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Abstract 

The paper analyzes performance, incentives, and the inefficiencies that may arise due 
to agency problems and market power using a newly developed panel of large U.S. 
commercial banks that have too-big-to-fail nature. We use a structural model to 
characterize managerial efficiency, which complements technical efficiency in standard 
stochastic frontier models. We incorporate managerial decisions, bank-specific char-
acteristics, and market competition in deriving managerial efficiency. Data on the 50 
largest commercial banks in the U.S. during 2000 and 2017 are collected from the Call 
Reports, and are matched with CEO compensation from S&P’s Execucomp database. 
The paper connects empirical evidence with economic theory and contributes to the 
literature on efficiency and management. The ultimate goal is to better understand the 
linkages among managerial performance, CEO compensation, and the size and scope 
of bank operations. Current results point to robust empirical findings. Economies of 
scale have steadily declined throughout the period, and are not positively related to 
managerial performance and CEO compensation. The size of a bank does not seem to 
be justified by the evidence in that larger banks offer larger bonuses and tend to have 
lower managerial efficiency and diminishing scale economies. 
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1 Introduction 

The banking industry has experienced major regulation changes in the last three decades. 
A period of banking deregulation removed restrictions on branching across states under the 
Riegle-Neal Interstate Banking and Branching Efficiency Act of 1994. Later, the Federal 
Reserve Board allowed commercial banks to underwrite insurance and securities through 
affiliates under the Financial Modernization Act (also known as Gramm-Leach-Bliley Act) 
of 1999. The number of banks declined by more than 50% after two decades of deregulation. 
Along with technological developments and financial innovations, banks have become much 
larger and provide more complex profiles of financial services. One direct consequence of 
banking deregulation has been financial consolidations which result in larger banks and 
more integrated banking system. Based on the Federal Reserve Statistics in 2017, the asset 
ratio of the 4 largest banks in the U.S., each with over $1 trillion in consolidated assets by 
2017, has increased from 23% in 2000 to 45% in 2017, as shown in Figure 1. The asset share 
almost doubled during the period. The top 50 banks, each with over $10 billion in assets, 
have the asset ratio of 80% on average. This highly concentrated U.S. banking industry, 
along with the periods of regulation changes and technological developments, provide strong 
incentives for researchers to conduct studies to analyze bank performance,particularly the 
performance of too-big-to-fail banks. 

A common aspect of large bank performance researchers look into is scale economies. 
Scale economies is one plausible reason for the increase in bank size. Larger banks may 
experience higher economies of scale, since larger scale of operations can have better diver-
sification which may reduce marginal cost due to liquidity risk and credit risk. On the other 
hand, however, increased size can also trigger more risk-taking decisions and result in higher 
costs. Efficiency is also an important aspect to consider when analyzing large banks. Bank 
outputs can heavily depend on the technology which larger banks may be better equipped 
with. Thus, researchers need to look into efficiency to weigh the benefits and costs of in-
creased bank size, as scale economies may only partially capture the effect of the increased 
concentration. We conduct an analysis on both scale economies and efficiency to have a 
better understanding of large banks. Specifically, we estimate scale economies and efficiency 
using a cost function approach which incorporates firm fixed effects derived from a struc-
tural framework to account for market competition and firm behaviors. Thus, the paper 
contributes to the literature on scale economies and efficiency with a structural approach to 
complement the commonly used reduced form method. 

More importantly, the structural model introduced in our paper aims to identify a spe-
cific type of efficiency due to managerial decisions. Efficiency in standard stochastic frontier 
models (SFMs) results from a combination of, but not limited to, technical, regulatory, and 
managerial factors in the production process. Some factors are controlled by managers who 
may not have aligned interests with firm owners. The separation of management and owner-
ship gives rise to a conflict of interest if the incentive mechanism fails, leading to the agency 
problem. The decomposition of the efficiency provides important insights on the efficiency 
that is fully controllable by management. We refer to such efficiency as managerial efficiency. 
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Figure 1: Shares of total assets 

Therefore, the paper also contributes to the stochastic frontier literature by decomposing ef-
ficiency into managerial and technical efficiency, the latter of which in this context refers to 
the efficiency from uncontrollable factors. 

From an econometric perspective, modeling managerial efficiency accounts for potential 
endogeneity in the SFMs. The paper uses a cost function to model managerial efficiency 
which is derived as a function of the cost frontier variables including all the outputs and 
input prices. In a standard SFM, the explanatory variables, inefficiency, and noise are 
assumed to be independent from each other. In such a setting, the cost frontier model 
would have a classic endogeneity problem due to omitted variables if it does not differentiate 
managerial inefficiency as a separate term or regards it as noise when managerial inefficiency 
is in fact correlated with output and impacts the cost of production. Thus, the parameter 
and efficiency estimates from a standard cost frontier model would be inconsistent. The 
paper deals with potential endogeneity in a cost function SFM to the extent that managerial 
inefficiency is correlated with outputs and impacts cost of production. 

Another benefit of using the structural model is that it incorporates heterogeneous fac-
tors to explain inefficiency. The model accounts for managerial decisions, firm-specific char-
acteristics, and market competition in deriving managerial inefficiency. By incorporating 
individual heterogeneity, the model has the advantage of identifying inefficiency due to en-
vironmental and heterogeneous factors, compared with a standard SFM which can only 
identify the inefficiency explained by environmental variables. 

For the empirical analysis, we develop a dataset based on Call Reports for the top 50 
banks during the period 2000-2017. The dataset provides comprehensive banking informa-
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tion that enables the use of a cost function, which requires data on total cost, outputs and 
input prices for each bank. Variations in bank characteristics exist even among the top 
banks. Thus, it is necessary to look into different tiers of banks for patterns and differences 
in performance over time. Since managerial performance is closely related to executive pay, 
the paper extends the analysis to examine the relationship between efficiency and CEO com-
pensation (as additional materials in the Appendix). We use S&P’s ExecuComp database, 
which provides data on annual CEO pay and CEO demographics. 

The paper is one of the many steps we are executing in the research to examine the link-
ages among banking concentration, bank performance, and CEO compensations by providing 
empirical support for future studies on the linkages. The paper shows that scale economies of 
the sample average have declined throughout the period. The largest banks experience disec-
onomies of scale prior to the sample period. Technical efficiency follows the GDP growth and 
decreases during the Financial Crisis and has picked up since 2015. Managerial efficiency has 
declined for the Top 10 and slightly increased for smaller banks. The declining managerial 
efficiency with similar trends among the largest banks appears to indicate that they share 
higher costs due to possibly onerous liquidity and capital requirements the government has 
imposed since the Crisis compared with smaller banks due to the Dodd-Frank Act. The 
substantial dis-economies and lower managerial inefficiency among the largest banks draw 
attention to managerial contracts and performances. The paper finds a negative relationship 
between managerial efficiency and compensations, particularly pay-performance incentives. 

