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Abstract 

 

This paper develops a theoretical growth model which combines spatial spillovers and 

productivity growth heterogeneity at the industry-level. We exploit the global value chain 

(GVC) linkages from inter-country input-output tables to describe the spatial 

interdependencies in technology. The spillover effects from factor inputs and 

Hicks-neutral technical change are separately identified in the model and decomposed 

into domestic and international effects respectively. Country-specific production 

functions are estimated using a spatial econometric specification for the industries of the 

sample. Most of the spillover effects of factor inputs, which we measure in terms of 

external factor elasticities, are found to be statistically and economically significant. The 

spillover effects of technical change offered and received vary widely across industries 

and contain information about the technological diffusion in GVC. Most prominently, the 

spillover of productivity growth offered by US Electrical and Optical Equipment is 

5.05%, which is the highest of all industries in our sample. Chinese Electrical and Optical 

Equipment absorbs the spillover of productivity growth of 1.04% annually, with the 

international component a relatively low 0.12%, which is substantially smaller than 

Korea’s absorption of international spillovers that add 0.53% annually to this key 

industry. 
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1 Introduction 

Over the past two decades the world economy has evolved rapidly and the network 

structure of the global specialization has been dramatically transformed. The growth and 

structure of individual national economies appear to depend critically on the growth rates 

of other countries. Through the increasingly enhanced linkages of the production network, 

a shock in one country can trigger misallocations of resources in other countries. 

However, the way in which and the extent to which this complex and sophisticated 

network of domestic and cross-border production-sharing activities impacts national 

growth largely has been missing in the empirical economic growth literature.  

Global value chains (GVCs) are the most important drivers of globalization (World 

Bank et al., 2017). Currently nearly 70% of world trade in goods is composed of 

intermediate inputs such as raw materials and capital components that are used to 

produce finished products.2. The linkages among major economies in the Asia-Pacific 

area, which along with the US are the foci of our empirical analyses, measured by value 

added exports based on the work of Johnson and Noguera (2012) are presented in 

Figure13. The share of domestic linkages has declined for all the five countries from 1995 

to 2010, the period we study, while foreign value added occupies an increasingly larger 

share. The linkages between those countries and China from both the input and output 

directions has expanded, implying significant changes in the pattern of the use of labor 

services. Koopman et al. (2012, 2014) develop a detailed accounting framework to trace 

the value-added flow based on a vertical specialization model and use the World 

Input-Output tables to estimate domestic and foreign components in export. Acemoglu et 

                                                             
2 The UNSD Commodity Trade (UN Comtrade) database 
3 Instead of the conventional measurement of trade by gross value of goods that may cause the “double-counting” 

problem, we use Trade in Value added to construct the graph. 
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al. (2016) tested the propagation mechanism of TFP shocks through the input-output 

network at the industry level. Carvalho and Tahbaz-Salehi (2019) present the theoretical 

foundations for the role of input-output linkages as a channel for shock propagations. 

Timmer et al. (2015, 2017) summarized the effect that the global value chain has on the 

productivity of industries through these input-output linkages. Understanding how 

industries in different economies link, specialize, and grow can help shed light on why 

some lower-income countries are catching up to high-income countries, while some are 

not, during the rapid development in global value chains (GVCs). 

 

 

 

 

 

 

 

 

 

 

 

(a) Trade in Value added in 1995             (b) Trade in Value added in 2010 

FIGURE 1 

Value-added trade linkages between US, China, Japan, Korea and India 

Notes: the width of the strip represent the domestic or foreign value added in forth root. 

 

The impact of globalization on the national economy has been widely explored in 

international and growth economics. Different from the assumptions in traditional 

neoclassical growth theory that the economies are independent and non-interactive, the 
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growing literatures recognize that technological advances diffuse and are transmittable 

across economies.  This technological spillover has been found to be a major engine for 

economic growth (Ertur and Koch, 2007).  

Technological spillovers have been the focus of a number of studies of economic 

growth resulting from international trade (Coe and Helpman, 1995; Eaton and Kortum, 

1996), foreign direct investment (Caves, 1996) and geographical proximity (Keller, 2002). 

Several studies have also estimated growth models using spatial econometric techniques. 

