag model is

appropriate if the impact of the explanatory variables lasts over a finite number of periods,

q, and then stops. The FDL unobserved effects model expands equation (2) to the following

form:

Eit =

q∑
k=0

βkwellsi,t−k +

q∑
k=0

δkwcapi,t−k + ci + θt + uit (5)

where Eit denotes total employment, wellsit denotes the number of directional/fractured

wells drilled, and wcapit indicates installed wind capacity for i = 1, 2, . . . , 254 and t =

1, 2, . . . , T . Our interest lies in the pattern of coefficients {βk, δk}qk=0. The values of β0 and

δ0 capture the immediate change in Ei due to the one-unit increase in wellsi and wcapi,

respectively, at time t. Similarly, βk and δk capture the changes in Ei, k periods after the

temporary change. At time t+ q, Ei has reverted back to its initial level, Ei,t+q = Ei,t−1.

We are also interested in the change in Ei due to a permanent increase in any of the ex-

planatory variables. For example, following a permanent increase in wellsit, Ei,t+1 increases

by β0 + β1 after one period, and Ei,t+k increases by β0 + · · · + βk after k periods. After q

periods, there are no further changes in Ei. Thus, the sum of the coefficients on current

and lagged wellsi is the long-run change in Ei, which is also referred to as the long-run
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propensity (LRP). The same analysis applies for the impact of variable wcapi on Ei.
15

4.3 The Autoregressive Distributed Lag (ADL) Model

One way of bypassing the multicollinearity problem is by including a lagged dependent vari-

able with fewer lags than the explanatory variables. The model becomes an autoregressive

distributed lag (ADL) model. The ADL model is similar to the FDL model, except that the

impact of explanatory variables persists over time at a geometrically declining rate. Denot-

ing the number of lagged dependent variables by p, an ADL(p, q) model with unobserved

effects has the form:

Eit =

p∑
j=1

λjEi,t−j +

q∑
k=0

βkwellsi,t−k +

q∑
k=0

δkwcapi,t−k + ci + θt + uit (6)

where {λj}pj=1 are the autoregressive coefficients. If there is a temporary change in wells, Eit

will initially go up by β0 in period 1, then by β1+λ1β0 in period 2, by β2+λ1(β1+λ1β0)+λ2β0

in period 3... etc. If we have a unit level change and provided that the process is stationary,

the ADL model eventually reaches a new equilibrium that is

∑q
k=0 βk

1−
∑p

j=0 λj
(7)

higher than the original equilibrium.

Another advantage of the ADL model is that the inclusion of a lagged dependent variable

can eliminate serial correlation, particularly if additional lags of the dependent variable are

included. Lags of the independent variables may also assist with eliminating serial correlation

in the error term. Hence, once we introduce lagged values of yit, dynamic completeness

implies sequential exogeneity. However, the strict exogeneity assumption is false, as we

15Of course, the right lag length is rarely known in advance, or pinned down by theory. In addition, time
series data is often limited and the inclusion of lagged variables may reduce degrees of freedom. The fact
that the explanatory variables are likely to be correlated might lead to severe multicollinearity.
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discussed before. In this case, both the fixed effects (FE) estimator and the first difference

(FD) estimator are inconsistent.16

4.4 The Spatial Panel Model

We now discuss cross-sectional dependence (XSD) in panels. This can arise, for example,

if spatial diffusion processes are present, relating panel members (in our case, counties) in

a way that depends on a measure of distance. The CD and CD(p) tests (Pesaran 2004)

are used to detect XSD. These tests are based on the averages over the time dimension

of pairwise correlation coefficients for each pair of cross-sectional units. The CD(p) test

also takes into account an appropriate subset of neighboring cross-sectional units in order

to check the null of no XSD against dependence between neighbors only. To do so, a spatial

weights matrix, W , is needed for the CD(p) test.

In our data set, both tests show the presence of XSD at 0.000 level. This is not surprising,

since it seems likely that employment might be correlated across counties. We use a spatial

panel model to study this spatial interaction effect across counties and try to capture the

indirect effect of a county’s energy sector development on employment within other counties.

Spatial interaction effects could be due to competition or complementarity between counties,

spillovers, externalities, regional correlations in industry structures, as well as many other

factors.