The paper is organized as follows. Section 2 provides a literature review on measurement 
of efficiency, the agency problem, and scale economies. Section 3 introduces the structural 
model and the derivation for managerial efficiency. Section 4 describes the data we use. 
Section 5 provides estimation models and econometric methods, followed by results and 
implications in section 6. 

2 Literature Review 

2.1 Measurement of Efficiency 

The fundamental idea of efficiency is to measure firm’s performance in terms of the 
extent to which outputs are produced given a certain amount of inputs. A number of ap-
proaches are available to measure efficiency. Studies on productivity and efficiency in the 
banking industry have extensively used two approaches, the non-parametric Data Envel-
opment Analysis (DEA) and the parametric Stochastic Frontier Analysis (SFA). The DEA 
approach is based on the works of Debreu (1951), Shephard (1953), and Farrell (1957). It 
is first used to estimate production efficiency by Charnes, Cooper, and Rhodes (1978). The 
DEA applies a linear programming technique to search for the best-practice production units 
to form the efficient frontier, which is a piece-wise linear convex hull of the most efficient 
units. The SFA approach, introduced by Aigner, Lovell, and Schmidt (1977) and Meeusen 
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and van den Broeck (1977), estimates a parameterized efficiency frontier with an error term 
composed of a one-sided (non-negative) inefficiency and a two-sided noise term. 

For the purpose of this paper, the SFA is the preferred approach over the DEA as it 
is more easily implemented in standard regression models, albeit with adjustments made 
to deal with potential endogeneity of the efficiency with input choices.1 A major drawback 
of the DEA is that in its standard form as in Charnes et al. (1978) it fails to account for 
statistical noise that is usually present in real data. Although relatively recent developments 
by Simar and Wilson (2013) have addressed in part these shortcomings, the very nature of 
the optimization problem that DEA uses to solve for efficiency does not have a natural com-
plement in the economists’ regression models, especially in regard to the structural models 
we develop below. Thus, the important issues we are trying to analyze, such as insights 
into market structure and firm behavior cannot be analyzed using models familiar to most 
economists. The SFA, on the other hand, specifies inefficiency as a (one-sided) latent variable 
in the regression model.2 For these reasons we choose the SFA approach in our structural 
modeling efforts to identify scale economies and to account for market competition. 

The general form of a SFM is: 

yit = α + f(Xit; β) + vit ± uit, i = 1, ..., N ; t = 1, ..., T, (1) 

where yit, depending on the function used for the SFM, can be total output or cost of a 
production unit, Xit is a vector of explanatory variables (inputs for a single output production 
function or prices and output for the corresponding cost function dual), f(Xit; β) is a frontier 
function (e.g. Cobb-Douglas or translog), is the frontier intercept, vit is the usual two-sided 
noise term that is assumed to be independently and identically distributed, and uit ≥ 0 is 
the inefficiency of which the sign depends on the function for the SFM, e.g - for a production 
function and + for a cost function. The general form shows that u = 0 when the unit is fully 
efficient, and larger (smaller) u means that the unit is more output (cost) efficient. One can 
think of SFA as a composed error model in which one component is statistical noise and the 
other part is one-sided inefficiency. 

Earlier studies by Pitt and Lee (1981) and Schmidt and Sickles (1984) on stochastic 
frontier models using panel data assume time-invariant inefficiency, an assumption that might 
not be valid for longer panels. Later, Cornwell, Schmidt, and Sickles (1990) extend the panel 
model in (4.1) by allowing for heterogeneity 

αit = δiWt = δi1 + δi2t + δi3t
2 , (2) 

where δi1, δi2, δi3 are firm specific and t is the time trend. 

Based on a similar idea, Battese and Coelli (1992) propose a time decay model which 
specifies uit as g(t)ui, and g(t) is defined as 

g(t) = exp(−σ(t − Ti), (3) 

1See, for example, Olley and Pakes (1996); Schmidt and Sickles (1984); Kutlu (2018). 
2For a more detailed comparison of DEA and SFA applied in the banking industry, see Ferrier and Lovell 

(1990) and Bauer et al. (1998). 
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where Ti is the last period of ith panel, and σ is the decay parameter. Models of Cornwell 
et al. (1990) and Battese and Coelli (1992) are the primary models used in empirical work 
to account for time varying inefficiency. 

However, Greene (2005) points out that time-varying inefficiency can contain firm-
specific heterogeneity and thus uses fixed effects and random effects models to account for 
heterogeneity which can be correlated with the frontier variables. The true fixed effects 
model (TFE), as Greene has labeled it, has the general form 

= αi + β ′ yit xit + vit ± uit 

iid
vit ∼ N(0, σ2)v (4) 

iid∼ F (σ2 uit ),u i = 1, ..., n, t = 1, ..., T, 

where αi is the fixed effects, the error term vit and one-sided non-negative inefficiency uit 

are assumed to be independently distributed of each other. One can choose a particular 
distribution of uit, e.g. half-normal or truncated normal, from the family of distributions 
denoted as F with a scale parameter σu. 

This specification of the TFE model defines inefficiency as a shortfall in production due 
to factors that are not time invariant and correlated with the regressors. We use it in the 
structural model in order to control for such time invariant heterogeneity factors. These 
factors would include firm characteristics that impact the manager’s utility from shirking, 
such as corporate culture and monitoring environment that do not change frequently for 
relatively long periods of time. 

2.2 Efficiency Due to the Agency Problem and Market Power 

A number of studies have motivated researchers to model efficiency losses related to 
the agency problem. Williamson (1963) incorporated managerial discretion in firms which 
separate management from ownership. Based on his model, the managers discretionarily 
maximize personal utilities, which are not necessarily aligned with the utilities of the firm 
owners. Later, Leibenstein (1966) proposed X-Efficiency theory, which argues for an unde-
fined inefficiency that is greater in magnitude than allocative inefficiency. A major source 
of X-Inefficiency is an agent’s motivation,which leads to efficiency lost. This is the agency 
problem. 

Previous studies also have shown support for estimating a different source of inefficiency 
inspired by the implications of agency theory. These studies attempt to explain a portion of 
the total inefficiency that can be identified with the agency problem using various models, 
some structural and some reduced form-based models in which proxies for the way in which 
the agency problem may manifest itself as productive or cost inefficiency are used as factors 
for the latent agency effect. The few studies that have used a structural approach to incor-
porate the agency problem in the SFA include those by Gagnepain and Ivaldi (2002), who 
estimate a structural model of efficiency based on agency theory using data of the French 
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public transit system in which firms are regulated. However, they fail to account for market 
competition which is found to be linked with efficiency in the estimation. Kutlu and Wang 
(2018) incorporate market competition when estimating efficiency, but they do not distin-
guish the inefficiency due to the agency problem from the one-sided inefficiency in standard 
SFMs. Kutlu et al. (2018) construct a structural type of inefficiency aside from the non-
structural inefficiency in SFMs. It is the closest work to our paper, but the Kutlu et al. 
(2018) model does not account for firm-specific factors in deriving the structural inefficiency. 
The paper modifies their approach by allowing firm heterogeneity in managerial decisions in 
order to introduce structural inefficiency, which is the managerial inefficiency in this context. 