Ertur and Koch (2007) proposed a spatial version of the Solow (1956, 1957) neoclassical 

growth mode and found significant spatial effects on economic growth. Fingleton and 

López-Bazo (2006) found strong empirical support for the existence of externalities 

across economies. Fingleton (2008) used spatial econometric techniques to test between 

the standard neoclassical growth model and the new models of economic geography. 

Arbia et al. (2010) suggest that geo-institutional proximity outperforms pure geographical 

metrics in accounting for spatial interdependence. Ho et al. (2013) extend the Solow 

growth model using a spatial autoregressive specification, which they use to examine the 

international spillovers of economic growth through bilateral trade.  

However, much of the research on international spillovers is focused on national 

economies and implicitly assumes homogeneity in productivity growth among different 

nations or sectors within nations, depending on the cross-sectional -unit of observation.  

To investigate how interdependencies in the GVCs networks impact economic growth, 

and to also determine how crucial it is for world economic growth that such GVC’s are 

not disrupted by the current political climate in the US, an investigation into industry 

level linkages is necessary.  This is due in part to the fact that labor services and 

coordination in GVCs are facilitated by upstream-downstream these sectoral linkages. 

And as discussed in Durlauf (2000, 2001) and Brock and Durlauf (2001), the assumption 

of homogenous parameters in modeling economic growth across countries also may be 

incorrect. Canova (2004), Desdoigts (1999) and Durlauf et al. (2001) find evidence of 
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parameter heterogeneity using different statistical methodologies. However, a 

proliferation of free parameters in empirical modeling also may not allow one to explain 

the structural factors and economic conditions behind the long-run growth phenomenon 

(Durlauf and Quah, 1999, Ertur and Koch, 2007).  Heterogeneity in productivity growth 

among industries should be considered as such heterogeneity is intrinsic due to 

techno-economical features of each distinct sector. Jorgenson et al. (2012) note the 

influential power of some key industries and reveal the predominate role of IT-producing 

and IT-using industries as sources of productivity growth. This industry perspective on 

productivity and spillovers is particularly valuable as it provides intuitive information for 

the policy design of selecting preferential industries and bridging the development gap 

through encouraging the interaction in GVCs in order to promote technological advances.  

A major contribution of this paper is to propose a new model for measuring the 

industry-specific productivity and spillovers based on a spatial production function which 

allows the productivity growth varies over the industries. We consider a neoclassical 

output per worker growth model (Solow, 1956, 1957) as augmented, for example, by 

Ertur and Koch (2007) to include spatial externalities in knowledge.  Instead of using 

geographical distance to construct the spatial weights matrix, we extract the input and 

output flows based on the World Input-Output tables to measure economic distance 

between industries within/across national economies. In so doing we are able to lift the 

assumption of identical technical progress in all cross-sections by allowing for an 

industry-specific function of time based on the estimation technique developed by 

Cornwell et al. (1990) and Han and Sickles (2019).  

We also provide more explicit insights on the spatial spillovers process in our empirical 

analysis using a flexible spatial production function. The direct, indirect and total 

marginal effects of the input factors and time trends are calculated to describe the role of 

spillovers from input factors as well as how technical changes are distributed within the 

GVCs network using both spatial autoregressive (SAR) and spatial Durbin (SDM) 
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production functions. We follow Glass et al. (2015) who estimate these effects based on 

spatial translog production functions but calculate the industry-specific productivity 

growth spillovers by distinguishing between knowledge receiving and offering, which 

represent the two distinct directions of knowledge diffusion. Furthermore, in our global 

value chain settings, we use local Ghosh matrices to identify the portion of indirect 

effects that are transmitted within a country as well as the indirect effects that are 

transferred across the borders respectively.  Through our decomposition method, we are 

able to distinguish between domestic and international spillovers.   

This paper is organized as follows. In section 2 we set out the spatial production model 

with heterogeneity in technical progress using SAR and SDM specifications, and then 

explain our approach to measure the spatial spillovers of the inputs and Hicks-neutral 

technical change. We also provide the methodology to decompose the domestic and 

international spillovers using the local Ghosh matrices. Section 3 discusses our estimation 

strategy.  Section 4 presents the industry-level data of the countries we study and the 

World Input-Output tables we used to construct the spatial weight matrix. In section 5 we 

estimate the production function using our methodology and discuss the productivity 

spillovers through Asia-Pacific value chain. Section 6 concludes. 