Interactions between spatial units are typically modeled in terms of some measure of

distance between them, which is described by a spatial weights matrix W . Here, W is a

254 × 254 non-negative matrix, in which the element wij expresses the degree of spatial

proximity between the pair of objects i and j. Following Kapoor et al. (2007), the diagonal

16Deciding which model to use and how many lags to include is complicated by the fact that we are
unlikely to have a theory to distinguish between the different models. As a result, Boef & Keele (2008)
and others have advocated starting with a general model like the ADL and testing down to a more specific
model, including the optimal values for p and q.
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elements wii are all set to zero, to exclude self-neighbors. Furthermore, only neighborhood

effects are considered in this paper, that is, W is a contiguity matrix:17

wij =


1, if i and j are neighbors

0, otherwise.

(8)

Then the contiguity matrix is transformed into row- standardized form, which assumes the

impact on each unit by all other neighboring units are equal. Given a spatial weights matrix

W , a family of related spatial econometric models can be expanded from equation (2):

Eit = ρ
N∑
j=1

wijEjt + β1wellsit + β2wcapit + uit, (9)

where ρ is the spatial autoregressive coefficient. The composite error uit can be specified

in two ways. First we can have uit = ci + εit, while εit is a vector that follows a spatial

autoregressive process of the form

εit = λ
N∑
j=1

wijεjt + νit (10)

with λ being the spatial autocorrelation parameter. The second specification we consider for

the error uit is the one in Kapoor et al. (2007). They assume that spatial correlation applies

to both unobserved individual effects and the remainder error components. In this case, uit

follows a first order spatial autoregressive process of the form:

uit = λ
N∑
j=1

wijujt + εit (11)

17W is also called as adjacency matrix.

21



and ε follows an error component structure

εit = ci + νit (12)

to further allow εit to be correlated over time. Although the two data generating processes

share some similarities, they imply different spatial spillover mechanisms governed by a

different structure of the implied variance covariance matrix. In what follows, we will consider

the implementation of the second error term specification, which leads to a simpler variance

matrix that is also easier to invert.

5 Estimation Methods and Results

Let us first turn to the general unobserved effects model (2). The pooled OLS estimator

can be used to obtain a consistent estimator for β only if the explanatory variables satisfy

contemporaneous exogeneity and zero correlation with the unobserved individual effects.

Earlier, we assumed that contemporaneous exogeneity holds. However, as we discussed be-

fore, explanatory variables are necessarily correlated with the unobserved individual effects,

ci. In addition, F -tests of poolability show that the pooled OLS estimation is inconsistent.

Since random effects analysis also requires orthogonality between the cis and the observed

explanatory variables, it is also inconsistent. Finally, the result of the Hausman test, namely

χ2 = 601.67 with a p-value close to zero, indicates that the random effects approach is

inconsistent.

With a fixed effects (FE) or first difference (FD) approach, the explanatory variables

are allowed to be arbitrarily correlated with ci, but strict exogeneity conditional on the cis

is still required. The idea behind the fixed effects approach is to transform the equations

by removing the intertemporal mean, thereby eliminating the unobserved effects. One can

then apply pooled OLS to get FE estimators. Similarly, the FD approach transforms the
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equations by lagging the model one period and subtracting, then applying pooled OLS to

get FD estimators. As we mentioned earlier, we found that more than half of the counties

have highly persistent employment series. Using time series with a unit root process in a

regression equation could cause a spurious regression problem. In that case, first differencing

should be used to remove any potential unit roots.

5.1 The FDL model

As noted earlier, including lagged dependent variables in the model violates strict exogene-

ity, implying that the resulting autoregressive FD estimator may suffer from asymptotic

bias. Therefore, in this section we drop all lagged dependent variables and use the FDL

approach. We verified that the strict exogeneity assumption holds as long as enough lags of

the explanatory variables are included.

To obtain a First-Difference (FD) estimator, we lagged the model in (5) by one period

and subtracted to obtain:

∆Eit =

q∑
k=0

βk∆wellsi,t−k +

q∑
k=0

δk∆wcapi,t−k + θ0 + θt + ∆uit, t = 2, 3, . . . , T (13)

Note that rather than dropping an overall intercept and including the differenced time dum-

mies ∆θt, we estimated an intercept and then included the time dummies θt, for T − 2 of

the remaining periods. Because the set of the regressors involving the time dummies are

non-singular linear transformations of each other, the estimated coefficients on the other

variables do not change.