3 Structural Model 

We next develop a structural model that makes explicit the role of agency-based incentive 
inefficiency in the provision of banking intermediation services, as well as other potential 
sources, the latter of which are introduced as a latent unobservable inefficiency composite 
term. 

We begin with a somewhat stylized model in which there is a single manager in each 
firm that produces one homogeneous output in an oligopolistic market. Firms compete 
by choosing how much to produce and the price is determined by the total output in the 
market. The oligopoly assumption for the banking industry is consistent with the current 
organization structure of the banking industry and the fact that the largest four banks in 
the U.S. (JPMorgan Chase, WellsFargo, Bank of America, Citigroup) take up 46 % of total 
consolidated assets by 2017. The manager of a firm is assumed to be the only decision maker. 
Owner/shareholders only observe the profits resulting from the manager’s decision 

πi(q, si) = P (Q)qi − Ci(qi, si), (5) 

where qi is the quantity of output of firm i, q = (q1, q2, ..., qn) is a vector of outputs from each ∑ 
of n firms, Q = n

i=1 qi, si ≥ 1 is the level of shirking manager i chooses and is determined 
by the manager’s utility maximization problem in the next section. Note that a firm’s profit 
also depends on the output decisions of other firms’ managers. 

The cost function with unobserved managerial effort si, denoted as Ci, is assumed to be 
separable such that 

Ci(qi, si) = Ci
F (qi)si, (6) 

where si ≥ 1 and represents the cost associated with the optimal level of shirking chosen 
by the manager to maximize her utility. Therefore, the more the managerial slack, the 
higher the cost incurred to a firm. Ci

F is the frontier (minimum/efficient) level of costs. We 
generalize this and allow for the frontier to be impacted by random shocks as well as other 
sources of cost inefficiency when we specify the stochastic version of equation (6). 

The cost function is a convenient vehicle for analyzing the agency problem when firms 
are producing multiple exogenous outputs and are price takers in the input markets. The 
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large banks, however, can exercise their market power to select outputs, and thus outputs 
are potentially endogenous. We account for endogeneity in the outputs in the cost function 
estimation using instrumental variables. Incorporating managerial effort into the standard 
cost frontier model, the cost function becomes 

ln Ci = ln Ci
F + ln si + ui + vi, (7) 

where ui is one-sided inefficiency and vi is the error term as in equation (1) above. 

As the manager maximizes her own utility rather than the firm’s profit, the objective of 
the manager of firm i is 

max Ui(q, si) = αiπi(q, si) + R̃ 
i(si) + B̃ 

i, (8) 
qi,si 

where q = (q1, ..., qN ), αi ∈ (0, 1) is the percent of profit (e.g. pay-performance bonuses) 
˜ ˜paid to the manager, Ri(si) is the self-rewarding utility that is firm-specific, and Bi is the 

baseline salary of the manager. We assume that R̃ 
i(si) ≥ 0, R̃ 

i 
′ (si) > 0, R̃ 

i 
′′ (si) < 0 so that 

the self-rewarding utility increases in si at a decreasing rate. The utility function can be 
normalized without loss of generality and becomes 

Ui(q, si) = πi(q, si) + Ri(si). (9) 

The decision-making process is assumed to be a simultaneous game in which the manager 
chooses the effort level and output quantity at the same time. The first order conditions of 
the maximization problem yield the following equations: 

P (Q) = −P ′ (Q)qi + Ci
F ′ (qi)si 

(10) 
= R′−1 si i (Ci

F ). 

The econometric models can then be derived as 
′ (qi)R

′−1Pi = −Pi (Q)qi + CF ′ (CF ) + ϵii i i 
(11)

ln Ci = ln Ci
F (qi) + ln Ri 

′−1(Ci
F ) + ui + vi, 

where ln Ri 
′−1(Ci

F ) ≥ 0 captures the inefficiency from managerial slack, ui ≥ 0 accounts for 
technical and allocative inefficiency as in the stochastic frontier literature, and ϵi and vi are 
the usual idiosyncratic noise terms. Input allocations are assumed to be optimal such that 
banks only have technical inefficiency, an assumption supported by findings in Inanoglu et 
al. (2016) and Al-Sharkas, Hassan and Lawrence (2008). Output prices are bank-specific 
since bank prices are not regulated, and banks can charge different interest rates on their 
products depending on their local markets. 

Since banks produce more than one output, the model is extended to a multi-output 
scenario. The first order conditions of profit maximization of firm i that produces M types 
of outputs are ∑M 

∂Ph(Q) ∂CF (qi) 
qhi + Pm(Q) − i si = 0, m = 1, ..., M, (12)

∂Qm ∂qmi
h=1 
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where the output quantities produced by firm i is qi = (q1i, ..., qMi), and total quantities in 
the market is Q = (Q1, ..., QM ) with demands represented by (P1(Q), ..., PM (Q)). Allowing 
firm-specific prices by introducing the error terms, the econometric model for each output 
becomes 

M∑ ∂Ph(Q) ∂Ci
F (qi)

Pmi = − qhi + si + ϵmi, m = 1, ..., M. (13)
∂Qm ∂qmi

h=1 

4 Data 

We collect banking data from quarterly consolidated reports of balance sheets and income 
statements, also known as the Call Reports. All national banks, state member banks, and 
insured state non-member banks are required to file on a quarterly basis on the last calendar 
day of each quarter. The bank data consist of detailed information on a bank’s various assets, 
liabilities, capital structure, expenses, and geographical characteristics. The Call Reports 
are expressed on a pro-forma basis, which accounts for mergers, controls for survival bias, 
and does not distort the measurement of banks’ growth. The data methodology is useful 
among banks to calibrate credit risk models.3 We focus on commercial banks and use total 
assets as a measure of bank size. Total assets are less prone to changes in the internal models 
than risk-weighted assets. The availability and straightforward definition of total assets also 
make it a favorable indicator among central bankers and researchers. 

