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Abstract

This paper proposes a methodology for analyzing nonlinear pricing data with an

illustration on cellular phone. The model incorporates consumers exclusion. Assuming

a known tariff, we establish identification of the model primitives using the first-order

conditions of both the firm and the consumer up to a cost parameterization. Next,

we propose a new one-step quantile-based nonparametric method to estimate the con-

sumers inverse demand and their type distribution. We show that our nonparametric

estimator is
√
N -consistent. We then introduce unobserved product heterogeneity with

an unknown tariff. We show how our identification and estimation results extend. Our

analysis of cellular phone consumption data assesses the performance of alternative

pricing strategies relative to nonlinear pricing.

Keywords: Nonlinear Pricing, Nonparametric Identification, Empirical Processes, Quantile,

Transformation Model, Unobserved Heterogeneity, Telecommunication.



Structural Analysis of Nonlinear Pricing

Yao Luo, Isabelle Perrigne & Quang Vuong

1 Introduction

When facing heterogeneous consumers, a firm can discriminate consumers by offering dif-

ferent prices across purchase sizes and/or qualities. This practice is referred as nonlinear

pricing or second degree price discrimination. Such a practice is common in electricity, cel-

lular phone and advertising among others. See Wilson (1993) for examples. Seminal papers

by Spence (1977), Mussa and Rosen (1978) and Maskin and Riley (1984) provide nonlinear

pricing models within an imperfect information framework. The basic idea is to consider

the consumer’s taste/type as a parameter of adverse selection. The firm then designs an

incentive compatible tariff discriminating consumers while endogeneizing the offered quan-

tity/quality. This is achieved by giving up some rents to consumers. The resulting optimal

price schedule is concave in quantity/quality implying discounts.1

The economic importance of price discrimination has led to an important empirical lit-

erature. Early empirical studies by Lott and Roberts (1991) and Shepard (1991) to name

a few focus on exhibiting evidence of nonlinear pricing.2 More recently, empirical studies

evaluate the impact of nonlinear pricing on profits, consumer surplus and economic effi-

ciency. Starting with Leslie (2004), a random utility discrete choice model for consumers’

preferences is used to recover the consumers’ taste distribution treating the price schedule

as exogenous. See also McManus (2007), Cohen (2008) and Economides, Seim and Viard

1Extensions to oligopoly competition or several products include Oren, Smith and Wilson (1983), Ivaldi

and Martimort (1994), Stole (1995), Armstrong (1996), Rochet and Chone (1998), Armstrong and Vickers

(2001), Rochet and Stole (2003) and Stole (2007). Because of multidimensional screening, the optimal price

schedule becomes less tractable though closed-form solutions might be obtained for some specifications.
2Other studies by Borenstein (1991), Borenstein and Rose (1994) and Busse and Rysman (2005) document

the impact of competition on patterns of nonlinear pricing.

1



(2008). A third trend endogeneizes the optimal price and quantity schedules to estimate the

demand and cost structure. See Ivaldi and Martimort (1994), Miravete (2002), Miravete and

Roller (2004) and Crawford and Shum (2007).

In this paper, we propose a methodology for the structural analysis of nonlinear pricing

data. We consider the Maskin and Riley (1984) model with consumer exclusion. This model

contains all the relevant features to develop a structural setting for nonlinear pricing data.

In this respect, the conclusion discusses how our results extend to more advanced pricing

models with bundling and differentiated products. In the spirit of the recent literature

in empirical industrial organization, we investigate the nonparametric identification of the

model primitives from observables, which are the individual purchases and payments. See

Laffont and Vuong (1996) and Athey and Haile (2007) for surveys on the nonparametric

identification of auction models.

To simplify, we first consider the benchmark case in which the firm’s tariff is known. We

remark that our identification problem is reminiscent of Ekeland, Heckman and Neishem

(2004) and Heckman, Matzkin and Neishem (2010) who study the nonparametric identifi-

cation of hedonic price models. Instead of relying on instruments, we use the first-order

conditions of both the consumer and the firm to identify the model primitives and exploit

the one-to-one mapping between the unobserved consumer’s type and his observed purchase.

Given a parameterization of the cost, we also exploit the consumer exclusion condition to

identify the cost parameters. Next, we propose a computationally convenient nonparametric

procedure for estimating the marginal payoff and the type distribution that relies on em-

pirical processes and quantile estimators. In contrast to previous papers on the estimation

of incomplete information models, our estimator is one-step only. We establish its uniform

consistency and show that it is
√
N -consistent. As a result, our nonparametric type density

estimator converges at the parametric rate which is much faster rate than that of Guerre,

Perrigne and Vuong (2000) in the context of auctions.

We then relax the assumption of a known tariff while introducing product unobserved

heterogeneity. Such heterogeneity is important as observed payments and quantities do not

necessarily satisfy a deterministic relationship. We discuss several options with a focus on

their respective assumptions. The option that we retain leads to a transformation model. See

Horowitz (1996). More precisely, we use the semiparametric model of Linton, Sperlich and

Van Keilegom (2008). We then show how our identification results extend by establishing
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identification of the tariff function from observables. Regarding estimation, we study how

our estimator extends while retaining its
√
N consistency. In particular, we show how the

estimation of the tariff parameters affects the asymptotic distributions of our estimators.

An illustration on cellular service data shows the importance of product unobserved het-

erogeneity and supports the nonlinear pricing model. Counterfactuals assess the perfor-

mance of alternative pricing strategies such as two-part tariffs and quantity forcing relative

to nonlinear pricing. A menu of two-part tariffs performs well at the cost of excluding more

consumers. The conclusion briefly discusses some extensions of our methodology opening

several avenues for future research. For instance, multiproduct firm, bundling and product

differentiation can be entertained from our setting. Beyond nonlinear pricing, analysts can

also use and extend our methodology to analyze contract data in retailing and labor to name

a few where incomplete information plays a key role.

The paper is organized as follows. Section 2 introduces the model and establishes iden-

tification with a known tariff. Section 3 develops a one-step quantile-based nonparametric

estimation procedure. Section 4 introduces product unobserved heterogeneity with an un-

known tariff. It shows how the previous identification and estimation results extend. Section

5 presents an empirical application to cellular service data. Section 6 concludes with future

lines of research. Three appendices collect proofs of statements in Sections 2, 3 and 4.

2 Model and Identification

2.1 The Model

Assumptions and Model Primitives

We consider the canonical model of nonlinear pricing by Maskin and Riley (1984). This

model contains all the main components to analyze nonlinear pricing data. In the conclusion

we will discuss further how we can incorporate bundling, multiple products and product dif-

ferentiation. Consumers or agents are characterized by a scalar taste parameter θ distributed

as F (·) with a continuous density f(·) > 0 on [θ, θ] with 0 ≤ θ < θ <∞. This taste param-

eter is private information, i.e. it is unknown to the firm or principal. In general, not all

agents consume as the firm excludes consumers with low tastes for the product. Specifically,

the firm chooses optimally a threshold level θ∗ above which consumers will buy its product.

Each consumer has a utility U(Q; θ) = θU0(Q) and faces a tariff T (Q) where Q is the
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purchased quantity/quality.3 Thus, the consumer’s payoff is

θU0(Q)− T (Q) (1)

The firm incurs a cost C(Q) for each consumer.4 We make standard assumptions on the

model primitives [U0(·), F (·), C(·)]. Hereafter, we use a variable as a subscript to indicate

the derivative of a function with respect to this variable.

Assumption A1:

(i) The base utility function U0(·) is continuously differentiable on [0,+∞), and ∀Q ≥ 0

U0(Q) ≥ 0, U0Q(Q) > 0 and U0QQ(·) < 0,

(ii) The function θ − [(1− F (θ))/f(θ)] is strictly increasing in θ ∈ [θ, θ],

(iii) The cost function C(·) is continuously differentiable on [0,+∞) with marginal cost

satisfying CQ(Q) > 0 ∀Q ≥ 0,

The Optimization Problem and First-Order Conditions

The consumer chooses a quantity/quality Q(·) as a function of his type θ. This quantity

maximizes (1) and leads to

TQ(Q(θ)) = θU0Q(Q(θ)). (2)

In words, his marginal utility equals the marginal tariff. In addition, consuming should

provide a larger utility than not consuming, namely

θU0(Q(θ))− T (Q(θ)) ≥ θU0(0) (3)

Despite the RHS depending on θ, there are no countervailing incentives here because (3) is

equivalent to θ[U0(Q)−U(0)]− T (Q) ≥ 0, which is strictly increasing in θ by A1-(i) for any

given Q.5 Equation (2) and (3) are the so-called incentive compatibility (IC) and individual

rationality (IR) constraints.

3The multiplicative separability in θ is common in the theoretical literature. It is also an identifying

assumption as a general functional form U(Q; θ) is not identified. See also Section 2.2. An equivalent

specification of utility is
∫ Q
0
θv0(x)dx, where v0(·) expresses the consumer willingness-to-pay for the Qth

unit of product also called the inverse demand.
4Previous versions of the paper consider a general cost function C(·) for the total amount produced. See

Riley (2012) and Section 2.2.
5See Lewis and Sappington (1989) and Maggi and Rodriguez-Clare (1995) for studies on countervailing

incentives.
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The firm’s profit is

∫ θ

θ∗
[T (Q(θ))− C(Q(θ))] f(θ)dθ.

The firm chooses optimally θ∗, Q(·) and T (·) to maximize its profit subject to the agents’

IR and IC constraints.6 This gives

max
θ∗,Q(·),T (·)

∫ θ

θ∗
[T (Q(θ))− C(Q(θ))] f(θ)dθ, (4)

subject to the IC and IR constraints. The next proposition establishes the necessary condi-

tions for the solution [θ∗, Q(·), T (·)].

Proposition 1: Under A1 and Qθ(·) > 0, there exists a threshold value θ∗ ∈ [θ, θ] below

which consumers are not served. In addition, for θ ∈ [θ∗, θ], the functions Q(·) and T (·) that

solve the firm’s optimization problem (4) satisfy

θU0Q(Q(θ)) = CQ(Q(θ)) +
1− F (θ)

f(θ)
U0Q(Q(θ)) (5)

TQ(Q(θ)) = θU0Q(Q(θ)). (6)

If θ∗ ∈ (θ, θ), then θ∗ solves the optimal exclusion condition

θ∗U0(Q(θ∗))− C(Q(θ∗))− 1− F (θ∗)

f(θ∗)
U0(Q(θ∗)) = 0. (7)

Moreover, the θ∗-consumer gets zero net utility, i.e. the boundary condition θ∗U0(Q(θ∗)) =

T (Q(θ∗)) holds.

Conditions (5) and (6) characterize the optimal quantity schedule Q(·) and tariff T (·),
respectively. Equation (5) says that the marginal payoff for each type equals the marginal

cost plus a nonnegative distortion term due to incomplete information. Hence, all consumers

buy less than the efficient (first-best) quantity/quality except for the θ consumer for whom

there is no distortion. Once Q(·) is determined, (6) characterizes the optimal price schedule

T (·) using the boundary condition. Equation (7) expresses the trade-off between expanding

the customer base and lowering the tariff, while the latter gives no rent to the θ∗-agent.7

6If the firm can discriminate consumers based on some observed characteristics as in third degree price dis-

crimination, such characteristics will show up in F (·) as conditioning variables and/or in U0(Q) as additional

variables.
7We assume that θ∗ ∈ (θ, θ). If the LHS of (7) is always strictly positive, then there is no exclusion, in

which case the boudary condition becomes θU0(Q(θ)) = T (Q(θ)).
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Under additional assumptions, we can show that Q(·) is strictly increasing and continuously

dfferentiable on [θ∗, θ], while T (·) is strictly increasing and twice continuously differentiable

on [Q,Q] ≡ [Q(θ∗), Q(θ)]. Regarding the verification of the second-order conditions, see

Maskin and Riley (1984). Tirole (1988) indicates that the second-order derivative TQQ(·) < 0,

i.e. the price schedule is strictly concave in Q. For formal proofs of Proposition 1, see Maskin

and Riley (1984), Tirole (1988) or Riley (2012) among others.

2.2 Identification

We address the identification of the model when the tariff T (·) is known. In Section 4 we

relax this assumption with the introduction of product unobserved heterogeneity.

General Setting and Discussion

Following Section 2.1, the model primitives are [U0(·), F (·), C(·)], which are the consumer’s

base utility, his type distribution and the firm’s cost function. We consider a situation where

the analyst has information on the price schedule as well as data on consumers’ purchased

quantities. Thus, identification investigates whether the primitives can be uniquely recovered

from the observables [T (·), GQ∗(·)].8

A first-order condition similar to (6) arises in hedonic models whose nonparametric iden-

tification is studied by Ekeland, Heckman and Neishem (2004) and Heckman, Matzkin and

Neishem (2010). Both papers show that the marginal utility is nonidentified without further

restrictions. Ekeland, Heckman and Neishem (2004) establish identification of the consumer

utility and the distribution of unobserved heterogeneity up to location and scale by exploiting

variations in some consumers’ continuous exogenous variables that are independent of the

term of unobserved heterogeneity. As emphasized there, this result is obtained without the

need to consider the firm’s optimization problem. Heckman, Matzkin and Nesheim (2010)

8We use G(·) for the distribution of observables and use a superscript to indicate the random variable of

interest. The superscript ∗ refers to a truncation as only consumers with a type θ ≥ θ∗ consume the good.

As is frequently the case, the analyst does not have information on consumers who choose the outside option.

Otherwise, we could identify the proportion of such consumers F (θ∗) and hence F (·) instead of F ∗(·) on

[θ∗, θ] in view of Proposition 2 below. The data may also provide some exogenous agent’s characteristics Z.

Because second-degree price discrimination imposes the same tariff across agents, we can view θ as a scalar

aggregation of the consumer’s observed and unobserved heterogeneity. Also, we consider data from a single

market. See Luo, Perrigne and Vuong (2013) for the introduction of market and consumers heterogeneity in

a more general setting.
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also consider exogenous variables for single and multimarket data.9 Taking the logarithm

of (6) gives log TQ(Q) = logU0Q(Q) + log θ. In a standard setup, U0Q(·) would be identified

by assuming (say) E[log θ|Q] = 0. But from (5), Q = Q(θ) creating an endogeneity problem

traditionally solved with instruments. It seems impossible to find instruments that are cor-

related with Q but independent of θ. Consequently, the consumer’s first-order condition (6)

is not sufficient to identify the utility function and the type distribution.