2 Model  

2.1 A production function with heterogeneity in technical progress 

Consider an aggregate Cobb–Douglas production function with Hicks-neutral technical 

change for industry i at time t exhibiting constant returns to scale in labor, capital and 

intermediate input: 

𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖(𝑡𝑡)𝐾𝐾𝑖𝑖(𝑡𝑡)𝛼𝛼𝑀𝑀𝑖𝑖(𝑡𝑡)𝛽𝛽𝐿𝐿𝑖𝑖(𝑡𝑡)𝛾𝛾,   𝑖𝑖 = 1,⋯ ,𝑁𝑁,   𝑡𝑡 = 1,⋯ ,𝑇𝑇,  (1) 
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where 𝑌𝑌𝑖𝑖(𝑡𝑡) is the total output, 𝐾𝐾𝑖𝑖(𝑡𝑡), 𝑀𝑀𝑖𝑖(𝑡𝑡)  and 𝐿𝐿𝑖𝑖(𝑡𝑡) are the capital, labor and 

intermediate input respectively and 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1. 𝐴𝐴𝑖𝑖(𝑡𝑡) is the aggregate level of 

technology, which differs among industries and time periods.  

The technology 𝐴𝐴𝑖𝑖(𝑡𝑡) can be described in the following form: 

𝐴𝐴𝑖𝑖(𝑡𝑡) = Ω𝑖𝑖(t) = Ω(0)𝑖𝑖𝑒𝑒𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 (2) 

where 𝑅𝑅(𝑡𝑡) is an L×1 time-varying component that globally affects all industries, and 

𝛿𝛿𝑖𝑖 is an L×1 the coefficients that depend on i. Ω𝑖𝑖(0) is the individual initial technology 

state. We extend the Solow model (Solow, 1956; Swan, 1956; Ertur and Koch, 2007) of 

identical technical progress in all industries by allowing for an industry-specific time 

trend.  We can then write the non-spatial production function per worker as: 

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖(𝑡𝑡)𝑘𝑘𝑖𝑖(𝑡𝑡)𝛼𝛼𝑚𝑚𝑖𝑖(𝑡𝑡)𝛽𝛽 = Ω𝑖𝑖(0)𝑒𝑒𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡)𝛼𝛼𝑚𝑚𝑖𝑖(𝑡𝑡)𝛽𝛽 (3) 

where 𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑌𝑌𝑖𝑖(𝑡𝑡)/𝐿𝐿𝑖𝑖(𝑡𝑡), 𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝐾𝐾𝑖𝑖(𝑡𝑡)/𝐿𝐿𝑖𝑖(𝑡𝑡), 𝑚𝑚𝑖𝑖(𝑡𝑡) = 𝑀𝑀𝑖𝑖(𝑡𝑡)/𝐿𝐿𝑖𝑖(𝑡𝑡).  

Decomposing 𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 into a global time trend 𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑔𝑔 and an industry-specific term 

𝑅𝑅(𝑡𝑡)′𝑢𝑢𝑖𝑖 and then taking the logarithm of Eq. (3), we have the following linear regression 

model in the form of Cornwell et al. (1990)4: 

ln𝑦𝑦𝑖𝑖𝑖𝑖 = ln𝑘𝑘𝑖𝑖𝑖𝑖𝛼𝛼 + ln𝑚𝑚𝑖𝑖𝑖𝑖𝛽𝛽 + lnΩ𝑖𝑖(0) + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 (4) 

where 𝑢𝑢𝑖𝑖 are assumed to be iid zero mean random variables with covariance matrix Δ, 

and 𝑣𝑣𝑖𝑖𝑖𝑖 is the usual disturbance term assumed to a random noise following iid N(0, σ𝑣𝑣2). 

This model assumes the heterogeneous initial state and progress of technology. However, 

we note that if there are no heterogeneities, i.e., Ω𝑖𝑖(0) and 𝑢𝑢𝑖𝑖 are constant, then the 

production function can be written in the usual form and the Eq. (4) reduces to the 

standard panel data model with a time trend. 