There is no complete consensus on the exact guideline for the choice of what constitutes 
banks’ inputs and outputs. Three methods have been used to define inputs and outputs in 
the banking industry: the intermediation approach (or the asset approach), the user cost 
approach, and the value-added approach. The major difference among these approaches is 
the way deposits are defined.4 Deposits can be inputs or outputs in the user cost approach, 
but they are usually considered as outputs in the value-added approach. However, both 
the user cost and value-added approaches encounter measurement difficulties and require 
detailed data on transactions hard to obtain. The asset approach is more consistent with 
the banking data (Adams et al., 1999 ) and more popular among various studies of banking 
efficiency (e.g. Hughes, Mester and Moon, 2001; Drake and Hall, 2003; Weill, 2004; Feng 
and Serletis, 2010; Davies and Tracey, 2014; Inanoglu, Jacobs Jr., Liu, and Sickles, 2016). 
Therefore, we adopt the asset approach to define inputs and outputs. Specifically, we choose 
number of employees, premises & fixed assets, and interest-bearing deposits as inputs; real 
estate loans, commercial & industrial loans, consumer loans, and securities as outputs. Under 

3For details, see Inanoglu and Jacobs (2009). 
4The asset approach assumes that banks are intermediaries whose main function is to collect deposits 

from savers and transform them into loans and financial investments. The user cost approach considers a 
financial instrument as an output only when the net revenue exceeds the opportunity cost of funds or the 
costs of liability are smaller than the opportunity cost. Otherwise, it is an input. The value-added approach, 
however, does not exclusively differentiate inputs from outputs. It determines whether financial products 
are outputs, inputs, or intermediates depending on how much value the categories of the products generate. 
For a more detailed discussion of the approaches, see Berger and Humphrey (1992). 
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the asset approach, the measure of bank outputs is the dollar value of loans and securities, 
and the measure of total cost is interest costs plus operational costs. 

After sorting the banks based on the value of total assets as of the last quarter of 2017, 
we choose the top 50 commercial banks established in the U.S. and study the period from 
2000 to 2017. The year 2000 is a proper starting point to study how periods of banking 
deregulation change the bank efficiency because restrictions on entry and products have 
been removed by 1999 and some outputs are measured in a different category prior to 2000. 
Table 1 lists the names of the top 50 banks ranked by total assets by the last quarter of 
2017. All these banks have at least $10 billion in total assets. Table 2 provides descriptive 
statistics for the banks. Note that a wide variation exists in the output variables and total 
assets among the top 50 banks. Input prices have a relatively smaller variance, although the 
difference among outliers can still be drastic. This indicates that it is necessary to look into 
different tiers of banks for a proper comparison. 
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Table 1: Top 50 U.S. commercial banks 

Rank Name Total assets Total equity capital Equity ratio Total deposits 
1 JPMorgan Chase Bank NA 1.88e+09 1.86e+08 9.89% 7.67e+08 
2 Bank of America NA 1.54e+09 1.82e+08 11.81% 7.35e+08 
3 Wells Fargo Bank NA 1.53e+09 1.46e+08 9.54% 7.33e+08 
4 Citibank NA 1.21e+09 1.25e+08 10.33% 3.14e+08 

U.S. Bank NA 4.00e+08 4.17e+07 10.43% 2.10e+08 
6 PNC Bank NA 3.25e+08 3.42e+07 10.52% 1.60e+08 
7 Bank of New York Mellon 2.61e+08 2.37e+07 9.08% 4.41e+07 
8 Capital One NA 2.55e+08 3.31e+07 12.98% 1.73e+08 
9 Branch Banking & Trust Company 1.90e+08 2.44e+07 12.84% 9.66e+07 

SunTrust Bank 1.77e+08 2.15e+07 12.15% 1.08e+08 
11 HSBC Bank NA 1.58e+08 2.04e+07 12.91% 8.66e+07 
12 Fifth Third Bank 1.23e+08 1.48e+07 12.03% 6.23e+07 
13 The Northern Trust Company 1.21e+08 8.09e+06 6.69% 1.68e+07 
14 KeyBank NA 1.19e+08 1.33e+07 11.18% 6.49e+07 

Regions Bank 1.08e+08 1.41e+07 13.06% 5.33e+07 
16 MUFG Union Bank NA 1.04e+08 1.44e+07 13.94% 4.64e+07 
16 Manufacturers and Traders Trust Company 1.04e+08 1.26e+07 12.12% 5.25e+07 
18 BMO Harris Bank NA 9.59e+07 1.35e+07 14.08% 4.47e+07 
19 Huntington NB 9.13e+07 9.92e+06 11.28% 4.87e+07 

Bank of the West 7.87e+07 1.06e+07 13.60% 4.59e+07 
21 Compass Bank 7.59e+07 1.06e+07 13.97% 4.19e+07 
22 Comerica Bank 6.28e+07 6.50e+06 10.35% 2.33e+07 
23 Zion Bank NA 5.80e+07 6.68e+06 11.52% 2.55e+07 
24 Silicon Valley Bank 4.42e+07 3.30e+06 7.47% 4.71e+06 

City NB 4.20e+07 3.44e+06 8.18% 1.46e+07 
26 First Tennessee Bank NA 3.61e+07 4.31e+06 11.94% 1.98e+07 
27 East West Bank 3.26e+07 3.36e+06 10.31% 1.69e+07 
28 Banco Popular de Puerto Rico 3.05e+07 3.27e+06 10.71% 1.87e+07 
29 First-Citizens Bank & Trust Company 3.01e+07 2.81e+06 9.34% 1.58e+07 

BOKF, NA 2.83e+07 2.86e+06 10.12% 1.79e+07 
31 Frost Bank 2.79e+07 2.87e+06 10.27% 1.38e+07 
32 First National Bank of Pennsylvania 2.74e+07 3.92e+06 14.58% 1.46e+07 
33 Synovus Bank 2.73e+07 2.83e+06 10.38% 1.63e+07 
34 Associated Bank NA 2.67e+07 2.73e+06 10.88% 1.53e+07 

Iberiabank 2.44e+07 3.16e+06 12.97% 1.34e+07 
36 Whitney Bank 2.39e+07 2.59e+06 10.84% 1.22e+07 
37 Umpqua Bank 2.26e+07 3.77e+06 16.69% 1.18e+07 
38 CIBC Bank USA 2.26e+07 4.72e+06 20.86% 1.19e+07 
39 Texas Capital Bank NA 2.20e+07 1.90e+06 8.65% 9.92e+06 

Pacific Western Bank 2.19e+07 4.55e+06 20.79% 9.09e+06 
41 Commerce Bank 2.17e+07 2.11e+06 9.74% 1.16e+07 
42 Valley NB 2.10e+07 2.31e+06 11.02% 1.13e+07 
43 BNY Mellon, NA 2.10e+07 3.17e+06 15.08% 1.46e+07 
44 TCF NB 2.02e+07 2.25e+06 11.21% 1.29e+07 