If we find no serial correlation, the FD estimator is the pooled OLS estimator from the

regression model (13). The only remaining issue involves deciding how to choose the number

of lags, q. To test for the presence of serial correlation in ∆uit, we use the tests by Breusch-

Godfrey and Wooldridge. Both tests reject H0 and show serial correlation remains in the

23



Variable Coefficient (Std. Err.) (Robust SE.)
wellsit 16.31 (5.396)∗∗ [6.06]∗∗

wellsi,t−1 13.17 (6.666)∗ [7.081].

wellsi,t−2 0.932 (7.025) [2.929]
wellsi,t−3 -5.519 (7.127) [6.006]
wellsi,t−4 12.23 (7.119). [8.705]
wellsi,t−5 17.89 (6.875)∗∗ [11.13]
wellsi,t−6 22.46 (5.686)∗∗∗ [12.91].

wcapit -0.756 (1.235) [0.923]
wcapi,t−1 -0.755 (1.653) [0.594]
wcapi,t−2 -0.739 (1.864) [0.332]∗

wcapi,t−3 -0.212 (1.923) [0.323]
wcapi,t−4 0.111 (1.865) [0.374]
wcapi,t−5 0.250 (1.654) [0.432]
wcapi,t−6 -0.178 (1.236) [0.266]
***p < 0.001, **p < 0.01, *p < 0.05, ·p < 0.1

Table 1: FD Estimation Results, q = 6

idiosyncratic errors. We then increased p up to p = 36. The results showed that serial

correlation remained no matter how many lags of the explanatory variables were included.

This serial correlation may imply that the model does not fully capture the actual dynamic

adjustment process.

We proceed by computing a robust variance matrix for the FD estimator, which accom-

modates a fully general structure with respect to heteroskedasticity and serial correlation

in ∆uit. Following Arellano (1987), this robust variance matrix is consistent. To determine

the appropriate lag length, q, we posited a maintained value that should be larger than the

optimal q. Here we use q = 24. We then performed sequential F tests on the last 24 > p

coefficients, stopping when the test rejects the H0 that the coefficients are jointly zero at a

5% level. Using a robust variance matrix to calculate the F statistics, we drop 18 lagged

explanatory variables and assign q = 6.

The estimation results are reported in Table 1, with both robust standard errors and

the usual FD standard errors. Using robust standard errors, we find that all coefficients
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of wind installed capacity are close to zero and not statistically significant.18 A joint F -

test on H0 : δk = 0 for k = 0, 1, . . . , 6 gives F (7, 31734) = 0.78 with p-value = 0.6001.

Thus, we cannot reject the hypothesis hat the impact of wind activity on employment is not

statistically significantly different from zero.
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Figure 7: FD estimation results with q = 6: (a) wells (b) wind capacity

Next, we test for the presence of serial correlation in ∆uit using the Breusch-Godfrey

and Wooldridge tests for serial correlation in panels. Both tests accept the H0 (p-values

equal 0.3656 and 0.3096, respectively). Thus, we cannot reject that no serial correlation

remains in the idiosyncratic errors. We then perform OLS and obtain the FD estimator. The

estimation results indicate that six out of seven coefficients of the wind installed capacity

are negative and all are insignificant. A joint F test on H0 : δk = 0 for k = 0, 1, . . . , 6 gives

F (7, 31734) = 0.78, with p-value = 0.6001. Hence, we cannot reject H0, and the impact of

wind activity on employment is not significant from zero. However, since there is substantial

correlation in wells at different lags (multicollinearity), it can be difficult to obtain precise

estimates for the individual βs. The estimated long run multiplier is 4.4. On the other hand,

we found wellst, wellst−1,. . . and wellst−6 to be jointly significant: the F statistic has a p-

18The order 2 lag is negative and significant at a 5% level.

25



value equal to 0.0007. Adding the estimated coefficients of the current and lagged variables,

we obtain long-term multipliers LRPwells = 77.46. Assuming that all the jobs created are

short-term (they only last for 1 month), we divide LRPwells by 12 to obtain the number

of full-time equivalent (FTE) jobs: 6.42.19 Given that 5482 new directional/fractured wells

were drilled in Texas in 2011, about 35000 FTE jobs would have been created.