                                                             
4 In a series of papers Park, Sickles, and Simar (1998, 2003, 2007) showed, among other things, that the time varying 

CSS and time invariant Schmidt and Sickles (1984) panel data estimators for the stochastic panel frontier were 

semiparametric efficient for the slope coefficients in the class of linear panel data models with correlated random 

effects. See also Sickles and Zelenuyk (2019) for a more extensive discussion of these and many other estimators for 

average and frontier production models.        
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2.2 Spatial model with technology spillover 

To account for the technology spillover through the linkage of industries, the effect of 

cross-sectional dependence should be considered in the production functions. Ertur and 

Koch (2009) modeled the technology as a function of a common global time trend, per 

worker capital and a spatial lag of a country’s neighbor’s technology. Here we relax the 

assumption of Hicks-neutral technical change by allowing each industry i to have 

industry-specific technical progress Ω𝑖𝑖(t) while at the same time allowing the industry 

to absorb knowledge diffusion from its neighbors. We assume that knowledge diffusion is 

influenced by the strength of linkage 𝑤𝑤𝑖𝑖𝑖𝑖 with neighbor-industry j and neighbor-industry 

j’s labor productivity 𝑦𝑦𝑗𝑗(𝑡𝑡). The Solow residual then can be written as 

𝐴𝐴𝑖𝑖(t) = Ω𝑖𝑖(t)∏ 𝑦𝑦𝑗𝑗(𝑡𝑡)𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 = Ω𝑖𝑖(0)𝑒𝑒𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 ∏ 𝑦𝑦𝑗𝑗(𝑡𝑡)𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗≠𝑖𝑖 , 

 (5) 

And this leads to the following production function per worker: 

𝑦𝑦𝑖𝑖(𝑡𝑡) = Ω𝑖𝑖(0)𝑒𝑒𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 ∏ 𝑦𝑦𝑗𝑗(𝑡𝑡)𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 𝑘𝑘𝑖𝑖(𝑡𝑡)𝛼𝛼𝑚𝑚𝑖𝑖(𝑡𝑡)𝛽𝛽. (6) 

Taking the logarithms of the expression, we obtain a Spatial Autoregressive form 

regression model as follows: 

ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑦𝑦𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + ln𝑘𝑘𝑖𝑖𝑖𝑖𝛼𝛼 + ln𝑚𝑚𝑖𝑖𝑖𝑖𝛽𝛽 + lnΩ𝑖𝑖0 + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖, (7) 

which we rewrite in matrix form as 

𝑦𝑦 = 𝜌𝜌(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑦𝑦 + 𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚 +  ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉, (8) 

where 𝑦𝑦 , 𝑘𝑘 , 𝑚𝑚  and 𝑉𝑉  are 𝑁𝑁𝑁𝑁 × 1  vectors, ω0 = Ω𝑖𝑖0⨂𝜄𝜄𝑇𝑇 ,  𝜄𝜄𝑇𝑇  is 𝑇𝑇  dimensional 

vector of ones, 𝑟𝑟 = 𝜄𝜄𝑁𝑁⨂𝑅𝑅 , 𝜄𝜄𝑁𝑁  is 𝑁𝑁  dimensional vector of ones, 

𝑅𝑅 = (𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑇𝑇)′, 𝑞𝑞 = 𝜄𝜄𝑁𝑁⨂𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅), is 𝑁𝑁𝑁𝑁 × 𝐿𝐿𝐿𝐿 matrix, 𝛿𝛿𝑔𝑔 is 𝐿𝐿 × 1 vector, and 

𝑈𝑈 is a 𝐿𝐿𝐿𝐿 × 1 vector. 