Prosperity Bank 1.98e+07 3.34e+06 16.87% 1.07e+07 
46 UMB Bank, NA 1.89e+07 1.59e+06 8.43% 9.81e+06 
47 Bank of the Ozarks 1.87e+07 3.04e+06 16.25% 1.27e+07 
48 First Hawaiian Bank 1.80e+07 2.21e+06 12.29% 9.47e+06 
49 First National Bank of Omaha 1.79e+07 1.71e+06 9.57% 9.98e+06 

MB Financial Bank, National Association 1.76e+07 2.60e+06 14.76% 7.70e+06 

The statistics are presented as of 2017Q4. Dollar figures are in thousand $. 
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Table 2: Descriptive statistics for the top 50 banks 

Mean Std. Dev. Min. Max. 
Total Cost (C) 1.72e+06 4.11e+06 3.03e+03 3.44e+07 
Output Variable 
Real Estate Loans (RE) 3.27e+07 7.18e+07 3.30e+04 4.68e+08 
Commercial & Industrial Loans (CI) 1.59e+07 3.29e+07 2.71e+04 2.36e+08 
Consumer Loans (CON) 9.85e+06 2.50e+07 4.82e+03 1.70e+08 
Securities (SEC) 2.36e+07 5.70e+07 2.06e+04 3.71e+08 
Input Price Variable 
Labor Price (wL) 50.39 29.39 1.84 209.08 
Capital Price (wK ) 25.33% 0.23% 0.50% 322.64% 
Deposit Price (wD) 0.94% 0.01% 0.01% 16.51% 
Output Price Variable (%) 
Price of Real Estate Loans (p1) 0.51 0.01 4.31e-05 14.11 
Price of Commercial & Industrial Loans (p2) 0.75 0.01 4.33e-05 13.68 
Price of Consumer Loans (p3) 2.16 0.04 1.58e-04 43.81 
Price of Securities (p4) 2.31 0.01 0.03 9.26 
Control Variable 
Net Charge-offs to Loans 0.62 0.91 -2.13 16.79 
Loss Allowance to Loans 1.56 0.74 7.92e-03 6.69 
Age of bank 111 52.47 18 213 
Total Assets 1.31e+08 3.12e+08 2.91e+05 1.91e+09 

Note: The table shows summary statistics of the variables used in the translog cost function and the 
system of equations over the period 2000Q1-2017Q4. Total number of observations is 3600. Non-price 
dollar figures and labor price are in thousand $. 

For data on CEO compensations we use Standard and Poor’s Execucomp database, 
which provides time series data on executive compensation collected from a company’s an-
nual proxy since 1992. Even though reporting regimes have changed over the period, the 
main compensation variables, which are used in the analysis, are continuously reported with 
consistency. Multiple executives for a given fiscal year of a bank are reported, and most 
banks report details on 5 executives. Data on salary, bonus, stock and options awards, non-
equity incentive plans, pensions and other compensations are collected. The compensations 
are averaged across executives to represent a CEO compensation package a bank offers in a 
given year, and are matched with banking data by ticker symbol. 

5 Estimation 

5.1 Derivation of System of Equations 

To estimate the models, we need to specify functional forms for the market demand 
and the self-rewarding utility. In an oligopolistic market, banks produce according to the 
following inverse market demand functions 

4∑ 
ln Pim = θ0m − θhm ln Qh + θ5mXi + eim, i = 1, ..., 50, m = 1, ..., 4, (14) 

h=1 
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where Pim is the market price of output m, Qh is the total quantity of output h, Xi are 
control variables, and eim is the error term.5 Note that unobserved factors that affect Pim 

can be correlated with Qh. An expected decrease in the interest rate by the central bank, 
for example, increases the demand for certain loans since the cost of capital investment 
is expected to be lower, resulting in higher loan prices. In order to deal with this classic 
endogeneity problem due to omitted variables and to the possibility that managers exercise 
substantial discretion on the choice of the outputs, we instrument the outputs in equation 
(15) using lagged outputs.6 Generalized Method of Moments estimation (GMM) is used to 
estimate the system of demand equations along with the system of supply equations. 

The self-rewarding utility function of managers i takes the form 

Ri(si) = risi
τ , (15) 

R ′′ where ri > 0 and τ ∈ (0, 1), so that Ri(si) > 0, Ri 
′ (si) > 0, i (si) < 0. The utility 

function assumes that a manager’s utility from shirking also depends on exogenous firm-
specific characteristics, as shown by ri, such as the board’s power, monitoring capacity, and 
competitive culture within the firm that do not change in a relatively short period of time. If 
powerful executives serve on the board, for example, collusion instead of monitoring among 
the executives is more likely to take place, which leads to higher utility from shirking. On the 
other hand, if a firm has a competitive culture which incentivizes its employees to monitor 
the manager and the board, utility from shirking decreases because of higher opportunity 
cost. 

The inverse of Ri 
′ (si) becomes 

R′−1(CF ) = (riτ)
1/(1−τ )CF 1/(τ −1) 

i i i 
(16) 

,= γiCi
F δ 

where γi > 0 and δ < −1. This inverse function is the key to differentiate the structural 
inefficiency from the non-structural technical inefficiency in the stochastic frontier literature. 

With our panel data, the system of equations for firm i in time t is 

4∑ qhit ∂Cit
F (qit)

Pmit = θhmPhit + γiCit
F δ 

+ ϵmit, m = 1, ..., 4 
Qmt ∂qmit (17)

h=1 

ln Cit = ln γi + (1 + δ) ln Cit
F + uit + vit. 

5The form of inverse demand functions is chosen in order to facilitate estimation and interpretation. We 
have examined other functional representations of the inverse demand equations, and our results are not 
qualitatively different from using semi-log specifications as well as models with second-order interactions. 

6We test the validity of these instruments using Hansen’s J-test of overidentifying restrictions. We fail 
to reject J-test’s null hypothesis that instruments are uncorrelated with the error term, and the excluded 
instruments are correctly excluded from the equation. 
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5.2 Stochastic Frontier Models with True Fixed Effects 

In the case of a cost function, the TFE model becomes 

Cit = αi + β ′ Xit + uit + vit. (18) 

Greene (2005) uses a maximum likelihood dummy variable approach to estimate the fixed 
effects and the cost parameters. He shows that computation is feasible even with a large 
number of nuisance parameters. The derived cost model resembles the TFE stochastic 
frontier model with ln γi as firm fixed effects.7 

Recall that managerial effort sit is dependent on γi, the unobserved frontier production 
cost function Cit

F , and a constant δ: 

= γiC
F δ 

sit it (19) 
= ln γi + δ ln CFln sit it . 

In this setup, fixed effects partially account for managerial efforts. The unobserved cost, the 
elasticity of which is magnified by the constant (|δ| > 1), plays a more informative role than 
firm effects in describing managerial efforts. This is consistent with the finding in Triebs 
and Kumbhakar (2018), which shows that management quality is only explained by a small 
percent of the variances of fixed effects in the standard frontier models. 