Our problem is also reminiscent of identification in models with incomplete information

that lead to an equilibrium relationship between an observable and the agent’s private infor-

mation. For instance, in auctions Guerre, Perrigne and Vuong (2000) exploit this one-to-one

mapping to recover the bidders’ private value distribution. When the model contains more

primitives to identify, several strategies can be entertained. When bidders are risk averse,

Guerre, Perrigne and Vuong (2009) exploit exogenous variations in the number of bidders

leading to some exclusion restrictions to identify the bidders’ utility function. In the case of

contract models, recent papers use exogenous variations and exclusion restrictions to iden-

tify the model primitives. Considering labor contracts, D’Haultfoeuille and Février (2011)

exploit some exogenous variations in the offered contracts that do not affect the agents’ prim-

itives to identify the latter. Since contract models provide optimality conditions for both the

principal and the agent, an alternative strategy is to exploit the entire set of first-order con-

ditions to identify the model primitives as in Perrigne and Vuong (2011) for a procurement

model with adverse selection and moral hazard. We follow this strategy and exploit both

first-order conditions (6) and (7). In particular, our identification results do not require the

existence of exogenous variables characterizing the agent and/or principal.

Identification of [U0(·), F (·), C(·)]
We first show that a scale normalization is necessary as both the type θ and the base

utility U0(·) are unknown. The next lemma formalizes this result. Let S be the set of

structures [U0(·), F (·), C(·)] satisfying A1.

Lemma 1: Consider a structure S = [U0(·), F (·), C(·)] ∈ S. Define another structure

S̃ = [Ũ0(·), F̃ (·), C(·)], where Ũ0(·) = 1
α
U0(·) and F̃ (·) = F (·/α) for some α > 0. Thus,

S̃ ∈ S and the two structures S and S̃ lead to the same set of observables [T (·), GQ∗(·)], i.e.

the two structures are observationally equivalent.

9Both papers consider a general utility function U(Q, θ) and show that it is not identified. The former

considers separable additivity in θ, while the latter considers alternative functional forms.
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Several scale normalizations can be entertained. Three natural choices are to fix θ, θ∗ or θ.

We propose a convenient normalization after establishing the identification of [U0(·), F (·)].
Considering a model of adverse selection, D’Haultfoeuille and Février (2007) show that

at least one of their three primitives, namely the surplus, the type distribution or the cost

function, needs to be known to identify the model. We parameterize the cost function as for-

malized below. To simplify the expressions, we choose a constant marginal cost specification

though alternative functional forms such as C(Q) = κ(1 +Q)γ can be entertained.10

Assumption B1: The cost function is of the form C(Q) = κ+ γQ for Q ≥ 0.

The model primitives become [U0(·), F (·), κ, γ]. Following B1, CQ(Q(θ)) becomes γ in (5).

Thus evaluating (5) and (6) at θ and noting that Q = Q(θ), γ is identified by γ = TQ(Q).

We now turn to the identification of the marginal utility U0Q(·) and the unobserved type

distribution F (·). Our argument is based on quantiles. Let θ(α) and Q(α) denote the α-

quantiles of the unobserved truncated type distribution F ∗(·) and the observed truncated

consumption distribution GQ∗(·). Hereafter, we define θ(0) = θ∗ and Q(0) = Q. Thus θ(·)
and Q(·) are defined on [0, 1] because θ and Q are finite. We first rewrite the first-order

conditions (5) and (6) in terms of quantiles. This gives

θ(α)U0Q(Q(α)) = γ +
1− α

f ∗(θ(α))
U0Q(Q(α))

TQ(Q(α)) = θ(α)U0Q(Q(α))

for α ∈ [0, 1]. Using the relationship between the density and its quantile function, i.e.

f ∗(θ(α)) = 1/θα(α) and U0Q(Q(α)) = TQ(Q(α))/θ(α) in the first equation give

θα(α)

θ(α)
=

TQ(Q(α))− γ
(1− α)TQ(Q(α))

. (8)

Integrating (8) from 0 to α gives

log
θ(α)

θ∗
=
∫ α

0

1

1− u

[
1− γ

TQ(Q(u))

]
du (9)

since θ(0) = θ∗. Because the RHS of (9) is known from the observables, it follows that θ(·)
is identified on [0, 1] up to θ∗. This suggests the following natural normalization.

10Alternatively, we could consider the cost of the total amount produced, i.e. C
[∫ θ
θ∗
Q(θ)f(θ)dθ

]
. In this

case, the marginal cost for the total amount produced is identified by combining (5) and (6) evaluated at the

upper boundary θ. For the nonparametric identification of the cost function, see Luo, Perrigne and Vuong

(2013) using multiple market data.
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Assumption B2: We normalize θ∗ = 1.

Because F ∗(·) = θ−1(·), the type distribution is identified. Moreover, the marginal base

utility is identified from (6) evaluated at θ = θ(α). Integrating the marginal base utility

from Q to Q identifies U0(·) using the boundary condition U0(Q) = T (Q). It remains to

identify the cost parameter κ. We use the exclusion condition (7) for this purpose. The next

proposition formalizes the identification of [U0(·), F ∗(·), κ, γ].

Proposition 2: Under assumptions A1, B1 and B2, the cost parameters are identified by

γ = TQ(Q), κ = γ

(
T (Q)

TQ(Q)
−Q

)
.

The base utility U0(·) is identified on [Q,Q] as U0(Q) = T (Q) +
∫Q
Q U0Q(x)dx. The truncated

consumers’ type distribution F ∗(·) is identified on [θ∗, θ] = [1, θ].

We remark that U0(·) and F ∗(·) are not identified on [0, Q) and [θ, θ∗), respectively. Intu-

itively, the purchase and price data do not provide any variation to identify these functions

on those ranges as the minimum observed quantity is Q.

3 Estimation

Our estimation method follows identification. Specifically it relies on (8) and (9). We remark

that (8) and (9) involve the derivative of the tariff TQ(·). As in Section 2.2, we consider that

the tariff T (·) is known. Section 4 addresses the identification and estimation of T (·) with

unobserved product heterogeneity. In contrast to the previous literature on the estimation of

incomplete information models, e.g. Guerre, Perrigne and Vuong (2000), we develop one-step

estimators for both the utility function U0(·) and the type density f ∗(·). In addition, our

estimators achieve the parametric rate thereby circumventing the large data requirements

associated with nonparametric estimators.

A One-Step Nonparametric Procedure

Our new estimator is based on quantiles.11 Intuitively, (9) suggests that we can estimate

θ(·) at the parametric rate since the estimator of the quantile Q(·) is
√
N -consistent. Using

(8), it follows that f ∗(θ(·)) = 1/θα(·) and U0Q(Q(·)) = TQ(Q(·))/θ(·) can also be estimated

at the parametric rate. We now develop formally our estimators.

11Marmer and Shneyerov (2012) develop a two-step quantile-based estimator for auction models.
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Let N denote the number of consumers purchasing a quantity/quality Qi, i = 1, 2, ..., N .

Since (9) involves the cost parameter γ, we first study its estimation. We use the identifying

relationship γ = TQ(Q). We propose a maximum estimator for Q leading to Qmax = maxiQi.

This estimator has the main advantage to converge at a fast rate. Regarding the fixed cost

parameter κ, we use the identifying equation of Proposition 2, which involves Q. We use a

minimum estimator leading to Qmin = miniQi. This gives the following estimators

γ̂ = TQ(Qmax), κ̂ = γ̂

(
T (Qmin)

TQ(Qmin)
−Qmin

)
. (10)

Next in view of (8) and (9), our estimators for θ(·) and its derivative θα(·) are

θ̂(α) = exp

{∫ α

0

1

1− u

[
1− γ̂

TQ[Q̂(u)]

]
du

}
, θ̂α(α) =

θ̂(α)

1− α
TQ[Q̂(α)]− γ̂
TQ[Q̂(α)]

, (11)

for α ∈ [0, 1], where Q̂(·) is an estimator of the quantile function from the observed quan-

tities. The relationships f ∗[θ(α)] ≡ [f ∗ ◦ θ](α) = 1/θα(α) and U0Q[Q(α)] ≡ [U0Q ◦ Q](α) =

TQ[Q(α)]/θ(α) then provide estimators for the type density and the marginal base utility.

This leads to the estimators of f ∗(·) and U0Q(·) at their θ and Q quantiles, respectively

̂f ∗◦θ(α) =
1

θ̂α(α)
, ̂U0Q◦Q(α) =

TQ[Q̂(α)]

θ̂(α)
. (12)

Hence, estimators at any value θ ∈ [1, θ̂] = [1, θ̂(1)] and Q ∈ [Qmin, Qmax] are

f̂ ∗(θ) = ̂f ∗◦θ[θ̂−1(θ)], Û0Q(Q) = ̂U0Q◦Q[ĜQ∗(Q)], (13)

where θ̂−1(·) is the estimated inverse of θ̂(·) and ĜQ∗(·) is the empirical c.d.f. of {Qi; i =

1, . . . , N}. We note that θ−1(·) = F (·), so that θ̂−1(·) is our estimator F̂ (·) of F (·).
A standard estimator of the quantile function Q(·) is the inverse of the empirical c.d.f

ĜQ∗−1
N (·). In particular, Q̂(·) is a left-continuous step function on (0, 1] with steps at 1/N <

2/N < . . . < (N − 1)/N with values equal to the ordered statistics Q1 ≡ Qmin < Q2 < . . . <

QN ≡ Qmax. At α = 0, we define Q̂(0) = Qmin. This implies that the integral in (11) can be

replaced by a finite sum of integrals leading to the computationally simple expression

log θ̂(α) =
J−1∑
j=1

∫ j/N

(j−1)/N

1

1− u

[
1− γ̂

TQ(Qj)

]
du+

∫ α

(J−1)/N

1

1− u

[
1− γ̂

TQ(QJ)

]
du

=
J−1∑
j=1

[
1− γ̂

TQ(Qj)

]
log

(
N − j + 1

N − j

)
+

[
1− γ̂

TQ(QJ)

]
log

(
N − J + 1

N(1− α)

)
(14)
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for (J − 1)/N ≤ α ≤ J/N , where J = 1, 2, . . . , N . We remark that θ̂(α) is continuous and

increasing in α ∈ [0, (N − 1)/N ] since TQ[Q̂(u)] < TQ[Qmax] = γ̂ by concavity of T (·) so

that the integrand in (11) is strictly positive for u ∈ [0, (N − 1)/N ].12 Thus, the inverse

F̂ (·) = θ̂−1(·) can be readily computed from (14) for any θ ∈ [1, θ̂[(N − 1)/N ]).

Asymptotic Properties

We make the following assumption on the data generating process.

Assumption C1: The unobserved types θi, i = 1, . . . , N are i.i.d. distributed as F ∗(·).

Since Qi = Q(θi), for i = . . . , N , the observed quantities are also i.i.d.

The next lemma establishes the strong consistency of κ̂ and γ̂ with rates of convergence

faster than
√
N . It also provides their asymptotic distributions. These results follow from

the delta method combined with known properties of extreme order statistics from e.g.

Galambos (1978). Let E(λ) denote the exponential distribution with parameter λ.

Lemma 2: Under A1, B1 and C1, as N →∞, we have

(i) γ̂ = γ +Oa.s.[(log logN)/N ] and κ̂ = κ+Oa.s.[(log logN)/N ],

(ii) N(γ̂−γ)
D−→ E(λ) where λ = −gQ∗(Q)/TQQ(Q) > 0 and N(κ̂−κ)

D−→ E(λ1) +E(λ2)

where E(λ1) and E(λ2) are mutually independent with

λ1 = −
gQ∗(Q)T 2

Q(Q)

TQ(Q)T (Q)TQQ(Q)
> 0, λ2 = −

gQ∗(Q)TQ(Q)

TQQ(Q)(T (Q)−QTQ(Q))
> 0.

We remark that λ2 = λγ/κ. We note that the sum of two independent exponentially dis-

tributed variables has marginal density f(t) = [λ1λ2/(λ1 − λ2)][exp(−λ2t) − exp(−λ1t)].
Following Campo, Guerre, Perrigne and Vuong (2011), we can estimate consistently gQ∗(Q)

and gQ∗(Q) by one-sided kernel density estimators ĝQ∗(·) evaluated at Qmax and Qmin, re-

spectively. As we can replace Q and Q by their estimates Qmin and Qmax, we can use the

asymptotic distributions in (ii) to construct confidence intervals for γ and κ.

In view of (12) and (13), we need to study the properties of θ̂(·) and θ̂α(·). Following

the empirical process literature introduced in econometrics by Andrews (1994), we view

θ̂(·) and θ̂α(·) as random elements in the space `∞[0, α†] of bounded functions on [0, α†]

12For (N − 1)/N < α ≤ 1, the last term of (14) is equal to zero since TQ(QN ) = TQ(Qmax) = γ̂. Thus,

θ̂(α) = θ̂[(N − 1)/N ] for α ∈ [(N − 1)/N, 1].
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for any α† ∈ (0, 1).13 As usual, we equip `∞[0, α†] with its uniform metric ‖ψ1 − ψ2‖† =

supα∈[0,α†] |ψ1(α) − ψ2(α)|. Weak convergence on the space `∞[0, α†] is denoted by “⇒.”14

The next lemma establishes the asymptotic properties of θ̂(·) and θ̂α(·).

Lemma 3: Under A1, B1, B2 and C1, for any α† ∈ (0, 1), as N →∞, we have

(i) ‖θ̂(·)− θ(·)‖†
a.s.−→ 0 and ‖θ̂α(·)− θα(·)‖†

a.s.−→ 0,

(ii) as random functions in `∞[0, α†],

√
N [θ̂(·)− θ(·)]⇒ γθ(·)Z(·),
√
N [θ̂α(·)− θα(·)]⇒ γθα(·)

[
Z(·)− TQQ[Q(·)]

TQ[Q(·)](TQ[Q(·)]− γ)

BGQ∗ [Q(·)]
gQ∗[Q(·)]

]
,

where Z(·) is a tight Gaussian process defined on [0, α†] by

Z(·) = −
∫ Q(·)

Q

TQQ(q)

T 2
Q(q)

BGQ∗(q)

1−GQ∗(q)
dq, (15)

with BGQ∗(·) denoting the GQ∗-Brownian bridge on [Q,Q].15

In particular,
√
N [θ̂(0) − θ(0)]

D−→ 0 and
√
N [θ̂α(0) − θα(0)]

D−→ 0 because Z(0) = 0 and

BGQ∗ [Q(0)] = 0. This is expected since θ̂(0) − θ(0) = 1 − 1 = 0 while θ̂α(0) − θα(0) =

{[TQ(Qmin)−γ̂]/TQ(Qmin)} − {[TQ(Q)−γ]/TQ(Q)}, which is N -consistent by Lemma 2-(ii).