We graph the estimated short-run impact of wellsk and wcapk as a function of k in

Figure 7. The lag distribution summarizes the dynamic effects from a temporary increase

in the explanatory variables on the dependent variable. Figure 7a shows a mainly declining

trend in the impact of wells on the first three months. This is expected, as workers generally

leave after the well completion. Employment then increases starting with month 4. We

interpret this as the result of the emergence of new business opportunities in the area,

resulting from the well-drilling activity. We find that the largest effect is with the first and

the last lag. Figure 7b shows the impact from the added new wind capacity. The employment

effect is negative at first, and then increases. It peaks about four months after the wind farm

construction, and then declines again. After six months, the impact from both well-drilling

and wind activities fades and employment falls back to its original level.

Assuming that all jobs created by well-drilling last for one month, we sum up the 6

coefficients of wells and divide by 12 to get the full-time equivalent growth rate: 0.01465%.

Given that 3889 new directional/fractured wells were drilled in Texas in 2011, the results

imply that about 54446 jobs would have had been created.20

19This allows us to avoid the double-counting problem.
20The total employment in Texas in 2010 was 10, 182, 150. Note that R2 = 0.00084. Since oil and gas-

related employment is only 2.6% of the total employment in Texas, a low explanatory power of the regression
model is perhaps to be expected.
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5.2 The ADL model

Since the ADL model involves lagged dependent variables, the strict exogeneity assumption

is violated and both the FE and the FD estimators are inconsistent. To overcome this we

employ the generalized method of moments (GMM).21 We again need to assign appropriate

p and q to the model before we estimate it. As before, we start with p and q that large

enough to be guaranteed to be larger than their optimal value: p = q = 24. When we

include one lagged dependent variable, Ei,t−1, Wooldridge’s test for serial correlation gives

χ2 = 30.189, with p-value = 3.919e−8. The strong serial correlation implies that the dynamic

data generation processes has not been fully captured. When we include one more lagged

dependent variable, Ei,t−2, the test result changes to χ2 = 0.0081, with p-value = 0.9285.

We conclude that the error term, uit, is now serially uncorrelated. Henceforth, we set p = 2.

As in the previous section we proceed by setting q = 6. We then proceed to estimate

the two-way Arellano-Bond GMM regression. The full results are shown in Table 2 in

Appendix A. Both the Wald and the joint F tests cannot reject that the coefficients for wind

capacity δ0 = . . . = δ6 = 0, which implies no impact of wind activity on local employment.

Thus, in the following discussion we will focus solely on the wells variable.

Figure 8 graphs the resulting dynamic response of employment to a unit increase in

wellsit and wcapit under six lags. The employment variable, Eit, initially increases by β0 in

period 1, then by β1 + λ1β0 in period 2, by β2 + λ1(β1 + λ1β0) + λ2β0 in period 3,... etc.

The corresponding graphs in Figure 8 and Figure 7 exhibit similar trends. In addition, the

estimation results in Table 2 are in line with that in Table 1.22

Note that the sum of the two estimated coefficients for the lagged dependent variables

21If we maintain the contemporaneous exogeneity assumption, the FE estimator’s inconsistency shrinks to
zero at the rate 1/T , while the inconsistency of the FD estimator is essentially independent of T (Wooldridge,
2002).

22For comparison, we have also included the pattern estimated in the previous Section. The long-run effect,

referred to as the long-run propensity (LRP) or long-run multiplier, is given by
∑

119k=0βk

1−λ1−λ2
= 121.13, which is

very close to the one estimated from the FDL model using FGLS. Full results appear in the Appendix.
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Figure 8: GMM estimation results with p = 2, q = 6: (a) wells (b) wind capacity

is 0.98. Although the test λ1 + λ2 = 1 is rejected at the 1% level, employment might still

follow a unit root process. To address this issue, we ran the same estimation using data from

only the 98 counties with stationary employment series. We obtained similar estimates:

λ̂1 + λ̂2 = 0.98. We believe that the large persistence in employment is probably due to the

small explanatory power of well drilling, which is reasonable since employment in the shale

gas sector is a rather small component of total employment.

5.3 Spatial Panel Models

Earlier we discussed the theory behind the spatial autoregression (SAR) and the spatial

error model (SEM). In the SAR model, the inclusion of the dependent variable introduces

simultaneity bias and the OLS estimator is no longer unbiased and consistent, while in

the SEM, the OLS estimator is unbiased, but inefficient. Therefore, maximum likelihood

estimation is used to estimate the parameters of both models.

Both the SAR and SEM models are estimated allowing for two-way fixed effects. The

results are reported in Table 3 in Appendix A. We find that the spatial interaction coefficients

of both models are significant and very similar: ρ = 0.1730, λ = 0.1734. Also, both models
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show large and significant coefficients for wells, and insignificant coefficients for wcap.