5.3 Translog Cost Function 

To model the unobserved cost, we use the translog cost function (Christensen, Jorgensen 
and Lau, 1973; Diewert, 1974), which is a popular flexible functional form using a second 
order logarithmic Taylor series expansion. It is useful for deriving various measurements with 
policy implications, such as input price elasticities, scale economies, and scope economies. 
For the multi-output cost function, the translog function using the simplified notation for 
panel data becomes 

4 3 4 4∑ ∑ ∑∑1 
ln C = α0 + αi ln qi + βk ln wk + αij ln qi ln qj+ 

2 
i=1 k=1 i=1 j=1 

(20)
3 3 4 3∑∑ ∑∑1 

βkl ln wk ln wl + δik ln qi ln wk + Z, 
2 

k=1 l=1 i=1 k=1 

where wk are the input prices of labor (L), fixed capital (K), and deposits (D), qi are real 
estate loans (RE), commercial & industrial loans (CI), consumer loans (CON), and secu-
rities (SEC), and Z are control variables. Since the function is continuously differentiable, 

7We choose half-normal distribution for uit. A test for heteroscedasticity indicate that different variabil-
ities exist in uit. We use OCC districts (Central, Northeastern, Southern, and Western) in which banks are 
located to account for heteroscedasticity in uit. 
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parameters are symmetric, i.e. αij = αji and βkl = βlk. Homogeneity in input prices requires ∑3 ∑3 ∑3 ∑3βk = 1, βkl = βlk = δik = 0. The control variables include timek=1 l=1 k=1 k=1 
trends, total assets, bank age, and loan quality to proxy credit risk. Net charge-offs ratio 
and loss allowance ratio are used to represent loan quality. A higher percentage of charge-offs 
or loss allowance ratio reduces real outputs and increases expenditure to maintain risks and 
outputs. Thus, estimated scale economies would be biased if credit risk was not accounted 
for. To account for endogeneity in the outputs, we use instrumental variables. Lagged total 
output quantity Qi for each output qi in the market, output prices and inputs with their 
lags are chosen as the instrumental variables, and they are tested to be valid instruments. 

The measure of economies of scale is defined as 

C 
Scale ≡ ∑ , (21) 

i qiCi(q) 

∂C(q)where q = (q1, ..., q4) is the vector of output quantities, and Ci(q) = is the marginal
∂qi 

cost of a particular output. Scale > 1 when economies of scale exist. Using the translog 
function, a common expression for scale economies is 

1 
Scale ≡ ∑ , (22) 

i ∂ ln C/∂ ln qi 

which depends on the elasticity of cost with respect to outputs. Thus, economies of scale 
exist when the percent increase in cost is less than that in the output quantity, which leads to 
a slower increase in the average cost. Note that both positive and negative scale economies 
can exist given the translog function. For the translog cost function, the economies of scale 
are derived as follows 

4 4 4 4 4 3∑ ∑ ∑∑ ∑∑∂ ln C 
= αi + αij ln qj + δik ln wk. (23)

∂ ln qii=1 i=1 i=1 j=1 i=1 k=1 

Economies of scope provide another aspect on cost reduction among output pairs. 
Economies of scope exist when producing multiple outputs together by a firm reduces the 
cost of producing the outputs separately by different firms (Baumol et al., 1982). A simplified 
expression for the economies of scope of producing two outputs is 

C(w,¯ ˆ 2 
m) + C( ¯ 1 

m , ˆ w, ¯ q2)q1, q w, q q2) − C( ¯ q1, ¯ 
Scope ≡ , (24)

C(w,¯ q̄  1, q̄  2) 

where w̄ and q̄  i are arbitrary values of input prices and output i, qi
m is a small value of output, 

and q̂i = q̄  i − qi
m . 8 We choose the sample mean for q̄  i and w̄ and the sample minimum for 

qi
m . Scope > 0 when economies of scope exist. The expression can be easily extended to four 
outputs. 

8Baumol et al., 1982 use zero value for qmi , but in the use of translog function ln qmi is undefined. Thus, 
we choose an arbitrarily small number. 
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We calculate the Allen-Uzawa and Morishima elasticities of substitution (AES and MES 
respectively) with the estimates from the translog function. Given the parameter estimates 
from the translog function, we can write the AES, θlk, and price elasticities of demand, ηlk, 
as follows {

1 + βlk/slsk, l ≠ k 
θlk = 

2 
(25)

(βkk + sk − sk)/sk 
2 , l = k {

βlk+slsk 
sl 

= θlksk, l ̸= k 
ηlk = (26)2βkk+sk−sk 

sk 
= θkksk, l = k, 

where βlk is the coefficient from the translog function, and sl or sk is the input price elasticity 
of cost or factor share. Own-price elasticity is expected to be negative. Market power can 
influence the elasticity, and thus a more inelastic demand for a normal good may imply 
concentrated market power.9 The MES based on the definition from Blackorby and Russell 
(1989) are 

Mlk = ηkl − ηll. (27) 

Unlike the AES, the MES preserve the essential features of the original Hicksian concept. 
Thus, the MES have the advantage of being a curvature measure and providing information 
on relative factor shares. Specifically, the MES can assess the effects of changes in price or 
quantity ratios on relative factor shares, while the AES do not serve the purpose. 

5.4 Estimation of the System of Equations 

The estimation of the system of equations involves two steps. In the first step, we 
estimate the cost function and obtain estimators of the fixed effects and the cost parameters. 
To distinguish the estimates of the cost function from δ, we need to identify δ from the 
simultaneous non-linear equations in (17) as the second step. 

We use GMM to estimate the simultaneous non-linear supply equations, along with the 
system of linear demand equations. In particular, iterative GMM is applied to the complete 
system of equations. The iterative estimator may have better finite-sample properties ac-
cording to Hall (2005). When the model is correctly specified and each equation satisfies the 
rank condition, iterative GMM is more efficient in estimating the equations jointly than the 
2SLS or IV, which estimate each equation in the system one at a time. The instrumental 
variables for the supply equations (17) are input prices and their lags, lagged total outputs, 
and firm effects estimated from the translog cost function. The instruments for the demand 
equations (14) are lagged total outputs. 

Once we obtain the key estimates from the complete system of equations, we can calcu-
late managerial inefficiency by 

sit − s ∗ 

MIEit ≡ ∑ t , (28)∗)i(sit − st 
9All the inputs, i.e. labor, fixed capital, and deposits, are considered as normal goods. 

16 



where s ∗ 
t = min(sit) at time t. Managerial efficiency is then MEit ≡ 1 − MIEit, which 

measures a bank’s ability to contain production cost relative to the bank with best practice. 