Lemma 3 provides the uniform consistency and asymptotic distributions of the estimators

(12) of f ∗(·) and U0Q(·) at their quantiles θ(·) and Q(·), respectively. Namely, using f ∗[θ(·)] =

1/θα(·) and U0Q[Q(·)] = TQ[Q(·)]/θ(·) we obtain

√
N [ ̂f ∗◦θ(·)− f ∗◦θ(·)]⇒ −γf ∗[θ(·)] [Z(·)− TQQ[Q(·)]

TQ[Q(·)](TQ[Q(·)]− γ)

BGQ∗ [Q(·)]
gQ∗[Q(·)]

]
(16)

√
N [ ̂U0Q◦Q(·)− U0Q◦Q(·)]⇒ −U0Q[Q(·)]

[
γZ(·) +

TQQ[Q(·)]
TQ[Q(·)]

BGQ∗ [Q(·)]
gQ∗[Q(·)]

]
(17)

13As noted in footnote 12, the ratio [TQ(Q̂(α))− γ̂]/(1−α) is zero for α ∈ [(N − 1)/N, 1). In contrast, (8)

and Proposition 2 show that, as α→ 1, [TQ(Q(α))− γ]/(1− α) converges to γ/[θf∗(θ)], which is finite and

positive. Thus we could improve our estimator around the upper boundary by imposing this restriction on

Q̂(·). To keep it simple, we choose instead to derive the asymptotic properties on [0, α†), where α† ∈ (0, 1).
14Measurability issues are ignored hereafter. This can be addressed by considering either the projection

σ-field on `∞[0, α†] as in Pollard (1984) or outer probabilities as in van der Vaart (1998). Alternatively, we

may use another metric such as the Skorohod metric as in Billingsley (1968).
15The GQ∗-Brownian bridge on [Q,Q] is the limit of the empirical process (1/

√
N)
∑
i{1I(Qi ≤ ·)−GQ∗(·)}

indexed by [Q,Q]. See (say) van der Vaart (1998, p.266). It is a tight Gaussian process with mean 0 and

covariance GQ∗(Q)[1−GQ∗(Q′)], where Q ≤ Q ≤ Q′ ≤ Q.
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on [0, α†] using Property (P4) in Appendix B. In particular, both estimators are
√
N -

consistent. The same remark as above applies to ̂f ∗◦θ(0) = 1/θ̂α(0) and ̂U0Q◦Q(0) =

TQ(Qmin), which converge to f ∗(θ∗) = 1/θα(0) and U0Q(Q) = TQ(Q) at rate N , respectively.

The next proposition gives the asymptotic properties of f̂ ∗(·) and Û0Q(·) on [θ∗, θ†] and

[Q,Q†], respectively, where θ† ∈ (θ∗, θ) and Q† ∈ (Q,Q). For instance, θ† = θ(α†) and

Q† = Q(α†) with 0 < α† < 1. Let `∞[θ∗, θ†] and `∞[Q,Q†] denote the space of bounded

functions on [θ∗, θ†] and [Q,Q†] equipped with their uniform metric ‖ · ‖†, respectively.

Proposition 3: Under A1, B1, B2 and C1, for any θ† ∈ (θ∗, θ) and Q† ∈ (Q,Q), as

N →∞, we have

(i) ‖f̂ ∗(·)− f ∗(·)‖†
a.s.−→ 0 and ‖Û0Q(·)− U0Q(·)‖†

a.s.−→ 0,

(ii) as random functions in `∞[θ∗, θ†] and `∞[Q,Q†],

√
N [f̂ ∗(θ)− f ∗(θ)]⇒ −γ[f ∗(θ) + θf ∗θ (θ)]Z[F ∗(θ)] +

Hθ(θ)

H(θ)
BF ∗(θ)

√
N [Û0Q(Q)− U0Q(Q)]⇒ −U0Q(Q)

[
γZ[GQ∗(Q)] +

TQ(Q)− γ
TQ(Q)

BGQ∗(Q)

1−GQ∗(Q)

]
,

where H(θ) = [1− F ∗(θ)]/[θf ∗(θ)], BF ∗(θ) = BGQ∗ [Q(θ)] and Z(·) is defined in (15).

The first part establishes the uniform almost sure convergence of f̂ ∗(·) and Û0Q(·) on any

subsets [θ∗, θ†] ⊂ [θ∗, θ) and [Q,Q†] ⊂ [Q,Q), respectively. The second part gives the asymp-

totic distributions of these estimators. It is worthnoting that their rates of convergence are

the parametric rate
√
N .16 To our knowledge, this contrasts with the previous literature on

estimation of incomplete information models such as auctions in which the optimal conver-

gence rates for the model primitives are slower. See e.g. Guerre, Perrigne and Vuong (2000)

for the bidders’ private value density. Achieving the parametric rate is useful in practice as it

allows to analyze medium size data sets while avoiding the curse of dimensionality typically

associated with nonparametric estimators.

We remark that Z[GQ∗(Q)] is given by the right-hand side of (15) with Q(·) replaced by

Q since Q[GQ∗(Q)] = Q, while Z[F ∗(θ)] is given by

Z[F ∗(θ)] = −1

γ

∫ θ

θ∗
Hθ(x)

BF ∗(x)

1− F ∗(x)
dx. (18)

16As for Lemma 3, at the lower boundary, f̂∗(θ∗) and Û0Q(Q) converge at a faster rate, namely at rate

N , to their limits f∗(θ∗) and U0Q(Q) = TQ(Q), respectively.
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The proof of the latter is given in Appendix B. Using Proposition 3-(ii), we can derive the

asymptotic distribution of Û0(Q) = T (Qmin)+
∫Q
Qmin

Û0Q(q)dq. Because Qmin is N -consistent,

we obtain

√
N [Û0(Q)− U0(Q)]⇒ −

∫ Q

Q
U0Q(q)

[
γZ[GQ∗(q)] +

TQ(q)− γ
TQ(q)

BGQ∗(q)

1−GQ∗(q)

]
dq

uniformly in Q ∈ [Q,Q†].

The previous limits are tight Gaussian processes with zero means and finite covariance

functions. In practice, we can use such asymptotic distributions to conduct large sample hy-

potheses tests and construct pointwise or uniform confidence intervals provided the asymp-

totic variances can be estimated consistently and uniformly. Since we are mainly interested

in the two primitives f ∗(·) and U0Q(·), we focus on them. Specifically, using Proposition

3-(ii), we have

√
N [f̂ ∗(θ)− f ∗(θ)] D−→ N (0, Vf∗(θ)) ,

√
N [Û0Q(Q)− U0Q(Q)]

D−→ N
(
0, VU0Q

(Q)
)

for θ ∈ [θ∗, θ†] and Q ∈ [Q,Q†], respectively. Appendix B provides detailed computations of

Vf∗(θ) and VU0Q
(Q). It also discusses their consistent estimation.

Up to now, we have considered the situation where the analyst knows the payment sched-

ule and has data on purchased quantities. Equivalently, we can consider the case where

the analyst knows the payment schedule and has data on payments. In particular, our es-

timators can be written in terms of the payments {ti, i = 1, . . . , N}. Since Q = T−1(t) and

TQ(Q) = 1/T−1t (t), where T−1(·) is strictly increasing, it is easy to see that (10)–(13) become

γ̂ =
1

T−1t (tmax)
, κ̂ = γ̂

(
tminT

−1
t (tmin)−T−1(tmin)

)
(19)

θ̂(α) = exp
{∫ α

0

1

1− u
[
1− γ̂T−1t (t̂(u))

]}
du, θ̂α(α) =

θ̂(α)

1− α
[
1− γ̂T−1t (t̂(α))

]
(20)

f̂ ∗◦θ(α) =
1

θ̂α(α)
, ̂U0Q◦Q(α) =

1

θ̂(α)T−1t [t̂(α)]
(21)

f̂ ∗(θ) = ̂f ∗◦θ[θ̂−1(θ)], Û0Q(Q) = ̂U0Q◦Q[Ĝt∗(T (·))], (22)

where t̂(·) = Ĝt∗−1(·) is the standard estimator of the quantile function t(·) of Gt∗(·) with

t̂(0) ≡ t, and Ĝt∗(·) is the empirical cdf of payments. Lemmas 2 and 3 as well as Proposition

3 still hold, while the asymptotic variances can be writen directly in terms of Gt∗(·). For

instance, because t = T (Q), the Gaussian process Z(·) on [0, α†] can be written as

Z(·) =
∫ t(·)

t
T−1tt (t)

BGt∗(t)

1−Gt∗(t)
dt (23)
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from the change-of-variable t = T (q) in (15) so that TQ(q) = 1/T−1t (t), TQQ(q) = −T−1tt (t)/

T−1t (t)3, and GQ∗(q) = Gt∗(t).

4 Unobserved Heterogeneity

In this section, we consider the case when the analyst does not know the payment schedule

T (·). Instead, he/she observes the pairs of payments and quantities (ti, qi), i = 1, . . . , N .

The nonlinear pricing model of Section 2 implies that the observed payments and quantities

lie on the curve t = T (q) as the payment ti and quantity qi depend on the consumer type or

unobserved heterogeneity θi, which is the only unobserved random term in the econometric

model of Section 3. In practice, the observed prices and quantities may not lie on a curve

thereby calling for an additional source of randomness. Several reasons can be invoked to

rationalize this addition. For instance, the analyst may not observe perfectly the payment

and/or consumption. In addition, the product may be horizontally and/or vertically differ-

entiated in more than a single dimension. See Luo, Perrigne and Vuong (2012, 2013) when

the attributes are observed. This second random term is denoted ε.

Discussion

We discuss three options for introducing ε in the econometric model. A first option is

to consider a measurement error on the payment leading to ti = T (Qi) + εi with qi = Qi.

In Perrigne and Vuong (2011), εi is interpreted as a deviation from optimal payments in a

procurement model where εi could incorporate corruption, side payments or political capture.

With the normalization E [εi|Qi] = 0, the tariff function T (·) is nonparametrically identified.

Alternatively, ε can be viewed as representing product unobserved heterogeneity. In the

empirical application of Section 5, data from a cellular phone company include the quantity

qi of phone calls measured in minutes. As a matter of fact, the bill contains additional

services such as roaming, voice mail services, phone rings, etc. More generally, data may

not always contain detailed information on all the components or product attributes that

make up the payment. We then assume that the analyst observes the quantity qi while

the nonlinear pricing mechanism is based on Qi which is a function of qi and εi, i.e. Qi =

m(qi, εi). Hereafter, Qi is called the contracted quantity. The tariff equation then becomes

ti = T (Qi) = T [m(qi, εi)], where T (·) is strictly increasing and concave. This equation can

also been written using the inverse of the tariff leading to T−1(ti) = m(qi, εi). This general
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model is not identified. We discuss below some special cases.

In the second option, we view εi as a measurement error on the contracted quantity Qi,

i.e. qi = Qiεi with εi independent of Qi. Thus, m(qi, εi) = qi/εi. The model of Section 2

remains with Qi = qi/εi. Intuitively, product unobserved heterogeneity acts as a quantity

multiplier. More precisely, by taking the logarithm, we have log qi = logQi + log εi. The

independence of Qi and εi is equivalent to assuming θi independent of εi since Qi = Q(θi)

from the model of Section 2. The equation identifying the tariff is log qi = log T−1(ti)+log εi,

where ti = T (Qi) is independent of εi. The tariff is then identified under the normalization

E[log ε] = 0.

A third option assumes independence of the two components of Qi, namely qi and

εi leading to T−1(ti) = m̃(qi)εi, where m(qi, εi) ≡ m̃(qi)εi since the general specification

m(qi, εi) is not identified. Taking the logarithm gives the transformation model log T−1(ti) =

log m̃(qi)+log εi. See Carroll and Ruppert (1988) for parametric transformation models. Un-

der some location and scale normalizations, Horowitz (1996) establishes the nonparametric

identification of T (·) with m̃(·) parametric. Relying on this result, Ekeland, Heckman and

Neishem (2004) show the nonparametric identification of T (·) and m̃(·) while Chiappori,

Komunjer and Kristensen (2013) obtain a similar result under a weaker independence as-

sumption. The model of Section 2 remains with Qi = m̃(qi)εi. Because Qi = Q(θi), the

third option allows for dependence between θi and εi, while the first two options imply at

the minimum that θi and εi are uncorrelated.

Regarding estimation, we can use any nonparametric regression estimator for T (·) in the

first option. In particular, we can choose sieve estimators to impose shape restrictions such as

monotonicity and concavity of the tariff. As is well known, the resulting estimator converges

at a rate slower than
√
N . This also applies to the estimation of T−1(·) in the second option.

In contrast, the third option has the advantage to lead to a
√
N -consistent estimator of

T−1(·) and hence of T (·) as shown by Chiappori, Komunjer and Kristensen (2013), while

the estimator of m̃(·) inherits the usual nonparametric rate. Following Horowitz (1996),

estimation of T−1(·) involves integrating kernel estimators. Alternatively, estimation of

T−1(·) can be based on Chen (2002) rank estimator.

In Section 3, however, estimation of the model primitives involves the derivative TQ(·)
of the tariff. The

√
N -consistency property is lost with any of the above nonparametric
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estimators since TQ(·) is estimated at a slower rate.17 As we want to maintain the para-

metric rate for estimating the model primitives, we consider a parameterization of the tariff

function, more precisely of its inverse T−1(·) = T−1(·; β) for β ∈ IRdimβ. This leads to the

semiparametric transformation model studied by Linton, Sperlich and Van Keilegom (2008),

i.e. log T−1(ti; β) = log m̃(qi)+log εi. This specification has at least three appealing features.

First, it provides a
√
N -consistent estimator of the derivative TQ(·) and hence

√
N -consistent

estimators of the model primitives. In addition, this allows us to assess the effect of esti-

mating T (·) through β on the asymptotic distributions of the latter. Second, we can readily

impose monotonicity and convexity on T−1(·), while maintaining flexibility on how the ob-

served quantity qi affects the contracted quantity Qi as Qi = m̃(qi)εi. Third, we can test the

chosen parametric specification by comparing the nonparametric and parametric estimates

of T−1(·). Though we do not pursue this issue here, an appealing feature is that a Cramer-

von Mises-type test will be
√
N -consistent. In view of this discussion, hereafter we retain

the semiparametric transformation model to introduce product unobserved heterogeneity.