In a more general case, we can assume technical spillovers are not just influenced by 

the neighbor’s labor productivity, but by the neighbor’s technology 𝐴𝐴𝑖𝑖(𝑡𝑡), input levels of 



8 

 

per-worker physical capital 𝑘𝑘𝑗𝑗(𝑡𝑡), and per-worker intermediate input 𝑚𝑚𝑗𝑗(𝑡𝑡). We also can 

consider the spatial linkages that may have effects on an industry’s output when its 

neighbor changes its input.  This leads to the following expression for technology: 

𝐴𝐴𝑖𝑖(t) = Ω𝑖𝑖(t)∏ 𝐴𝐴𝑗𝑗(𝑡𝑡)𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 ∏ 𝑘𝑘𝑗𝑗(𝑡𝑡)𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗≠𝑖𝑖 ∏ 𝑚𝑚𝑗𝑗(𝑡𝑡)𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖   

= Ω𝑖𝑖(t)∏ �𝑦𝑦𝑗𝑗(𝑡𝑡)/𝑘𝑘𝑗𝑗(𝑡𝑡)𝛼𝛼𝑚𝑚𝑗𝑗(𝑡𝑡)𝛽𝛽�
𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗≠𝑖𝑖 ∏ 𝑘𝑘𝑗𝑗(𝑡𝑡)𝜙𝜙𝜙𝜙𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 ∏ 𝑚𝑚𝑗𝑗(𝑡𝑡)𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗≠𝑖𝑖   

= Ω𝑖𝑖(0)𝑒𝑒𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 ∏ 𝑦𝑦𝑗𝑗(𝑡𝑡)𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 ∏ 𝑘𝑘𝑗𝑗(𝑡𝑡)(𝜙𝜙−𝛼𝛼𝜌𝜌)𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗≠𝑖𝑖 ∏ 𝑚𝑚𝑗𝑗(𝑡𝑡)(𝜑𝜑−𝛽𝛽𝜌𝜌)𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗≠𝑖𝑖 . (9) 

Replacing this expression in the production function, then take logarithms, we obtain 

the production function in a Spatial Durbin form5: 

ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜌𝜌∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑦𝑦𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 + ln𝑘𝑘𝑖𝑖𝑖𝑖𝛼𝛼 + ln𝑚𝑚𝑖𝑖𝑖𝑖𝛽𝛽 + lnΩ𝑖𝑖0 + 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔 + 𝑅𝑅𝑡𝑡′𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖  

+∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑘𝑘𝑗𝑗𝑗𝑗𝑁𝑁
𝑗𝑗=1 (𝜙𝜙 − 𝜌𝜌𝛼𝛼) + ∑ 𝑤𝑤𝑖𝑖𝑖𝑖ln𝑚𝑚𝑗𝑗𝑗𝑗

𝑁𝑁
𝑗𝑗=1 (𝜑𝜑 − 𝜌𝜌𝛽𝛽).  (10) 

Likewise, the matrix form of (10) is given by 

𝑦𝑦 = 𝜌𝜌(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑦𝑦 + 𝑘𝑘𝑘𝑘 + 𝑚𝑚𝑚𝑚 +  ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉  

+(𝜙𝜙 − 𝜌𝜌𝛼𝛼)(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑘𝑘 + (𝜑𝜑 − 𝜌𝜌𝛽𝛽)(𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)𝑚𝑚. (11) 

2.3 Technology Spillovers and Spatial Elasticities 

As demonstrated in LeSage and Pace (2009), for spatial models the usual interpretation of 

𝛼𝛼 and 𝛽𝛽 as elasticities of input factors is not valid. They instead suggest the following 

approach to calculate direct, indirect, and total marginal effects. First resolve the linear 

system for 𝑦𝑦, if 𝜌𝜌 ≠ 0 and if 1/𝜌𝜌 is not an eigenvalue of 𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇, and rewrite Eq. (8) 

and (11) as (12) and (13): 

𝑦𝑦 = 𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑘𝑘 + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑚𝑚 

+(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉� (12) 

𝑦𝑦 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝛼𝛼)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑘𝑘 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 
                                                             
5 Strictly Eq.(12) is a partial spatial Durbin model, the local spatial function of Hicks-neutral technological change is 

omitted since the introduction of ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔𝑁𝑁
𝑗𝑗=1  would be perfect collinearity with 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔. 
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[𝛽𝛽𝛽𝛽 + (𝜑𝜑 − 𝜌𝜌𝛽𝛽)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑚𝑚 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉�. (13) 

Differentiating Eq. (13) with respect to per-worker capital yields the following matrix 

of direct and indirect effects for each industry, where the right-hand side of Eq. (14b) is 

independent of the time index: 