6 Results 

Estimates of the translog cost function using the true fix effects are presented in Table 
3. The scale economies estimated at sample means is 0.9822. The magnitude of the linear 
time trend is small, indicating little to no technological progress during the sample period. 
The environmental variable, OCC District, is significant in explaining the heteroscedasticity 
in technical inefficiency. The magnitude of the variable indicates that the regulation district 
a bank belongs to accounts for a large percentage of variance in technical inefficiency. Table 
4 shows economies of scope estimates for all output pairs. Large banks have economies 
of scope among all pairs, indicating that options are available to cross-subsidize multiple 
outputs. Producing real estate loans and investing in securities have the largest economies 
of scope, followed by producing commercial & industrial loans and consumer loans. The 
elasticities of substitution and elasticities of demand for the inputs are in Table 5. The 
top panel is symmetric AES estimates of elasticities. The middle panel for the asymmetric 
MES excludes the diagonal since it contains no information. The last panel shows the 
elasticities of demand. Capital has the largest elasticity, and labor and deposits have similar 
elasticities. Table 6 presents parameter estimates for the system of equations in the second 
step estimation. The magnitude of technical inefficiency shows that it is the major source 
of inefficiency that impedes bank performance. Even though the magnitude of managerial 
inefficiency is smaller, it is substantial and accounts for approximately 20% of bank-level 
inefficiency. 
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Table 3: Parameter estimates for the true fixed effects model 

Estimated parameter Estimated parameter 
ln(RE) −0.0264 ln(RE)ln(wL) −0.0467∗∗∗ 

(0.0743) (0.0113) 
ln(CI) 0.1663∗ ln(RE)ln(wK ) 0.0406∗∗∗ 

(0.0904) (0.0113) 
ln(CON) 0.3158∗∗∗ ln(RE)ln(wD) −0.0061 

(0.0543) (0.0047) 
ln(SEC) −0.8172∗∗∗ ln(CI)ln(wL) 0.0144 

(0.0757) (0.0119) 
ln(wL) −0.6660∗∗∗ ln(CI)ln(wK ) −0.0030 

(0.0968) (0.0126) 
ln(wK ) 0.7735∗∗∗ ln(CI)ln(wD) −0.0113∗∗∗ 

(0.0881) (0.0042) 
ln(wD) 0.8925∗∗∗ ln(CON)ln(wL) −0.0186∗∗∗ 

(0.0417) (0.0061) 
ln(RE)2 0.0096 ln(CON) ln(wK ) 0.0026 

(0.0070) (0.0061) 
ln(CI)2 −0.0529∗∗∗ ln(CON) ln(wD) 0.0160∗∗∗ 

(0.0064) (0.0028) 
ln(CON)2 0.0084∗∗∗ ln(SEC) ln(wL) 0.0961∗∗∗ 

(0.0021) (0.0111 
ln(SEC)2 −0.0082∗∗∗ ln(SEC) ln(wK ) −0.0721∗∗∗ 

(0.0035) (0.0106) 
ln(RE) ln(CI) 0.0486∗∗∗ ln(SEC) ln(wD) −0.0224∗∗∗ 

(0.0109) (0.0041) 
ln(RE) ln(CON) −0.0670∗∗∗ ln(Asset) 0.7789∗∗∗ 

(0.0051) (0.0317) 
ln(RE) ln(SEC) 0.0553∗∗∗ ln(Chargeoff) −0.0111∗∗∗ 

(0.0079) (0.0033) 
ln(CI) ln(CON) 0.0610∗∗∗ ln(Allow) 0.0234∗∗ 

(0.0050) (0.0010) 
ln(CI) ln(CON) 0.0610∗∗∗ ln(Allow) 0.0234∗∗ 

(0.0050) (0.0010) 
ln(CI) ln(CON) 0.0610∗∗∗ ln(Allow) 0.0234∗∗ 

(0.0050) (0.0010) 
ln(CI) ln(SEC) −0.0210∗∗∗ t −0.0098 

(0.0068) (0.0001) 
t2 −2.7e − 05∗∗∗ln(CON) ln(SEC) −0.0113∗∗∗ 

(0.0046) (8.18e-06) 
ln(wL)

2 0.0350∗∗∗ age 0.0032∗∗∗ 

(0.0039) (0.0002) 
ln(wK )

2 −0.0083∗ σu component 
(0.0051) 

ln(wD)
2 0.0292∗∗∗ OCC district 0.3027∗∗∗ 

(0.0020) (0.0677) 
ln(wL) ln(wK ) 0.0012 Constant −4.9410∗∗∗ 

(0.0038) (0.2833) 
ln(wL) ln(wD) −0.0363∗∗∗ 

(0.0030) 
ln(wK ) ln(wD) −0.0071∗∗∗ Economies of Scale 0.9822 

(0.0016) (0.0210) 

Note: We report parameter estimates for the translog cost function specification assuming 
heteroscedasticity for the technical inefficiency uit and homogeneity of variance for the error 
term vit. 
∗∗∗ ∗∗ ∗1%, 1% − 5%, 5% − 10% of p-value. 
Economies of scale is calculated based on the sample means of the variables. 500 bootstraps 
are used to calculate the standard error. 18 



Table 4: Economies of Scope Estimates 

Output pair Scope estimates 
RE-CI 0.7265 

RE-CON 0.2250 
RE-SEC 1.3026 
CI-CON 0.9510 
CI-SEC 0.2461 

CON-SEC 0.8815 

Table 5: Elasticities of Substitution and Demand 

Allen-Uzawa Elasticities of Substitution (AES) 
Labor Capital Deposit 

Labor -1.5256 
Capital 1.0122 -2.7255 
Deposit 0.7230 1.0700 -1.5118 
Morishima Elasticities of Substitution (MES) 

Labor Capital Deposit 
Labor 0.9062 0.8029 
Capital 1.0333 1.0494 
Deposit 0.8189 0.9461 
Price Elasticities of Demand 

Labor Capital Deposit 
Labor -0.5448 
Capital 0.2798 -0.7535 
Deposit 0.2649 0.3921 -0.5540 

Table 6: Parameter estimates for the system of equations 

Estimated parameter Standard error Estimated parameter Standard error 
θ11 0.3470∗∗∗ 0.0747 θ31 −0.0411∗ 0.0226 
θ12 −0.0554∗∗∗ 0.0794 θ32 0.0698∗ 0.0403 
θ13 −0.3059∗∗∗ 0.0546 θ33 −0.0205 0.0277 
θ14 0.0912∗∗ 0.0408 θ34 0.0180∗ 0.0107 
θ21 −0.2220∗∗∗ 0.0929 θ41 −0.1781∗∗∗ 0.0603 
θ22 0.4977∗∗∗ 0.0761 θ42 −0.1791∗∗∗ 0.0544 
θ23 −0.2536∗∗∗ 0.0531 θ43 −0.2041∗∗∗ 0.0498 
θ24 0.0152 0.0395 θ44 0.5824∗∗∗ 0.0550 
τ 0.4964∗∗∗ 0.0007 