Estimation

Let F ε(·) be the distribution of log ε with support [log ε, log ε] ⊆ IR and density f ε(·) > 0.

Our model for product unobserved heterogeneity is

log T−1(t; β) = log m̃(q) + log ε, (24)

where T−1(·) is strictly increasing in t, β ∈ IRdimβ, and ε is independent of q with E(log ε) =

0.18 Identification of [β, m̃(·), F ε(·)] is ensured by the nonparametric identification of [T−1(·),
m̃(·), F ε(·)]. Hereafter, we assume that the observations (ti, qi), i = 1, . . . , N are i.i.d. Thus,

(qi, εi), i = 1, . . . , N are also i.i.d. thereby implying that Qi = m̃(qi)εi, i = 1, . . . , N are i.i.d.

which is consistent with C1.19

17In addition to loosing
√
N -consistency, we foresee additional problems in the implementation of Horowitz

(1996) and Chen (2002) estimators. Identification of T−1(·) requires a location normalization. In our case, a

natural normalization is ε = 1. With the transformation model, such a normalization leads to estimate the

lower envelope of the scatter plot of the observations (ti, qi). As such, the estimates of the tariff function

would be sensitive to outliers.
18Possible extensions include heteroscedasticity in which the variance of ε depends on q . See e.g. Zhou,

Lin and Johnson (2008) and Khan, Shin and Tamer (2011) in a semiparametric settting and Chiappori,

Komunjer and Kristensen (2013) in a nonparametric one.
19The DGP may be subject to some restrictions as the distributions of the unobserved ε and the observed

quantities q as well as the function m̃(·) need to lead to a distribution GQ∗(·) of contracted quantity Q that is
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Let β̂ be any
√
N -asymptotically normal estimator of β, i.e.

√
N(β̂−β)

D−→ N ∼ N (0,Ω).

The empirical study of Section 5 uses Linton, Sperlich and Van Keilegom (2008) mini-

mum distance estimator from independence. Once T−1(·) has been estimated by T̂−1(·) ≡
T−1(·; β̂), we can use (19)–(21), which use directly the payments {ti; i = 1, . . . , N} instead

of using Q̂i ≡ T̂−1(ti) in (10)–(13). This minimizes computation errors. Let γ̃, κ̃, θ̃(·), θ̃α(·),
f̃ ∗◦θ(·), ˜U0Q◦Q(·), f̃ ∗(·) and Ũ0Q(·) denote our estimators. We have

γ̃ =
1

T̂−1t (tmax)
, κ̃ = γ̃

(
tminT̂

−1
t (tmin)−T̂−1(tmin)

)
(25)

θ̃(α) = exp
{∫ α

0

1

1− u
[
1− γ̃T̂−1t (t̂(u))

]}
du, θ̃α(α) =

θ̃(α)

1− α
[
1− γ̂T̂−1t (t̂(α))

]
(26)

f̃ ∗◦θ(α) =
1

θ̃α(α)
, ˜U0Q◦Q(α) =

1

θ̃(α)T̂−1t [t̂(α)]
(27)

f̃ ∗(θ) = ˜f ∗◦θ[θ̃−1(θ)], Ũ0Q(Q) = ˜U0Q◦Q[Ĝt∗(T̂ (·))], (28)

where T̂−1t (·) ≡ T−1t (·; β̂), Ĝt∗(·) is the empirical cdf of payments, and t̂(·) is the usual

quantile estimator for payments with t̂(0) ≡ t. It is worthnoting that our estimators are

straightforward to compute given β̂. In particular, letting t1 ≡ tmin < t2 < . . . < tN ≡ tmax

be the payment ordered statistics, we have

log θ̃(α) =
J−1∑
j=1

[
1− γ̂T̂−1t (tj)

]
log

(
N − j + 1

N − j

)
+
[
1− γ̂T̂−1t (tJ)

]
log

(
N − J + 1

N(1− α)

)

for (J−1)/N ≤ α ≤ J/N , where J = 1, 2, . . . , N . Moreover, θ̃(·) is continuous and increasing

in α ∈ [0, (N − 1)/N ] since T̂−1t [t(u)] < T̂−1t [tmax] = γ̂ by convexity of T̂−1(·). On the other

hand, θ̃(α) = θ̃[(N − 1)/N ] for α ∈ [(N − 1)/N, 1].

Asymptotic Properties

We note that gT∗(·) > 0 on its support [t, t] with 0 < t < t < ∞ since t = T [Q(θ)],

TQ(·) > 0 on [Q,Q], Qθ(·) > 0 on [θ∗, θ], and f ∗(·) > 0 on its support [θ∗, θ]. Thus, because

T−1(·; β̂) and T−1t (·; β̂) converge uniformly on [t, t] to T−1(·) = T−1(·; β) and T−1t (·) =

T−1t (·; β), respectively, consistency or uniform consistency of our estimators (25)–(28) is

easily established. Hereafter, we focus on their asymptotic distributions. In particular,

rationalized by the economic model [F (·), U0(·), γ, κ]. Specifically, given a type distribution F (·), we obtain

GQ∗(·) through the equilibrium mapping Qi = Q(θi) for θi ≥ θ∗. Thus, in view of the independence of q

and ε, the distribution of log m̃(qi) is obtained by Fourier-inverting the ratio of the characteristic functions

of logQ and log ε, provided such a ratio is a proper characteristic function.
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our derivation underscores the effects of estimating T (·), more precisely of estimating the

parameters β of T−1(·; β).

Following Section 3, we begin with the estimators of the cost parameters γ and κ. The

next lemma is useful for deriving their asymptotic distributions.

Lemma 4: Under A1, B1 and C1, as N →∞ we have

(i)
√
N(γ̃ − γ) = −γ2T−1tβ (t; β)

√
N(β̂ − β) + oP (1),

(ii)
√
N(κ̃− κ) = γ

(
tT−1tβ (t; β)− T−1β (t; β)− κT−1tβ (t; β)

)√
N(β̂ − β) + oP (1).

Since
√
N(β̂ − β)

D−→ N ∼ N (0,Ω), Lemma 4 implies that γ̃ and κ̃ are asymptotically

normal. In contrast to Lemma 2, their convergence rate is now
√
N instead of N . This

is because β̂ converges at a slower rate than the infeasible estimators γ̂ and κ̂. As usual,

consistent estimation of the asymptotic variances of
√
N(γ̃−γ) and

√
N(κ̃−κ) are obtained

by replacing γ, t, t, and β by their consistent estimators γ̃, tmin, tmax, and β̂ upon consistent

estimation of the asymptotic variance Ω of
√
N(β̂ − β).

Next, we turn to f̃ ∗(·) and Ũ0Q(·). Following Lemma 3, we first study the asymptotic

properties of the estimators of the quantile θ(·) and its derivative θα(·).

Lemma 5: Under A1, B1, B2 and C1, for any α† ∈ (0, 1), as N →∞ we have

√
N [θ̃(·)− θ(·)] =

√
N [θ̂(·)− θ(·)] + γθ(·)I(·)

√
N(β̂ − β) + oP (1),

√
N [θ̃α(·)− θα(·)] =

√
N [θ̂α(·)− θα(·)]

+γθα(·)
(
I(·)− 1

H[θ(·)]
a(·)

)√
N(β̂−β)+oP (1),

uniformly on [0, α†], where

I(·) = −
∫ ·
0

1

1− u
a(u)du, a(·) = T−1tβ [t(·); β]− γT−1t [t(·); β]T−1tβ (t; β) (29)

are nonstochastic (1× dim β) vector functions both defined on [0, α†].

Lemma 5 shows the effects of estimating β relative to the infeasible estimators θ̂(·) and θ̂α(·).
We are now in a position to derive the asymptotic distributions of our estimators f̃ ∗(·)

and Ũ0Q(·) on [θ∗, θ†] and [Q,Q†], where θ† ∈ (θ∗, θ) and Q† ∈ (Q,Q).

Proposition 4: Under A1, B1, B2 and C1, for any θ† ∈ (θ∗, θ) and Q† ∈ (Q,Q), as N →∞
we have

√
N [f̃ ∗(θ)− f ∗(θ)] ⇒ −γ[f ∗(θ)+θf ∗θ (θ)]Z[F ∗(θ)] +

Hθ(θ)

H(θ)
BF ∗(θ)− γb(θ)N ,
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√
N [Ũ0Q(Q)− U0Q(Q)] ⇒ −U0Q(Q)

[
γZ[GQ∗(Q)]+

TQ(Q; β)− γ
TQ(Q; β)

BGQ∗(Q)

1−GQ∗(Q)
+c(Q)N

]
,

as random functions in `∞[θ∗, θ†] and `∞[Q,Q†], respectively, where

b(θ) = [f ∗(θ)+θf ∗θ (θ)]I[F ∗(θ)]− f
∗(θ)

H(θ)
a[F ∗(θ)],

c(Q) =

[
γI[GQ∗(Q)] +

T−1tβ (T ; β)

T−1t (T ; β)
+
U0QQ(Q)

U0Q(Q)
T−1β (T ; β)

]

are nonstochastic (1× dim β) vectors and T = T (Q; β).

For each statement, the first two terms are identical to the limiting process of the corre-

sponding infeasible estimator in Proposition 3, while the third term arises from estimating

β as
√
N(β̂ − β)

D−→ N ∼ N (0,Ω).

The limiting processes in Proposition 4 are tight Gaussian processes with zero means and

finite covariance functions. A difficulty in determining the latter is that the processes Z(·)
and B(·) are not independent from the random vector N as Lemma C.1 shows. This is

because Z[GQ∗(·)] and BGQ∗(·) arises from {Qi = T−1(ti); i = 1, . . . , N}, while N arises from

β̂, which depends on {(ti, qi); i = 1, . . . , N}. Using Proposition 4, we obtain

√
N [f̃ ∗(θ)− f ∗(θ)] D−→ N

(
0, ω2

f∗(θ)
)
,
√
N [Ũ0Q(Q)− U0Q(Q)]

D−→ N
(
0, ω2

U0Q
(Q)

)
for θ ∈ [θ∗, θ†] and Q ∈ [Q,Q†], respectively. Given a linear representation of

√
N(β̂ − β),

Appendix C provides detailed computations of ω2
f∗(θ) and ω2

U0Q
(Q). It also discusses their

consistent estimation.

5 Application to Mobile Service

This section applies the methods of Section 4 to mobile service data. Because we do not

have information on all the components that make up the payment, we consider product

unobserved heterogeneity. Some counterfactuals assess the benefits of nonlinear pricing over

alternative pricing strategies.

Data

We obtained data from a major asian mobile phone company. A random sample of 4,000

consumers covers the billing period of May 2009 and consists of subscribers who were under
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the May 2009 tariff.20 For each consumer, we observe the amount paid and the total number

of minutes consumed. The first two lines of Table 1 provide summary statistics on the

number of minutes and the payment expressed in U.S. dollars. Figure 1 displays the scatter

plot of observations. A striking feature is that there are as many pairs (ti, qi) as observations.

The data also show a large variability in prices at a given quantity and in quantities at a

given price. This arises from additional features that subscribers consume but that we do

not observe. This includes roaming, phone rings, call forwarding, directory assistance, voice

mail, etc. These extra features are captured in the product unobserved heterogeneity term

ε. Regressing payments on quantities and their squares gives an R2 of about 60% suggesting

again an important unobserved heterogeneity while the mean tariff is strictly concave.

Implementation

We use the transformation model (24) with a flexible parametric specification for T−1(·).
Specifically, we use the spline-based functional form

T−1(t; β) = β0 + β1t+
K∑
k=1

δkψk(t) (30)

where β = (β0, β1, δ1, . . . , δK) with dim β = K + 2 and K is the number of interior knots.

Following Dole (1999) the ψk(·)s are the basis functions

ψk(t) =



0 if t ∈ [−∞, τk−1]

(t− τk−1)3/[6(τk − τk−1)] if t ∈ [τk−1, τk]

((t− τk+1)
3/[6(τk − τk+1)]) + a1t+ a0 if t ∈ [τk, τk+1]

a1t+ a0 if t ∈ [τk+1,+∞]

where a1 = (τk+1 − τk−1)/2 and a0 = [(τk − τk−1)2 − (τk − τk+1)
2 − 3τk(τk+1 − τk−1)]/6. In

practice, we partition the range [t, t] into equally spaced K+1 = 5 bins of the form [τk−1, τk)

for k = 1, . . . , 5 with τ0 = tmin and τ5 = tmax. We estimate the inverse tariff imposing

shape constraints, i.e. the tariff is increasing and concave. With the Dole basis functions,

monotonicity and convexity of T−1(·) is achieved with β1 > 0, δk > 0, k = 1, . . . , 4.

As is well known, identification of the transformation model (24) is achieved under a

location and scale normalization. Several options are possible. We choose a normalization

20The company changes their tariff every year. Consumers can switch to the new tariff upon request at

no extra cost. In addition, consumers pay for what they consume avoiding the typical problem associated

with usage uncertainty. See Miravete (2002) and Grubb and Osborne (2014).
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at the lowest payment tmin = 13.97. Specifically, given (30), we remark

T−1(tmin) = β0 + β1tmin, T−1t (tmin) = β1. (31)

We propose to estimate T−1(tmin) and T−1t (tmin) by a second degree local polynomial regres-

sion of q on t using a Gaussian kernel and a standard bandwidth. We obtain T̂−1(tmin) =

195.2 and T̂−1t (tmin) = 46.11 thereby providing β̂0 = −448.96 and β̂1 = 46.11 by solving (31).

Hereafter, β = (β̂0, β̂1, δ1, δ2, δ3, δ4). To estimate (δ1, δ2, δ3, δ4), we use Linton, Sper-

lich and Van Keilegom (2008) minimum distance estimator from independence. For any

fixed β, let log ε̂i(β) be the ith residual of a nonparametric regression of log T−1(t; β)

on q, i.e. log ε̂i(β) = log T−1(ti; β) − log ˆ̃m(qi; β), where log ˆ̃m(·; β) is a kernel estima-

tor of the regression E[log T−1(t; β)|q = ·]. For this regression, we use a triweight kernel

K(u) = (35/32)(1− u2)31I(|u| ≤ 1) and a standard bandwidth of the form h = 1.06σ̂qN
−1/5,

where σ̂q is the empirical standard deviation of the minute consumptions. For any fixed β,

consider the following empirical distribution functions

Ĝq(q) =
1

N

N∑
i=1

1I(qi ≤ q), F̂ ε(β)(e) =
1

N

N∑
i=1

1I(ε̂i(β) ≤ e),

F̂ q,ε(β)(q, e) =
1

N

N∑
i=1

1I(qi ≤ q)1I(ε̂i(β) ≤ e).