Following LeSage & Pace (2009), the expectation of the SAR model y = ρWy +Xβ + ε

is

E(y) = (IN − ρW )−1Xβ (14)

Employment in county i depends on developments in neighboring counties, as workers in

bordering counties migrate to take advantage of new job opportunities in shale and wind.

This provides a motivation for the spatial lag variable Wy.

The own- and cross-partial derivatives in the SAR model take the form of an N × N

matrix that can be expressed as:

∂y/∂x′r = (IN − ρW )−1INβr (15)

These partial derivatives measure how drilling/wind activities in county j influence em-

ployment in county i. For the rth explanatory variable, the average of the main diagonal

elements of this matrix is labeled as the ”direct effect,” while the average of the cumulative

off-diagonal elements over all observations corresponds to the ”indirect effect.” The average

total effect will be the sum of the two.

This model implies that direct effect of well-drilling activity on employment is 225, and

it is significant at the 0.000 level. The direct effect measures how wells drilled in a particular

county affect employment in that same county. The result shows that about 225 jobs would

be created per well drilled in the same county. The indirect effect estimate of well drilling

activity is 46 which makes the total effect grow to 271. Thus, if we only consider the

direct effect, the results would be underestimated by 17%. The result is significantly higher

compared to the FD estimation results, LRP = 77, indicating that spatial correlation effects

are important.

The direct and indirect effects of wind activity are 0.05 and 0.01, respectively, and they
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are not statistically significant. Hence, wind farm installation and construction was not

found to have an impact on employment.

5.4 Wage Effects

Here we report on the impact from shale gas and wind developments on average weekly

wages. We again employ the FD approach. Sequential F-tests determine that q = 12. The

results appear in Table 5 in Appendix A. The results show that the coefficients of the 4th

and 9th lagged wells are significant at the 0.05 level. For wind capacity, the coefficients of

lag 1 and lag 10 are significant at the 0.05 level, while lags 11 and 12 are significant at the

0.01 level. Figure 9 graphs the resulting dynamic response of wages to a unit increase in

wellsit and wcapit (12 lags). The impact from wells drilled rises and falls with a 6 month

cycle. The peaked value is about 0.3. The impact from wind capacity installation shows a

quite different trend: it increases over time from near zero to 0.13.
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Figure 9: Short run impact of shale/wind activity on wage

The spatial panel regression results for wages are shown in Table 4 in Appendix A. The
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results are in line with those without including spatial interaction effects. According to the

SAR model, the estimate of β1 is 0.18 and significant at the 0.05 level, while the estimate

of β2 is 0.06 and not significant. Additionally, the results show a strong spatial correlation:

ρ = λ = 0.26. Interestingly, the spatial correlation effects in wages are even larger than

in employment: 26% of the increase in average wages is due to indirect effects, while such

effects are responsible for 17% of the change in employment.

The direct and indirect effects of well drilling activity on wages are 0.18 and 0.06, re-

spectively. Alternatively, the total effect on wages is 23 cents per well drilled, of which 18

cents are due to drilling activity in the same county, while 6 cents are attributed to drilling

activity in neighboring counties. The total effect from wind activity is 8 cents per MW, of

which about 6 cents are due to the direct effect, while 2 cents are due to the indirect effect.

6 Conclusion

We followed an econometric approach to compare job creation in wind power versus that in

the shale gas sector. We have discussed the advantages and disadvantages of a number of

different models. We then estimated them using county level data in Texas from 2001 to

2011. The results were quite consistent. Both first-difference and GMM methods show that

shale development and well-drilling activity have brought strong employment to Texas: 77

short-term jobs or 6.4 FTE jobs per well. Given that 5482 new directional/fractured wells

were drilled in Texas in 2011, an estimated 35000 FTE jobs were created. In contrast, we

did not find a corresponding effect on wages. The effect on wages corresponds to a 30-cent

increase in month 4 and month 9 after each well completion.

All our estimations show that the impact from wind industry development on employ-

ment is not significantly different from zero. Its impact on wages increases gradually after

construction and peaks about one year later. We found that 13 cents are added to wages in
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months 10 to 12 after construction.