Sample mean Standard deviation 
Managerial 0.0210 0.0131 
inefficiency 
Technical 0.1048 0.0563 
inefficiency 

Note: Parameter estimates for the system of nonlinear equations are reported using GMM estimation. Manage-
rial inefficiency and technical inefficiency are calculated at sample means. 
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Figure 2 presents a time series of economies of scale for three tiers, Top 4 (too-big-to-fail 
banks), Top 5-10, and Top 11-50. All the tiers experience dis-economies of scale, which 
indicates decreasing cost efficiency over time. The Top 10 have exploited economies of scale 
even before the 2007-2008 Financial Crisis. Growth in market shares is closely related to 
decline in economies of scale. The increased sizes and market shares among the Top 4 are 
not justified by the diminishing economies of scale. All the Top 10 banks have experienced 
dis-economies since the Financial Crisis. 
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Figure 2: Economies of scale over time 

Figure 3 shows technical efficiency by tier and GDP growth over time. The patterns 
of technical efficiency follows the trend in GDP growth, even though fluctuations may take 
place at a different time. The major decline in GDP growth which takes place almost two 
years later than the decrease in technical efficiency during 2007-2008. This can be explained 
by lagged effect of economic indicators. Similar patterns among the bank tiers show that 
technical efficiency is closely related to business cycles, indicating a significant impact of 
environmental factors on technical efficiency. 
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Figure 3: Technical efficiency and GDP growth over time 
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Figure 4 presents managerial efficiency over time. As in economies of scale, banks of 
higher ranks have lower managerial efficiency. Banks in the Top 4 are approximately 1.5% 
and 3.5% less efficient in management than banks in the Top 5-10 and Top 11-50, respectively. 
These translate into approximately $520 billion and $1.22 trillion of excess cost on average. 
The average managerial efficiency is almost the same with small fluctuations for lower-rank 
banks in the sample. Banks in the Top 10 share similar patterns of managerial efficiency, 
implying similar organizational structure among the banks. The 10 largest banks are more 
likely to have increased costs of management due to liquidity and capital requirements as 
well as regulatory policy the government imposes than relatively smaller banks. In fact, the 
Fed uses $250 billion in total assets or more than $10 billion in foreign exposures on its 
balance sheet as thresholds, developed more than a decade ago, to define a big bank. A big 
bank by this definition has to follow, for example, the liquidity coverage ratio, which is used 
after 2008 and requires banks to have enough cash or liquid assets to cover a month’s worth 
of liabilities in order to reduce the risk of banking collapse. Big banks by this definition are 
approximately the top 10 banks in our sample. They bear the extra cost from the liquidity 
and capital rules, and thus are likely to differ in their ability to follow the best-practice banks 
that do not need to meet the regulations. 
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Figure 4: Managerial efficiency over time 

Figure 5 shows pooled observations on efficiency. Larger banks tend to have lower 
managerial efficiency, but there is no definite separation in terms of technical efficiency. 
Larger banks, however, have smaller variance in technical efficiency. 

The decades of various policy changes that resulted in concentrated market power co-
incide with the increase in pay premium in the banking industry. Figure 6 illustrates the 
change in the variable components of CEO pay of the top banks. Larger banks tend to pay 
higher executive compensations. Compared with the other tiers, the Top 4 experience higher 
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growth in salaries and bonuses after the 2007-2008 Financial Crisis. Value of restricted stock 
owned for the Top 4 drops to the lowest level before 2011 and soon picks up with other tiers. 
Value of option awards keeps declining since the early 2000s, and it decreases at a faster rate 
after 2008. The patterns in the CEO compensations are consistent with findings in Cunat & 
Guadalupe (2009) which indicate that the level and structure of CEO compensation in the 
banking industry have changed after the deregulations. We extend the empirical analysis 
to investigate whether managerial efficiency accounts for the sky-rocketing CEO compen-
sations. Figure 7 presents correlation plots between efficiency and CEO compensations. 
Managerial efficiency fails to explain the increase in different components of compensations. 
In fact, higher CEO compensations tend to correlate with lower managerial efficiency. In 
general, larger banks are more likely to pay higher performance-based incentives but tend 
to have lower managerial efficiency. The correlations are consistent with findings by Livne, 
Markarian and Mironov (2013) who show that banks that pay higher incentive plans exhibit 
more risk and perform worse. 
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7 Conclusion 

We develop a structural model to characterize managerial inefficiency by incorporating 
managerial decisions, firm effects, and market competition. The essential assumption un-
derlying the model is the existence of the agency problem. Discrepancies exist between the 
goals of maximizing a manager’s utility and achieving the firm/shareholders’ goal (i.e. profit 
maximization). We contribute to the literature on bank performance, market power, and 
management quality by connecting empirical evidence with an economic model that helps 
to explain this discrepancy. 

We focus on the top 50 U.S. banks, which take up approximately 80% of the U.S. market 
in terms of total assets from 2000 to 2017 and are systematically important to the U.S. 
banking industry and the economy. We look at different bank tiers for bank performance 
in terms of scale economies and efficiency. Scale economies have steadily declined during 
the time periods for all the bank tiers. This implies that banks have increased in size 
beyond the minimum efficient scale, and decisions by the managers are at odds with those 
of the shareholders. Technical efficiency for the sample average follows the GDP growth. It 
declines during the crisis and starts to pick up with fluctuations since 2015. This suggests 
that technical efficiency simply picks up excess capacity due to demand shocks and not 
supply (cost) issues caused by the agency problem. Managerial efficiency declines among 
the Top 10 but has a slight increase among Top 11-50. The Top 4 are found to have the 
lowest managerial efficiency. Similar efficiency patterns among the Top 10 imply that the 
10 largest banks are likely to bear the extra cost due to regulations on liquidity and capital 
requirements. Declines in managerial efficiency correspond to diminished economies of scale, 
but an increase in managerial efficiency does not necessarily correlate with improved scale 
economies. 

We further analyze the correlation between efficiency and variable components of CEO 
pay. Managerial efficiency fails to explain the increase in the compensations. In general, 
larger banks are more likely to pay higher performance-based incentives but tend to have 
lower managerial efficiency. The negative correlation between different pay components and 
managerial efficiency empirically invalidates the mechanism underlying the incentive plans. 

Our modeling efforts in this current research has informed us greatly on a variety of mod-
eling issues that we will leverage in our subsequent modeling efforts. Since the model is based 
on the assumption that managerial contracts are not optimal, this structural inefficiency also 
includes the inefficiency from sub-optimal contracts. Therefore, to disentangle the effect of 
contracts itself would be another direction to develop the research. This modeling effort will 
endogenize managerial efforts in terms of contracts to model managerial quality. 
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