The estimator β̂ is the minimizer of the criterion function

QN(β) =
1

N

N∑
i=1

[
F̂ q,ε(β)(qi, ε̂i(β))− Ĝq(qi)F̂

ε(β)(ε̂i(β))
]2
.

Once we have the estimated β̂, an estimate of m̃(·) is obtained by a kernel regression of

log T−1(ti; β̂) on qi giving log ˆ̃m(·) = Ê[log T−1(t; β̂)|q = ·]. The density of log ε is then

estimated by a kernel density estimator from the estimated residuals log ε̂i(β̂) using the

above kernel and bandwidth based on σ̂ε̂.

Estimation Results

The estimated tariff as a function of Q = ˆ̃m(q)ε̂ is displayed in Figure 2. Though not

shown, the estimated m̃(·) function is increasing in q and slightly convex. This agrees with

the economic intuition that the unobserved contracted quantity Q is increasing with the

consumption q. The tariff shows an important curvature as suggested by the preliminary

data analysis. Figure 3 displays a skewed estimated density for ε. Most of its values range
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in the [0, 2] interval. From Table 1, the variability in unobserved heterogeneity is more

important than in consumption of minutes as measured by their respective coefficients of

variation, 0.81 and 0.61.

With the estimated tariff, we proceed to the estimation of the cost parameters using

(25). These require estimates of Q and Q. We use the minimum and maximum estimators,

respectively, i.e. Qmin = T̂−1(tmin) = 195.2 (by the location normalization) and Qmax =

maxi Q̂i = 9, 171.03 from Table 1. We obtain γ̂ = 0.0065. This leads to a variable cost

of 0.0065 × 1, 087 = 7.07, which can be compared to a payment of 30.37 for the median

consumer. Moreover, the ratio of the variable cost over the payment varies and tends to

increase for large consumers. The estimated fixed cost is κ̂ = 2.92. This means that the

fixed cost to serve the median consumer is roughly 9.6% of his bill.

Implementing the quantile estimator of Section 4 provides the estimated base utility and

type density. Figure 4 displays θ̂(α), which is strictly increasing. Figure 5 displays Û0Q(·),
which satisfies A1-(i), i.e. the estimated base utility is concave. Figure 6 displays the

estimated truncated type density f̂ ∗(·). We remark that the figure displays a truncation at

one since we normalize θ∗ at one and we cannot identify the type density below θ∗. The shape

suggests an exponential distribution with a thin tail though the variance is much smaller

than the square of the mean. The estimated density verifies A1-(ii) as shown in Figure 7

which displays the estimated θ − [1− F̂ (θ)]/f̂(θ), which is strictly increasing. Lastly, Table

1 provides summary statistics on the estimated type and the informational rents left to

consumers. Using (1), the individual informational rent is estimated by θ̂iÛ0(Q̂i) − T̂ (Q̂i),

where Û0(·) = T̂ (Qmin) +
∫ ·
Qmin

Û0Q(q)dq and θ̂i = θ̂(α̂i) with α̂i being the quantile of the

payment ti. The rent ratio (rent divided by payment) is on average 47% with an important

variability following the important heterogeneity of consumers. Because of skewness, it is

more informative to report its median, which is 41%.

Counterfactuals

We simulate the outcomes of three alternative pricing strategies. For each pricing strategy,

we assume that the company can choose four price parameters. We perform a grid search

for their values that maximize the firm’s profit. We then measure the loss in profit as well

as the potential gain/loss for consumers. Since we cannot identify the type distribution

and the utility function on their full supports, a natural question is how this influences

the simulation results. Wong (2012) shows that it is generally not profitable for the firm to
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exclude more consumers when implementing alternative pricing strategies. This result relates

to the dominance of nonlinear pricing in terms of firm’s profit subject to some property of

the type density. It is worthnoting that a large class of type densities satisfies such a

property. In view of this result, the nonidentification of f(θ) for values below one does

not constitute an obstacle to perform counterfactuals. As a matter of fact, we show that

alternative pricing strategies tend to exclude more consumers. To measure the net consumer

surplus or informational rents, we assume that the utility function is linear for values below

Qmin with continuity at Qmin and U0(0) = 0.

The results of our counterfactuals are summarized in Table 2. We measure the total

informational rent or consumer surplus, the firm’s profit, the total welfare (as the sum of

the two), the total amount of contracted quantity assuming that the level of unobserved

product heterogeneity remains the same and the total payment made by consumers. The

nonlinear pricing (NLP) column reports the actual values while the other columns report

the corresponding values for the three alternative pricing strategies in proportions relative

to the NLP values. Table 3 assesses the winners and losers upon dividing the sample into

four equal subsamples ranking the consumers from the lowest to the highest type.

A first counterfactual consists in a menu of two-part tariffs of the form t = cj + pjQ,

j = 1, 2, where cj and pj are the fixed fee and the marginal price. The values maximizing

the firm’s profit are c1 = 12.51, p1 = 0.0167, c2 = 34.76 and p2 = 0.0094. The results confirm

that a simple two-part tariff does almost as well as nonlinear pricing as the firm’s profit is

smaller by less than 1% despite excluding about 5% of our sample of 4,000 consumers. As

a result, the low-type group is the most hurt by the two-part tariff because of the exclusion

of consumers though those who buy tend to consume more. Overall, this policy tends to

benefit the two medium groups as the marginal price tends to be more advantageous for

them. The high-type group is about indifferent though they tend to consume less because

they do not benefit as much from price discounts. To summarize, simple two-part tariffs can

perform efficiently at the social cost of excluding more consumers though this effect can be

reduced by increasing the number of two-part tariffs beyond two.

A second counterfactual consists in a menu of linear tariffs with minimum purchase of

the form t = pjQ for mj ≤ Q < mj+1, j = 1, 2, where mj and pj are the minimum

quantity and the marginal price, respectively. The values maximizing the firm’s profit are

m1 = 920.64, p1 = 0.0327, m2 = 3, 415.6 and p2 = 0.0166. This pricing excludes even more
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consumers, namely 20%, as the minimum price paid becomes 30.10 while the minimum

purchased quantity increases from 195 as observed in the data to 921. Not surprisingly, this

pricing strategy greatly hurts the low-type group as their surplus is only 8% of what it was

under nonlinear pricing. All the other groups are hurt as well though not as much with the

high-type group loosing the least. Overall, all the indicators of interest decrease by 4% to

12% hurting the consumers the most.

A third counterfactual consists of a menu of quantity forcing or plans with a fixed maxi-

mum number of minutes, i.e. the tariff is of the form t = Tj with Qj for j = 1, 2, where Tj

and Qj are the monthly fee and the number of minutes, respectively. The values maximizing

the firm’s profit are T1 = 20.49, Q1 = 522.34, T2 = 53.50 and Q2 = 3, 305.5. This pricing

strategy tends to correspond to what we observe in several countries though the degree of

customization remains important including in the US. Additional consumer exclusion is min-

imal (15 out of 4,000 consumers). This tariff benefits the low-type group because it offers

a larger possible consumption for a small increase in payment. The other groups lose at

different levels. It seems that the medium-high types are hurt the most as they are forced

to pay more than under nonlinear pricing. The loss in consumer surplus for the high-type

group is only 2%. These consumers would be willing to consume larger quantities. Overall,

this pricing does not provide as much profit and consumer surplus with losses of 6% and 4%,

respectively.

6 Conclusion

This paper studies the identification and estimation of the nonlinear pricing model. Identifi-

cation is achieved by exploiting the first-order conditions of both the firm and the consumer

under a parameterization of the cost function. As in the previous literature on the iden-

tification of incomplete information models, the one-to-one mapping between the unknown

consumer’s type and his observed consumption plays a crucial role. We propose a new

quantile-based nonparametric estimator for the model primitives. A striking property of our

estimator is its
√
N -consistency, a rate that has not been attained so far in the estimation of

incomplete information models. In addition, we introduce product unobserved heterogeneity

and show how our results extend to an unknown tariff. An illustration with cellular phone

data assesses the performance of alternative pricing strategies relative to nonlinear pricing.
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We find that a two-part tariff would be the least hurtful to consumers and the firm.

Our paper proposes a general methodology for second-degree and third-degree price dis-

crimination as third-degree price discrimination can be entertained by introducing some

observed consumers’ characteristics that affect the tariff. This paper represents a step to-

ward the identification and estimation of incomplete information models for bundling and

differentiated products while endogeneizing the product attributes. For instance, Luo (2012)

develops a model with nonlinear pricing and bundling and shows how our results extend to

his case. Relying on Armstrong (1996) model, Luo, Perrigne and Vuong (2012) extend our

results to a multiproduct firm or equivalently to a product with mutiple continuous at-

tributes. Luo, Perrigne and Vuong (2013) consider a general framework for differentiated

products with several endogenous continuous and discrete attributes. This paper also shows

how to exploit multimarket data to identify the cost function nonparametrically. Despite the

difficulties associated to multidimensional screening in these extensions, the basic ideas of

our results remain though some adjustments need to be made. Lastly, the model contains all

the key ingredients to analyze contract data under incomplete information such as in labor

or retailing. Thus, our methodology can be used for this purpose thereby opening several

avenues for future research.

.
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Appendix A

This appendix collects the proofs of Lemma 1 and Proposition 2 in Section 2.2.

Proof of Lemma 1: Let θ̃ = αθ, which is distributed as F̃ (·) on [θ̃, θ̃] = [αθ, αθ]. Let T̃ (·) ≡ T (·),

Q̃(·) ≡ Q(·/α), θ̃∗ = αθ∗. First we show that T̃ (·), Q̃(·) and θ̃∗ satisfy the necessary conditions

(5), (6) and (7). We then show that GQ̃∗(·) = GQ∗(·), where GQ̃∗(·) is the truncated distribution

of Q̃. Hence, the observables
[
T̃ (·), GQ̃∗(·)

]
generated by the structure S̃ are the same observables[

T (·), GQ∗(·)
]

generated by the structure S. Lastly, we show S̃ ∈ S.

To show T̃Q(Q̃(θ̃)) = θ̃Ũ0Q(Q̃(θ̃)) for all θ̃ ∈ (θ̃∗, θ̃], we rewrite this equation using the defi-

nition of T̃ (·), Ũ0(·) and Q̃(·). This gives TQ(Q(θ̃/α)) = (θ̃/α)U0Q(Q(θ̃/α)) for all θ̃ ∈ (θ̃∗, θ̃],

which is true because of (6) with θ = (θ̃/α) ∈ [θ∗, θ]. To show θ̃Ũ0Q(Q̃(θ̃)) = CQ(Q̃(θ̃)) + [(1 −

F̃ (θ̃)/f̃(θ̃)]Ũ0Q(Q̃(θ̃)) for all θ̃ ∈ (θ̃∗, θ̃], we rewrite this equation using the definition of Ũ0(·), Q̃(·)

and F̃ (·):

θ̃

α
U0Q(Q(θ̃/α)) = CQ(Q(θ̃/α)) +

1− F (θ̃/α)

f(θ̃/α)
U0Q(Q(θ̃/α))

for all θ̃ ∈ (θ̃∗, θ̃]. The above equation holds for all θ = θ̃/α ∈ (θ∗, θ] in view of (5). Regarding (7),

we follow the same steps and obtain the equivalent of (7) with θ̃∗/α for the argument of Q(·). This

equation holds for θ̃∗/α = θ∗ in view of (7).

Next, we show that the observables coincide. Since T̃ (·) = T (·), it suffices to show GQ̃∗(·) =

GQ∗(·). Namely,

GQ̃∗(y) = Pr[Q̃(θ̃) ≤ y|Q̃(θ̃) > Q̃(θ̃∗)] = Pr[θ̃ ≤ Q̃−1(y)|θ̃ > Q̃−1(Q(θ̃∗/α))]

= Pr[αθ ≤ αQ−1(y)|αθ > αQ−1(Q(θ∗))]

= Pr[θ ≤ Q−1(y)|θ > Q−1(Q(θ∗))]

= Pr[Q(θ) ≤ y|Q(θ) > Q(θ∗)] = GQ∗(y),

using the monotonicity of Q̃(·) and Q(·).

Lastly, we verify that the structure S̃ belongs to S. Assumption A1-(i,iii) is trivially satisfied.

Regarding A1-(ii), we have

θ̃ − 1− F̃ (θ̃)

f̃(θ̃)
= θ̃ − 1− F (θ̃/α)

(1/α)f(θ̃/α)
= α

[
θ̃

α
− 1− F (θ̃/α)

f(θ̃/α)

]
,

which is strictly increasing in θ̃/α and hence in θ̃. 2
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Proof of Proposition 2: In view of the discussion in the text, it suffices to establish the identi-

fication of κ. From (7), we obtain

κ = θ∗U0(Q(θ∗))− γQ(θ∗)− 1− F (θ∗)

f(θ∗)
U0(Q(θ∗))

= U0(Q)

(
θ∗ − 1− F (θ∗)

f(θ∗)

)
− γQ

= γ
U0(Q)

U0Q(Q)
− γQ = γ

(
T (Q)

TQ(Q)
−Q

)
,

where the third inequality is obtained from (5) evaluated at θ∗ and the fourth equality exploits the

boundary condition θ∗U0(Q) = T (Q) and (6) evaluated at θ∗ = 1 by B2. 2

Appendix B

This appendix collects the proofs of Lemmas 2 and 3, Proposition 3 in Section 3 as well as the

derivation and estimation of asymptotic variances.

Proof of Lemma 2: We note that gQ∗(·) is continuous and bounded away from zero on [Q,Q].