While there are undoubtedly several advantages to expanding wind-enerdy installation,

the effects on employment appear to be insignificant. In contrast, unconventional gas produc-

tion appears to be a significant force behind employment growth in Texas. Further research

is needed to confirm these effects in other states.
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A Tables of Estimation Results

Variable Coefficient (Std. Err.)
Ei,t−1 0.88241 0.0056054∗∗∗

Ei,t−2 0.1005518 0.0056067∗∗∗

wellsit 15.86961 5.586163∗∗

wellsi,t−1 -.8539942 5.714926
wellsi,t−2 -15.90933 5.853195∗∗

wellsi,t−3 -8.917589 5.964613
wellsi,t−4 14.38985 5.922299 ∗

wellsi,t−5 4.476252 5.851388
wellsi,t−6 3.622863 5.794333
wcapit -9.00e-06 0.0000248
wcapi,t−1 -0.0000184 0.0000243
wcapi,t−2 0.0000239 0.0000237
wcapi,t−3 0.0000107 0.0000236
wcapi,t−4 0.0000242 0.0000237
wcapi,t−5 -0.0000129 0.0000243
wcapi,t−6 -9.63e-06 0.0000249

Signif. Code: *** 0, ** 0.01, * 0.05, . 0.1, 1.

Table 2: GMM Estimation Results, p = 2, q = 6
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SAR Coefficients:
Estimate Std. Error t-value Pr(> |t|)

ρ 0.1730 0.0081 21.43 < 2e− 16∗∗∗

wells 224.72 12.99 17.29 < 2e− 16∗∗∗

newcap 0.05 6.366 0.0079 0.9937
SEM Coefficients:
λ 0.1734 0.0081 21.42 < 2e− 16∗∗∗

wells 235.81 13.63 17.30 < 2e− 16∗∗∗

newcap 0.47 6.374 0.704 0.4814

Significant Code: *** 0, ** 0.01, * 0.05, . 0.1, 1.

Table 3: Spatial interaction effects on employment

SAR Coefficients:
Estimate Std. Error t-value Pr(> |t|)

ρ 0.26 0.01 33.88 < 2e− 16∗∗∗

wells 0.18 0.09 2.04 0.0412∗

newcap 0.06 0.04 1.51 0.1319
SEM Coefficients:
λ 0.26 0.01 33.87 < 2e− 16∗∗∗

wells 0.12 0.09 1.27 0.20
newcap 0.07 0.04 1.60 0.11

Significant Code: *** 0, ** 0.01, * 0.05, . 0.1, 1.

Table 4: Spatial interaction effects on wage

34



Variable Coefficient Robust SE. t-value Pr(> |t|)
wellst 0.030579 0.112459 0.2719 0.785688
wellst−1 -0.013512 0.149363 -0.0905 0.927917
wellst−2 0.105605 0.160727 0.6570 0.511159
wellst−3 0.128526 0.159170 0.8075 0.419399
wellst−4 0.310342 0.132325 2.3453 0.019018 *
wellst−5 0.040933 0.119525 0.3425 0.732003
wellst−6 -0.022280 0.128208 -0.1738 0.862040
wellst−7 0.057849 0.121926 0.4745 0.635176
wellst−8 0.268792 0.137164 1.9596 0.050047 .
wellst−9 0.297772 0.133959 2.2229 0.026232 *
wellst−10 0.180401 0.108571 1.6616 0.096603 .
wellst−11 -0.121860 0.155113 -0.7856 0.432095
wellst−12 -0.014441 0.144573 -0.0999 0.920434
wcapt -0.020312 0.022022 -0.9224 0.356349
wcapt−1 -0.079381 0.039836 -1.9927 0.046304 *
wcapt−2 -0.075806 0.057576 -1.3166 0.187978
wcapt−3 -0.064414 0.053879 -1.1955 0.231889
wcapt−4 -0.089130 0.058455 -1.5248 0.127325
wcapt−5 -0.053716 0.051733 -1.0383 0.299123
wcapt−6 -0.017880 0.041650 -0.4293 0.667710
wcapt−7 -0.022297 0.065829 -0.3387 0.734828
wcapt−8 0.004571 0.056724 0.0806 0.935773
wcapt−9 0.025598 0.058720 0.4359 0.662890
wcapt−10 0.134719 0.058776 2.2921 0.021907 *
wcapt−11 0.136272 0.042045 3.2411 0.001192 **
wcapt−12 0.102829 0.035770 2.8748 0.004046 **

Significant Code: *** 0, ** 0.01, * 0.05, . 0.1, 1.

Table 5: FD estimation results with robust se. on wage, q = 12
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