Thus, from Galambos (1978), we have (i) Qmax = Q + Oa.s.[(log logN)/N ] and Qmin = Q +

Oa.s.[(log logN)/N ], and (ii) N(Qmax − Q)
D−→ −E [gQ∗(Q)] and N(Qmin − Q)

D−→ E [gQ∗(Q)] as

N →∞. Specifically, (i) follows from Galambos (1978) Theorem 4.3.1 and Example 4.3.2 by letting

uN = Q − δ(log logN)/N for any δ > 1 so that
∑∞
N=2[1 − GQ∗(uN )] exp{−N [1 − GQ∗(uN )]} ≡∑∞

N=2 vN <∞ since vN ∼ ṽN ≡ δgQ∗(Q)[log logN ]/[N(logN)δg
Q∗(Q)] as N →∞ with

∑∞
N=2 ṽN <

∞. Thus, Pr[Q − Qmax ≥ δ(log logN)/N i.o.] = 0, i.e. Pr[0 ≤ (N/ log logN)(Q − Qmax) ≤

δ for N sufficiently large] = 1. Similarly, (ii) follows from Galambos (1978) Theorem 2.1.2 and

Section 2.3.1 with aN = Q and bN = Q−GQ∗−1(1− 1/N). Specifically, since limt→∞[1−GQ∗(Q−

1/(tx))]/[1 − GQ∗(Q − 1/t)] = 1/x for x > 0, we obtain (Qmax − Q)/bN
D−→ −E(1), i.e. (ii) as

bN ∼ 1/[gQ∗(Q)N ] as N → ∞. A similar argument applies to Q with appropriate adjustments.

Moreover, from Galambos (1978, p. 118), N(Qmax − Q) and N(Qmin − Q) are asymptotically

independent.

The lemma then follows from the standard delta method. Namely, using a Taylor expansion

and the continuous differentiability of TQ(·), we have after some algebra

γ̂ − γ = TQ(Qmax)− TQ(Q) = TQQ(Q̃)(Qmax −Q),

κ̂− κ = −TQ(Q)
T ( ˜̃Q)TQQ( ˜̃Q)

T 2( ˜̃Q)
(Qmin −Q) + TQQ(Q̃)

(
T (Q)

TQ(Q)
−Q

)
(Qmax −Q)

−TQQ( ˜̃Q)
T ( ˜̃Q)TQQ( ˜̃Q)

T 2( ˜̃Q)
(Qmax −Q)(Qmin −Q)
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where Qmax < Q̃ < Q and Q < ˜̃Q < Qmin. Statements (i) and (ii) of the lemma follow. 2

To prove Lemma 3, we first need some properties of the empirical quantile process.

Lemma B.1: Under B3, the empirical quantile process Q̂(·) = ĜQ∗−1(·) satisfies

(P1) : |Q̂(·)−Q(·)| a.s.−→ 0, (P2) :
√
N [Q̂(·)−Q(·)]⇒ − B(·)

gQ∗[Q(·)]
,

uniformly on [0, 1] as N →∞, where B is the standard Brownian bridge on [0, 1].

Proof of Lemma B.1: Under C1, the quantities Qi = Q(θi) are i.i.d. as GQ∗(·). Properties

(P1)-(P2) on (0, 1) follow from the Hadamard differentiability of the inverse map φ(·) : D[Q,Q] 7→

`∞(0, 1) at GQ∗ tangentially to C[Q,Q]. See Lemma 3.9.23-(ii) and Example 3.9.24 in van der Vaart

and Wellner (1996) as gQ∗(·) is strictly positive with compact support [Q,Q]. Because Q̂(0) = Qmin

and Q finite, defining Q(0) = Q allows us to obtain (P1) and (P2) on [0, 1] instead of (0, 1) using

Lemma 2-(i). In particular, N [Q̂(0)−Q(0)]
D−→ 0 and N [Q̂(1)−Q(1)]

D−→ 0.2

Proof of Lemma 3: From (P1)-(P2) and the continuous differentiability of TQ(·) on [Q,Q], we

have the following properties

(P3) : |TQ[Q̂(·)]− TQ[Q(·)]| a.s.−→ 0, (P4)
√
N
{
TQ[Q̂(·)]− TQ[Q(·)]

}
⇒ −TQQ[Q(·)] B(·)

gQ∗ [Q(·)]

uniformly on [0, 1] as N → ∞. Property (P3) follows from the Continuous Mapping Theorem,

while (P4) follows from the Functional Delta Method. See Theorems 18.11 and 20.8 in van der

Vaart (1998), respectively. The Hadamard derivative of TQ[·] as a map DTQ 7→ `∞[0, 1] at every

ψ(·) ∈ DTQ is TQQ[ψ(·)], where DTQ = {ψ(·) ∈ `∞[0, 1] : Q ≤ ψ(·) ≤ Q} by Lemma 3.9.25 in van

der Vaart and Wellner (1996).

From (8), (9) and (11), θ(α) > 0 and θα(α) > 0 as well as θ̂(α) > 0 and θ̂α(α) > 0 for any

α ∈ [0, α†] with α† ∈ (0, 1) since TQ(Q(·)) is decreasing and α† < (N − 1)/N for N sufficiently

large. Thus,

log
θ̂(α)

θ(α)
=

∫ α

0

1

1− u

[
γ

TQ[Q(u)]
− γ̂

TQ[Q̂(u)]

]
du

=

∫ α

0

1

1− u

[
γ(TQ[Q̂(u)]− TQ[Q(u)])

TQ[Q(u)]TQ[Q̂(u)]
− (γ̂ − γ)

1

TQ[Q̂(u)]

]
du, (B.1)

log
θ̂α(α)

θα(α)
= log

θ̂(α)

θ(α)
+ log

TQ[Q̂(α)]− γ̂
TQ[Q(α)]− γ

− log
TQ[Q̂(α)]

TQ[Q(α)]
, (B.2)

for α ∈ [0, α†]. Note also that TQ[Q(·)] ≥ γ > 0 on [0, 1] so that TQ[Q(·)] is bounded away from

zero on [0, 1].

Proof of (i): From (B.1), Lemma 2-(i) and Property (P3), we have ‖ log(θ̂/θ)‖†
a.s.−→ 0. By the

Continuous Mapping Theorem, we obtain ‖θ̂ − θ‖†
a.s.−→ 0 as ‖θ‖† < ∞. From the convergence
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of θ̂(·) as shown above, Lemma 2-(i) and Property (P3), we have ‖ log(θ̂α/θα)‖†
a.s.−→ 0. By the

Continuous Mapping Theorem, we obtain ‖θ̂α − θα‖†
a.s.−→ 0 as ‖θα‖† <∞.

Proof of (ii): Using Lemma 2-(ii) and Property (P3), it follows from (B.1)

√
N log

θ̂(α)

θ(α)
=

∫ α

0

1

1− u

[
√
N
γ(TQ[Q̂(u)]− TQ[Q(u)])

TQ[Q(u)]TQ[Q̂(u)]
− log logN√

N

N

log logN
(γ̂ − γ)

1

TQ[Q̂(u)]

]
du

=

∫ α

0

1

1− u

[
√
N
γ(TQ[Q̂(u)]− TQ[Q(u)])

TQ[Q(u)]TQ[Q̂(u)]

]
du+ oa.s.(1),

uniformly in α ∈ [0, α†]. Hence, it follows from Properties (P3)-(P4) and the Continuous Mapping

Theorem

√
N log

θ̂(·)
θ(·)
⇒
∫ ·
0

−γ
1− u

TQQ[Q(u)]

T 2
Q[Q(u)]

B(u)

gQ∗(Q(u))
du

on [0, α†]. With the change of variable u = GQ∗(q), we obtain

√
N log

θ̂(·)
θ(·)
⇒ γ

∫ Q(·)

Q

−1

1−GQ∗(q)
TQQ(q)

T 2
Q(q)

BGQ∗(q)dq ≡ γZ(·) (B.3)

on [0, α†], where BGQ∗(q) = B ◦ GQ∗(q) is the GQ∗-Brownian bridge. Thus, from the Functional

Delta Method, it follows that
√
N [θ̂(α) − θ(α)] =

√
N
{

exp[log θ̂(α)]−exp[log θ(α)]
}
⇒ γθ(·)Z(·)

since the Hadamard derivative of expψ at log θ(·) is θ(·). Moreover, the process Z(·) is Gaussian as

it is a continuous linear functional of BGQ∗(·) by Lemma 3.9.8 in van der Vaart and Wellner (1996).

It is also tight by Theorem 1.4 in Billingsley (1968) since all its sample paths are continuous, while

C[0, α†] is complete and separable with respect to the uniform norm.

Using (B.2), (B.3), Property (P4) and the Functional Delta Method, we obtain

√
N log

θ̂α(α)

θα(α)
⇒ γZ(α)− TQQ[Q(α)]

TQ[Q(α)]− γ
B(α)

gQ∗(Q(α))
+
TQQ[Q(α)]

TQ[Q(α)]

B(α)

gQ∗(Q(α))

= γZ(α)− γBGQ∗(Q(α))

gQ∗(Q(α))

TQQ[Q(α)]

TQ[Q(α)](TQ[Q(α)]− γ)

uniformly in α ∈ [0, α†], where the first equality follows from
√
N{TQ[Q̂(α)]−γ̂)−(TQ[Q(α)]−γ)} =

√
N(TQ[Q̂(α)] − TQ[Q(α)]) + oa.s.(1) by Lemma 2-(i), while the Hadamard derivative of logψ is

1/ψ. Using a similar argument as above, we obtain

√
N [θ̂α(·)− θα(·)]⇒ γθα(·)

[
Z(·)− TQQ[Q(·)]

TQ[Q(·)](TQ[Q(·)]− γ)

BGQ∗(Q(·))
gQ∗(Q(·))

]

on [0, α†]. 2

Proof of Proposition 3: We use the following properties of the empirical c.d.f.

(P5) : |ĜQ∗(·)−GQ∗(·)| a.s.−→ 0, (P6) :
√
N [ĜQ∗(·)−GQ∗(·)]⇒ BGQ∗(·)
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uniformly on [Q,Q] as N →∞. Given C1, Properties (P5) and (P6) are well-known properties of

the empirical c.d.f. for i.i.d. observations. In particular, (P5) follows from the Glivenko-Cantelli

Theorem, while (P6) follows from the Functional Central Limit Theorem. See van der Vaart (1998,

p.266).

Proof of (i): Lemma 3-(i) shows the uniform consistency of the quantile estimator θ̂(·) on [0, α†].

Thus, F̂ ∗(·) = θ̂−1(·) is uniformly consistent on [θ∗, θ†] by the Continuous Mapping Theorem.

Noting that f̂∗(·)−f∗(·) = f̂∗◦θ[θ̂−1(·)]−f∗◦θ[θ−1(·)] = f̂∗◦θ[θ̂−1(·)]−f∗◦θ[θ̂−1(·)]+f∗◦θ[θ̂−1(·)]−

f∗◦θ[θ−1(·)], the uniform consistency of f̂∗(·) to f∗(·) on [θ∗, θ†] follows from the uniform consistency

of f̂∗◦θ(·) on [0, α†] as discussed in the text after Lemma 3 and the uniform consistency of θ̂−1(·) =

F̂ ∗(·) on [θ∗, θ†] as noted above combined with the continuity of f∗ ◦ θ(·) on [0, α†]. A similar

argument establishes the uniform consistency of Û0Q(·) to U0Q(·) on [Q,Q†].

Proof of (ii): We first derive the asymptotic distribution of F̂ ∗(·) = θ̂−1(·). We use the Functional

Delta Method and the Hadamard derivative of the inverse mapping. In particular, from Lemma

3-(ii) and van der Vaart and Wellner (1996) Lemma 3.9.23, we have

√
N [θ̂−1(·)− θ−1(·)]⇒ −

(
γθZ
θα

)
◦ θ−1(·) = −γθ[θ−1(·)]f∗(·)Z[θ−1(·)],

uniformly on [θ∗, θ†] noting that θ−1(·) = F ∗(·) and θα[F ∗(·)] = 1/f∗(·).

Turning to the asymptotic distribution of f̂∗(θ) = f̂∗◦θ[θ̂−1(·)], we apply van der Vaart and

Wellner (1996) Lemma 3.9.27 to the composition map φ : `∞([θ∗, θ†], [0, α†]) × `∞([0, α†], IR) 7→

`∞([θ∗, θ†], IR) with φ[θ−1, f∗◦θ](·) = (f∗◦θ)[θ−1(·)]. This gives the Hadamard derivative

φ′[θ−1,f∗◦θ](h1, h2)(·) = h2[θ
−1(·)] + f∗θ (·)θα(θ−1(·))h1(·)

since (f∗◦θ)′θ−1(·)[h1(·)] = f∗θ [θ(θ−1(·))]θα[θ−1(·)]h1(·), where [h1(·), h2(·)] ∈ `∞([θ∗, θ†], [0, α†]) ×

UC([0, α†], IR). Thus from the Functional Delta Method, the asymptotic distribution of f̂∗◦θ(·) in

(16) and the asymptotic distribution of θ̂−1(·) given above, we obtain

√
N
[
f̂∗◦θ[θ̂−1(θ)]− f∗ ◦ θ[θ−1(θ)]

]
⇒ −γf∗(θ)

[
Z[θ−1(θ)]− TQQ[Q(θ)]

TQ[Q(θ)](TQ[Q(θ)]− γ)

BGQ∗ [Q(θ)]

gQ∗[Q(θ)]

]
−f∗θ (θ)θα[θ−1(θ)]γθ[θ−1(θ)]f∗(θ)Z[θ−1(θ)]

uniformly in θ ∈ [θ∗, θ]. Collecting the terms in Z(·) gives the desired result using θα[θ−1(θ)] =

1/f∗(θ), θ−1(θ) = F ∗(·) and

Hθ(θ)

H(θ)
=

γf∗(θ)

gQ∗[Q(θ)]

TQQ[Q(θ)]

TQ[Q(θ)](TQ[Q(θ)]− γ)
. (B.4)
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Equation (B.4) follows from differentiating [1 − F ∗(θ)]/[θf∗(θ)] = [TQ[Q(θ)] − γ]/TQ[Q(θ)] and

using gQ∗[Q(θ)]Qθ(θ) = f∗(θ).

Similarly, applying Lemma 3.9.27 in van der Vaart and Wellner (1996) and the Functional Delta

method to the composition map φ : `∞([Q,Q†], [0, α†]) × `∞([0, α†], IR) 7→ `∞([Q,Q†], IR) with

φ[GQ∗, U0Q◦Q](·) = (U0Q◦Q)[GQ∗(·)], we obtain using Property (P6) and (17)

√
N
[ ̂U0Q◦Q[ĜQ∗(Q)]− U0Q◦Q[GQ∗(Q)]

]
⇒ −U0Q(Q)

[
γZ[GQ∗(Q)] +

TQQ(Q)

TQ(Q)

BGQ∗(Q)

gQ∗(Q)

]
+
U0QQ(Q)

gQ∗(Q)
BGQ∗(Q),

uniformly in Q ∈ [Q,Q†] since (U0Q◦Q)′
GQ∗(·)[h1(·)] = U0QQ(·)Qα[GQ∗(·)]h1(·) and Qα[GQ∗(·)] =

1/gQ∗(·). Collecting the terms in BGQ∗(·) gives the desired result using

TQQ(Q)

TQ(Q)
− U0QQ(Q)

U0Q(Q)
=
TQ(Q)− γ
TQ(Q)

gQ∗(Q)

1−GQ∗(Q)
. (B.5)

Equation (B.5) follows from differentiating the logarithm of TQ(Q)/U0Q(Q) = θ[GQ∗(Q)] and using

(8) expressed at α = GQ∗(Q).2

Proof of (18): From (15) expressed at F ∗(θ), we make the change of variable q = Q(t). This gives

Z[F ∗(θ)] = −
∫ θ

θ∗

TQQ[Q(t)]

T 2
Q[Q(t)]

BF ∗(t)
1− F ∗(t)

Qθ(t)dt (B.6)

using Q[F (θ)] = Q(θ), BGQ∗ [Q(t)] = BF ∗(t) and GQ∗[Q(t)] = F ∗(t). We remark that the derivative

of 1−γ/TQ[Q(θ)] with respect to θ is equal to γTQQ[Q(θ)]Qθ[Q(θ)]/T 2[Q(θ)]. But 1−γ/TQ[Q(θ)] =

[1− F ∗(θ)]/[θf∗(θ)] ≡ H(θ) from the FOC (5) and (6).2

Computation of Vf∗(θ): We show that

Vf∗(θ) = 2[f∗(θ)+θf∗θ (θ)]f∗(θ)

∫ θ

θ∗

H(x)f∗(x)

[1− F ∗(x)]2
dx

+[f∗(θ)+θf∗θ (θ)]2
∫ θ

θ∗

H2(x)f∗(x)

[1− F ∗(x)]2
dx+ f∗2(θ)

F ∗(θ)

1− F ∗(θ)
(B.7)

We begin with the covariance of the process Z[F ∗(·)]. From the covariance of the Brownian

bridge (see e.g. van der Vaart (1998, p.266)), we remark that for θ∗ ≤ θ ≤ θ′ < θ

E

[ BF ∗(θ)
1− F ∗(θ)

BF ∗(θ′)
1− F ∗(θ′)

]
=

F ∗(θ)

1− F ∗(θ)
,

which is independent of q′. From the definition of Z[F ∗(·)], we have

E
{
Z[F ∗(θ)]Z[F ∗(θ′)]

}
=

1

γ2

∫ θ

θ∗

[∫ θ′

θ∗
Hθ(t)Hθ(t

′)E

{ BF ∗(t)
1− F ∗(t)

BF ∗(t′)
1− F ∗(t′)

}
dt′
]
dt
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=
1

γ2

∫ θ

θ∗

[
Hθ(t)

∫ t

θ∗
Hθ(t

′)
F ∗(t′)

1− F ∗(t′)
dt′ +Hθ(t)

F ∗(t)

1− F ∗(t)

∫ θ′

t
Hθ(t

′)dt′
]
dt

=
1

γ2
1− F ∗(θ)
θf∗(θ)

∫ θ

θ∗
Hθ(t

′)
F ∗(t′)

1− F ∗(t′)
dt′ − 1

γ2

∫ θ

θ∗
Hθ(t)

F ∗(t)

tf∗(t)
dt

+
1

γ2
1− F ∗(θ′)
θ′f∗(θ′)

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt− 1

γ2

∫ θ

θ∗
Hθ(t)

F ∗(t)

tf∗(t)
dt

=
1

γ2
[H(θ) +H(θ′)]

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt− 2

γ2

∫ θ

θ∗
Hθ(t)

F ∗(t)

tf∗(t)
dt, (B.8)

where the third equality follows from an integration by parts for the first term. Moreover,

E[Z[F ∗(θ)]BF ∗(θ′)] = −1

γ

∫ θ

θ∗
Hθ(t)E

[ BF ∗(t)
1− F (t)

BF ∗(θ′)
]
dt

= −1− F ∗(θ′)
γ

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt. (B.9)

Now using the limit process in Proposition 3-(ii), (B.8) and (B.9) and setting θ = θ′ give

Vf∗(θ) = 2[f∗(θ) + θf∗θ (θ)]2
[
H(θ)

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt−

∫ θ

θ∗
Hθ(t)

F ∗(t)

tf∗(t)
dt

]

+2[f∗(θ) + θf∗θ (θ)]
Hθ(θ)

H(θ)
[1− F ∗(θ)]

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt+

H2
θ (θ)

H2(θ)
F ∗(θ)[1− F ∗(θ)]

= −2[f∗(θ) + θf∗θ (θ)]f∗(θ)

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt− 2[f∗(θ) + θf∗θ (θ)]2

∫ θ

θ∗
Hθ(t)H(t)

F ∗(t)

1− F ∗(t)
dt

+
H2
θ (θ)

H2(θ)
F ∗(θ)[1− F ∗(θ)]

upon collecting terms. Integration by parts of the two integrals followed by some algebra gives

(B.7).2

Computation of VU0Q
(Q): We show that

VU0Q
(Q) = U2

0Q(Q)

∫ Q

Q

(
TQ(q)− γ
TQ(q)

)2
gQ∗(q)

[1−GQ∗(q)]2
dq. (B.10)

Using its limit process from Proposition 3-(ii), (B.8) and (B.9) as well as noting Z[GQ∗(Q)] =

Z[F ∗(θ)], BGQ∗(Q) = BF ∗(θ) with θ = θ(Q), we have

VUOQ
= U2

0Q(Q)

[
2H(θ)

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt− 2

∫ θ

θ∗
Hθ(t)

F ∗(t)

tf∗(t)
dt

−2
TQ(Q)− γ
TQ(Q)

∫ θ

θ∗
Hθ(t)

F ∗(t)

1− F ∗(t)
dt+

(
TQ(Q)− γ
TQ(Q)

)2
F ∗(θ)

1− F ∗(θ)


= U2

0Q(Q)

(TQ(Q)− γ
TQ(Q)

)2
GQ∗(Q)

1−GQ∗(Q)
− 2

∫ θ

θ∗
Hθ(t)H(t)

F ∗(t)

1− F ∗(t)
dt


= U2

0Q(Q)

(TQ(Q)− γ
TQ(Q)

)2
GQ∗(Q)

1−GQ∗(Q)
− 2γ

∫ Q

Q

TQQ(q)

T 2
Q(q)

TQ(q)− γ
TQ(q)

GQ∗(q)

1−GQ∗(q)
dq

 ,
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where the second equality uses H(θ) = [1 − F ∗(θ)]/[θf∗(θ)] = [TQ[Q(θ)] − γ]/TQ[Q(θ)], while the

third equality uses the change of variable q = Q(t). Integrating by parts gives (B.10).2

Estimation of Vf∗(θ) and VU0Q
(Q): Natural estimators are obtained by replacing the unknown

quantities in (B.7) and (B.10) by their estimators. Specifically, regarding VU0Q
(·), we remark that

it is an expectation with respect to the distribution of Q leading to

V̂U0Q
(Q) = Û2

0Q(Q)
1

N

N∑
i=1

1I(Qi ≤ Q)

(
1− γ̂

TQ(Qi)

)2
1

[1− Ĝ∗(Qi)]2
.

We can use a similar idea to estimate the two integrals in Vf∗(·). Using H(x) = [TQ[Q(x)] −

γ]/TQ[Q(x)] and making the change of variable q = Q(x), we can estimate these two integrals by

1

N

N∑
i=1

1I[Qi ≤ Q̂(θ)]

(
1− γ̂

TQ(Qi)

)
1

[1− ĜQ∗(Qi)]2
,

1

N

N∑
i=1

1I[Qi ≤ Q̂(θ)]

(
1− γ̂

TQ(Qi)

)2
1

[1− ĜQ∗(Qi)]2
,

respectively, where Q̂(·) = ĜQ∗−1[θ̂−1(·)]. It remains the problem of estimating the derivative f∗θ (·)

of the density in (B.7). We remark that f∗(θ) + θf∗θ (θ) is the derivative of θf∗(θ) = {TQ[Q(θ)][1−

GQ∗(Q(θ))]}/[TQ[Q(θ)]− γ]. Thus, the term f∗(θ) + θf∗θ (θ) can be estimated by(
−γ̂ TQQ[Q̂(θ)]

(TQ[Q̂(θ)]− γ̂)2
1− ĜQ∗[Q̂(θ)]

ĝQ∗[Q̂(θ)]
− TQ[Q̂(θ)]

TQ[Q̂(θ)]− γ̂

)
f̂∗(θ),

where ĝQ∗(·) is (say) the standard kernel density estimator.

Appendix C

This appendix collects the proofs of Lemmas 4 and 5, Proposition 4 in Section 4 as well as the

derivation of estimation of asymptotic variances.

Proof of Lemma 4: We have γ̃ − γ = γ̃ − γ̂ + γ̂ − γ. Thus,
√
N(γ̃ − γ) =

√
N(γ̃ − γ̂) + oP (1)

since
√
N(γ̂ − γ) = oP (1) by Lemma 2-(i). Now, from (19) and (25) we have

√
N(γ̃ − γ̂) =

√
N

(
1

T−1t (tmax; β̂)
− 1

T−1t (tmax;β)

)
= −γ2T−1tβ (t;β)

√
N(β̂ − β) + oP (1) (C.1)

using tmax
a.s.−→ t, a Taylor expansion around β, and γ = 1/T−1t (t;β). Part (i) follows.
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Similarly, we have
√
N(κ̃− κ) =

√
N(κ̃− κ̂) + oP (1) since

√
N(κ̂− κ) = oP (1) by Lemma 2-(i).

Moreover, from (19) and (25) we have

√
N(κ̃− κ̂) =

√
N
[
γ̃
(
tminT

−1
t (tmin; β̂)−T−1(tmin; β̂)

)
−γ̂

(
tminT

−1
t (tmin;β)−T−1(tmin;β)

)]
=
√
N(γ̃ − γ̂)

[
tminT

−1
t (tmin; β̂)−T−1(tmin; β̂)

]
+γ̂tmin

√
N
[
T−1t (tmin; β̂)−T−1t (tmin;β)

]
− γ̂
√
N
[
T−1(tmin; β̂)−T−1(tmin;β)

]
=

κ

γ

√
N(γ̃ − γ̂) + γ

[
tT−1tβ (t;β)− T−1β (t;β)

]√
N(β̂ − β) + oP (1)

where the last equality uses β̂
P−→ β, γ̂

P−→ γ, tmin
P−→ t, and a Taylor expansion around β. Part

(ii) then follows from (C.1). 2

Proof of Lemma 5: From (20) and (26) we obtain

√
N log

(
θ̃(α)

θ̂(α)

)
=
√
N

∫ α

0

−1

1− u

(
γ̃T−1t [t̂(u); β̂]− γ̂T−1t [t̂(u);β]

)
du

=
√
N

∫ α

0

−γ̃
1− u

(
T−1t [t̂(u); β̂]− T−1t [t̂(u);β]

)
du

−
∫ α

0

1

1− u
T−1t [t̂(u);β]du

√
N (γ̃ − γ̂)

=

∫ α

0

−γ
1− u

T−1tβ [t(u);β]du
√
N(β̂ − β)

−
∫ α

0

1

1− u
T−1t [t(u);β]du

√
N (γ̃ − γ̂) + oP (1)

= γI(α)
√
N(β̂ − β) + oP (1)

uniformly in α ∈ [0, α†], where the third equality uses ‖t̂(·) − t(·)‖†
a.s.−→ 0 and a Taylor expansion

around β, while the last equality uses (C.1) and (29). Hence,

√
N [θ̃(·)− θ̂(·)] = γθ(·)I(·)

√
N(β̂ − β) + oP (1) (C.2)

uniformly on [0, α†]. The desired result follows.

Turning to θ̃α(·), we have from (20) and (26)

√
N [θ̃α(α)− θ̂α(α)] =

√
N

[
θ̃(α)

1− α

(
1− γ̃T−1t [t̂(α); β̂]

)
− θ̂(α)

1− α

(
1− γ̂T−1t [t̂(α);β]

)]

=
√
N

θ̃(α)− θ̂(α)

1− α

(
1− γ̃T−1t [t̂(α); β̂]

)
− θ̂(α)

1− α

[√
N(γ̃−γ̂)T−1t [t̂(α); β̂]+γ̂

√
N
(
T−1t [t̂(α); β̂]−T−1t [t̂(α);β]

)]
=

1− γT−1t [t(α);β]

1− α
√
N [θ̃(α)− θ̂(α)]

− θ(α)

1− α

[
T−1t [t(α);β]

√
N(γ̃−γ̂)+γT−1tβ [t(α);β]

√
N(β̂ − β)

]
+ oP (1)
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=
γθ(α)

1− α

[(
1− γT−1t [t(α);β]

)
I(α) + γT−1t [t(α);β]T−1tβ (t;β)

−T−1tβ [t(α);β]
]√

N(β̂ − β) + oP (1)

uniformly in α ∈ [0, α†], where the third equality uses ‖t̂(·) − t(·)‖†
a.s.−→ 0 and a Taylor expansion

around β, while the last equality uses (C.1)-(C.2). Since θα(α) = θ(α)
(
1−γT−1t [t(α);β]

)
/(1−α),

H(θ) = 1−γ/TQ[Q(θ)] = 1−γT−1t [T (Q(θ);β);β], and t(α) = T [Q(α);β], the desired result follows.

2

Proof of Proposition 4: The proof follows that of Proposition 3. We begin with f̃(·). From van

der Vaart and Wellner (1996) Lemma 2.9.23, the Hadamard derivative of the inverse map at θ(·)

is the map h 7→ −h[θ−1(·)]/θα[θ−1(·)]. Thus, from the Functional Delta Method, we have

√
N [θ̃−1(·)− θ−1(·)] = −f∗(·)

√
N [θ̃(θ−1(·))− θ(θ−1(·))] + oP (1) (C.3)

uniformly on [θ∗, θ†] since f∗(·) = 1/θα[θ−1(·)]. Moreover, using (27) and a Taylor expansion, we

obtain

√
N [f̃∗◦θ(·)− f∗◦θ(·)] = −f∗2[θ(·)]

√
N [θ̃α(·)− θα(·)] + oP (1) (C.4)

uniformly on [0, α†] since f∗[θ(·)] = 1/θα(·). Thus, using (28), the Hadamard derivative of the

composition map φ[θ−1, f∗ ◦θ] = (f∗ ◦θ)◦θ−1 in the proof of Proposition 3, and (C.3)-(C.4) we

obtain from the Functional Delta Method

√
N [f̃∗(·)− f∗(·)] = −f∗2(·)

√
N [θ̃α(θ−1(·))− θα(θ−1(·))]

−f∗θ (·)
√
N [θ̃(θ−1(·))− θ(θ−1(·))] + oP (1)

uniformly on [θ∗, θ†] since f∗(·) = 1/θα[θ−1(·)]. Note that the same equation holds with θ̃ replaced

by θ̂. Thus, taking the difference, using Lemma 5 and noting that θ−1(·) = F ∗(·) give

√
N [f̃∗(·)− f∗(·)] =

√
N [f̂∗(·)− f∗(·)]

−γf∗(·)
(
I[F ∗(·)]− 1

H(·)
a[F ∗(·)]

)√
N(β̂ − β)

−γf∗θ (·)θ[F ∗(·)]I[F ∗(·)]
√
N(β̂ − β) + oP (1).

Collecting terms, the desired result follows from Proposition 3-(ii) and
√
N(β̂ − β)

D−→ N .

Next, we turn to Û0Q(·) = ˜U0Q◦Q[Ĝt∗(T (·; β̂))] by (28). From (21) and (27) we have

√
N [ ˜U0Q◦Q(α)− ̂U0Q◦Q(α)] =

√
N

(
1

θ̃(α)T−1t [t̂(α); β̂]
− 1

θ̂(α)T−1t [t̂(α);β]

)

=
−1

θ(α)T−1t [t(α);β]

(√
N [θ̃(α)− θ̂(α)]

θ(α)
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+

√
N
(
T−1t [t̂(α); β̂]− T−1t [t̂(α);β]

)
T−1t [t(α);β]

+ oP (1)

= −U0Q[Q(α)]

(
γI(α) +

T−1tβ [t(α);β]

T−1t [t(α);β]

)
√
N(β̂ − β) + oP (1),

uniformly in α ∈ [0, α†], where we have used the uniform consistency of β̂, t̂(·), θ̂(·) and θ̃(·) for β,

t(·) and θ(·) on [0, α†] together with Lemma 5,
√
N(β̂ − β) = OP (1) and

√
N [θ̃(·)− θ̂(·)] = OP (1).

Thus, using (17) and
√
N(β̂ − β)

D−→ N we obtain

√
N [ ˜U0Q◦Q(·)− U0Q◦Q(·)] ⇒ −U0Q[Q(·)]

[
γZ(·) +

TQQ[Q(·)]
TQ[Q(·)]

BGQ∗ [Q(·)]
gQ∗[Q(·)]

+

(
γI(·) +

T−1tβ [t(·);β]

T−1t [t(·);β]

)
N
]

(C.5)

on [0, α†]. Let Gt∗(·) be the empirical cdf of ti, i = 1, . . . , N . We have

√
N
(
Ĝt∗[T (·; β̂)]−Gt∗[T (·;β)]

)
=
√
N
(
Ĝt∗[T (·; β̂)]−Gt∗[T (·; β̂)]

)
+
√
N
(
Gt∗[T (·; β̂)]−Gt∗[T (·;β)]

)
=
√
N
(
Ĝt∗[T (·;β)]−Gt∗[T (·;β)]

)
+gt∗[T (·;β)]Tβ(·;β)

√
N(β̂ − β) + oP (1)

⇒ BGt∗ [T (·;β)] + gt∗[T (·;β)]Tβ(·;β) N (C.6)

on [Q,Q†] = [Q(0), Q(α†)], where the second equality follows from asymptotic equicontinuity of
√
N [Ĝt∗(·)−Gt∗(·)] by Theorem 18.14-(ii) in van der Vaart (1998). We now consider the composition

map φ{Gt∗[T (·;β)], U0Q[Q(·)]} = U0Q[Q(·)]◦Gt∗[T (·;β)] with its Hadamard derivative

φ′Gt∗[T (·;β)],U0Q[Q(·)](h1, h2)(·) = h2
(
GQ∗(·)

)
+
U0QQ(·)
gQ∗(·)

h1(·)

by Lemma 3.9.27 in van der Vaart and Wellner (1996) since t = T (Q;β) so that Gt∗[T (·;β)] =

GQ∗(·) and U0Q[Q(·)]′
GQ∗(·)[h1(·)] = U0QQ(·)Qα[GQ∗(·)]h1(·) with Qα[GQ∗(·)] = 1/gQ∗(·). Thus,

from (C.5)-(C.6) and the Functional Delta Method we obtain

√
N [Ũ0Q(·)− U0Q(·)] ⇒ −U0Q(·)

[
γZ[GQ∗(·)] +

TQQ(·)
TQ(·)

BGQ∗(·)
gQ∗(·)

+

(
γI[GQ∗(·)] +

T−1tβ [T (·;β);β]

T−1t [T (·;β);β]

)
N
]

+
U0QQ(·)
gQ∗(·)

(
BGQ∗(·) + gt∗[T (·;β)]Tβ(·;β) N

)
since GQ∗(·) = Gt∗[T (·;β)]. Collecting terms and using (B.5), gQ∗(·) = gt∗[T (·;β)]/T−1t [T (·;β);β],

and Tβ(·;β) = −T−1β [T (·;β);β]/T−1t [T (·;β);β], give the desired result.2
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Herefater we assume that
√
N(β̂ − β) satisfies the linear representation

√
N(β̂ − β) = −Γ

−1 1√
N

N∑
i=1

V (qi, εi) + op(1), (C.7)

for some matrix Γ and (dimβ × 1) vector function V (·, ·). See e.g. Linton, Sperlich and Van

Keilegom (2008). The next lemma derives the correlation between BGt∗(·) and Z(·) with N .

Lemma C.1: Let Gt∗(·) be the cdf of t. We have

E [BGt∗(·)N ] = −Γ
−1

E [1I(t ≤ ·)V (q, ε)] ,

E [Z(·)N ] = −Γ
−1
∫ t(·)

t
T−1tt (τ ;β)

E [1I(t ≤ τ)V (q, ε)]

1−Gt∗(τ)
dτ,

where BGt∗(·) is the Gt∗-Brownian Bridge on [t, t] associated with {ti; i = 1, . . . , N}.

Proof of Lemma C.1: Recall that
√
N(β̂ − β)

D−→ N ∼ N (0,Ω). Moreover, by the Functional

Central Limit Theorem, we have

√
N

(
1

N

N∑
i=1

1I(ti ≤ ·)−Gt∗(·)
)
⇒ BGt∗(·) (C.8)

on [t, t]. Thus, the first statement follows from (C.7) and E[V (q, ε)] = 0.

Turning to the second statement, the change-of-variable τ = T (q;β) in (15) gives

Z(·) =

∫ t(·)

t
T−1tt (τ ;β)

BGt∗(τ)

1−Gt∗(τ)
dτ (C.9)

since dq = T−1t (τ ;β)dτ , TQ(q) = 1/T−1t (τ ;β), TQQ(q) = −T−1tt (τ ;β)/T−1t (τ ;β)3, GQ∗(q) = Gt∗(τ)

and gQ∗(q) = gt∗(τ)/T−1(τ ;β). The desired result follows from (C.7), (C.8), and E[V (q, ε)] = 0.2

Computation of ω2
f∗(θ) and ω2

U0Q
(Q): We have F ∗(θ) = Gt∗[T (Q(θ);β)] since t = T (Q(θ);β). In

particular, BF ∗(θ) = BGt∗ [T (Q(θ);β)]. Thus, from N ∼ N (0,Ω), Propositions 3 and 4 and Lemma

C.1 we obtain

ω2
f∗(θ) = Vf∗(θ) + 2γ2[f∗(θ) + θf∗θ (θ)]b(θ)E

{
Z
[
Gt∗[T (Q(θ);β)]

]
N
}

−2γ
Hθ(θ)

H(θ)
b(θ)E {BGt∗ [T (Q(θ);β)]N}+ γ2b(θ)Ωb(θ)T

= Vf∗(θ)− 2γ2[f∗(θ)+θf∗θ (θ)]b(θ)Γ
−1
∫ T [Q(θ);β]

t
T−1tt (τ ;β)

E [1I(t ≤ τ)V (q, ε)]

1−Gt∗(τ)
dτ

−2γ
Hθ(θ)

H(θ)
b(θ)Γ

−1
E
{

1I
[
t ≤ T [Q(θ);β]

]
V (q, ε)

}
+ γ2b(θ)Ωb(θ)T , (C.10)

where Vf∗(θ) is given in (B.7).
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Similarly, we haveGQ∗(Q) = Gt∗[T (Q;β)] since t = T (Q;β). In particular, BG∗(Q) = BGt∗ [T (Q;β)].

Thus, from N ∼ N (0,Ω), Propositions 3 and 4 and Lemma C.1, we obtain

ω2
U0Q

(Q) = VU0Q
(Q) + U0Q(Q)2

[
2γc(Q)E

{
Z
[
Gt∗[T (Q;β)]

]
N
}

+2
TQ(Q;β)− γ
TQ(Q;β)

E

{ BGt∗ [T (Q;β)]N
1−Gt∗[T (Q;β)]

}
+ c(Q)Ωc(Q)T

]

= VU0Q
(Q) + U0Q(Q)2

[
−2γc(Q)Γ

−1
∫ T (Q;β)

t
T−1tt (τ ;β)

E [1I(t ≤ τ)V (q, ε)]

1−Gt∗(τ)
dτ

−2
TQ(Q;β)− γ
TQ(Q;β)

Γ
−1

E

{
1I[t ≤ T (Q;β)]V (q, ε)

1−Gt∗[T (Q;β)]

}
+ c(Q)Ωc(Q)T

]
, (C.11)

where VU0Q
(Q) is given in (B.10).2

Estimation of ω2
f∗(θ) and ω2

U0Q
(Q): Given that the observables are (ti, qi), estimation of Vf∗(θ)

and VU0Q
(Q) need to be adjusted accordingly. In particular, the argument in Appendix B applies

by noting that TQ(Q) = 1/T−1t (t), TQQ(Q) = −T−1tt (t)/T−1t (t)2, GQ∗(Q) = Gt∗(t) and gQ∗(Q) =

gt∗(t)/T−1(t). In addition, the indicators 1I[Qi ≤ Q] and 1I[Qi ≤ Q̂(θ)] are now replaced by

1I[T̂−1(ti) ≤ Q] and 1I[ti ≤ T̂ (θ)] with T̂ (·) = Gt∗−1[θ̂−1(·)], respectively.

We assume that we have consistent estimators V̂ (·, ·), Γ̂ and Ω̂. See e.g. Linton, Sperlich and

Van Keilegom (2008). Regarding estimation of b(·) and c(·), the only term that requires attention

is I(·). We note that I(α) for α ∈ [0, α†] can be written as an expectation upon making the change

of variable t = t(u) thereby leading to the estimator

Î(α) =
1

N

N∑
i=1

[
1I[ti ≤ t̂(α)]

1− Ĝt∗(ti)

{
T−1tβ (ti; β̂)− γ̂T−1t (ti; β̂)T−1tβ (tmax; β̂)

}]
.

In c(·), the term U0QQ(Q)/U0Q(Q) can be rewritten using (B.5) and expressed in term of T−1(·;β)

and its derivatives as above. We remark that the expectation E[1I(t ≤ τ)V (q, ε)] in (C.10) and

(C.11) can be estimated by (1/N)
∑N
i=1 1I[ti ≤ τ ]V̂ (qi, ε̂i) where ε̂i = T−1(ti; β̂)/ ˆ̃m(qi). Lastly,

T [Q(·);β] can be replaced by T (·) = Gt∗−1[θ−1(·)] and estimated accordingly.
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Table 1: Summary statistics

Observations Mean Median Min Max STD

t 4,000 34.63 30.37 13.97 99.78 16.52

q 4,000 704.32 620.00 10 3,498.00 427.88

Q 4,000 1,650.15 1,087.00 195.20 9,171.03 1,561.51

θ̂ 4,000 1.78 1.56 1.00 5.03 0.74

ε̂ 4,000 1.19 0.94 0.13 15.74 0.96

Rent 4,000 21.92 12.40 0 160.16 26.12

Rent Ratio 4,000 0.47 0.41 0 1.63 0.35

Table 2: Comparisons with Alternative Pricing Strategies

NLP Two-part Minimal Plans

Indicators Tariffs Quantities

Consumer Surplus 87,688 0.9973 0.8824 0.9653

Profit 83,907 0.9926 0.9575 0.9433

Welfare 171,590 0.9950 0.9191 0.9546

Total Q 6,600,600 0.9875 0.8975 0.9564

Total Payment 138,540 0.9875 0.9258 0.9519

Consumers 4,000 0.9505 0.8023 0.9963
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Table 3: Winners and Losers

Group Variable NLP Two-part Minimal Plans

Tariffs Quantities

Low Types CS 1,742 0.8601 0.0810 1.1506

Total Payment 18,686 0.9934 0.3364 1.0803

Total Q 418,360 1.2248 0.4599 1.2295

Medium low types CS 7,748 1.0097 0.7005 0.9778

Total Payment 25,968 1.0005 1.1583 0.7892

Total Q 807,440 1.0024 1.1401 0.6468

Medium High Types CS 19,763 0.9944 0.8452 0.9022

Total Payment 35,746 1.0224 0.9800 1.0544

Total Q 1,524,900 1.0732 0.9076 1.2930

High Types CS 58,435 1.008 0.9430 0.9794

Total Payment 58,139 0.9583 0.9780 0.9202

Total Q 3,849,800 0.9248 0.8902 0.8583
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Figure 1: Scatter plot (qi, ti)

Figure 2: Tariff T̂ (·)

Figure 3: Density of Unobserved Heterogeneity f̂ε(·)
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Figure 4: Quantile Type θ̂(·)

Figure 5: Marginal Base Utility Û0Q(·)

Figure 6: Type Density f̂ ∗(·)
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Figure 7: θ − [1− F̂ (θ)]/f̂(θ)

48


	14-003
	Cover Letter Template

	LPV1_pic