𝐸𝐸𝑘𝑘 ≡ � 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘1

, 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘2

,⋯ , 𝜕𝜕ln𝑦𝑦
𝜕𝜕ln𝑘𝑘𝑁𝑁

�
𝑡𝑡

=

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘1

   𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘2

 ⋯  𝜕𝜕ln𝑦𝑦1
𝜕𝜕ln𝑘𝑘𝑁𝑁

𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘1

   𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘2

  ⋯  𝜕𝜕ln𝑦𝑦2
𝜕𝜕ln𝑘𝑘𝑁𝑁

      ⋮           ⋮        ⋱        ⋮     
𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘1

   𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘2

 ⋯  𝜕𝜕ln𝑦𝑦𝑁𝑁
𝜕𝜕ln𝑘𝑘𝑁𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

𝑡𝑡

 (14a) 

= (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1 �

𝛼𝛼   𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝛼𝛼) …        
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝛼𝛼 …        

⋮ ⋮ ⋱        

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝛼𝛼)  ⋯                   𝛼𝛼           

�. (14b) 

Then the mean direct effect of per-worker capital for all the industries, which we 

denote 𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷, is the average of the diagonal elements of the matrix in Eq. (14b) for the 

SDM model. The indirect effects of per-worker capital, which we denote 𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼, are the 

average row-sum of the off-diagonal elements of the matrix in Eq. (14b). The mean total 

effects of per-worker capital is 𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 (LeSage and Pace, 2009). In the SAR 

model, the direct, indirect and total effects can also be calculated using Eq. (14b) but with 

the off-diagonal elements set equal to zero. Likewise, we can calculate the effects for 

per-worker intermediate 𝑒𝑒𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑒𝑒𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼  and 𝑒𝑒𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 .  Under the assumption of constant 

returns to scale, the effect for 𝑘𝑘 and 𝑚𝑚 are equivalent to the elasticities of capital and 

intermediate inputs. However, in the spatial model the direct elasticity also includes 

feedback effects when the input changes in industry 𝑖𝑖 affect a neighbor industry’s output, 

and this effect on neighbor industries rebounds and affects industry 𝑖𝑖’s output via the 

inter-industry linkage. The indirect elasticity refers to the percentage change in 

industry 𝑖𝑖’s output due to a percentage increase in the sum of the input across all the other 

𝑁𝑁 − 1 industries. Finally, the calculation of total elasticity is based on all 𝑁𝑁 industries 



10 

 

in the sample simultaneously changing their input, not just industry 𝑖𝑖 or the other 𝑁𝑁 − 1 

units (Glass, et al., 2015). It can be shown that the direct elasticity of labor is 𝑒𝑒𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷 =

 1 − 𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑒𝑒𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝐷 and the indirect elasticity of labor is 𝑒𝑒𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼 =  −𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑒𝑒𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼. Therefore 

the total elasticity of labor 𝑒𝑒𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇 =  1 − 𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑒𝑒𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 and constant returns to scale still 

holds in the spatial settings6. 

In the same way, we can describe the Hicks-neutral technical change over time and the 

magnitude of spillovers between the industries through spatial correlation. By 

differentiating Eq. (13) with respect to the time trend, this productivity change spillover 

can be measured by the indirect marginal effect from the spatial model:  

𝑔𝑔𝑡𝑡 ≡ �𝜕𝜕ln𝑦𝑦
𝜕𝜕𝜕𝜕
�
𝑡𝑡

= (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     0         ⋯        0

0          𝜕𝜕𝑅𝑅𝑡𝑡
′

𝜕𝜕𝜕𝜕
𝛿𝛿2   ⋯        0

     ⋮                 ⋮           ⋱         ⋮     
       0                0          ⋯   𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

𝑡𝑡

 (15a) 

=

⎣
⎢
⎢
⎢
⎢
⎡   𝑤𝑤�11

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�12

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2  ⋯    𝑤𝑤�1𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛

  𝑤𝑤�21
𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�22

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2   ⋯   𝑤𝑤�2𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛

            ⋮                         ⋮           ⋱                 ⋮     
  𝑤𝑤�𝑛𝑛1

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿1     𝑤𝑤�𝑛𝑛2

𝜕𝜕𝑅𝑅𝑡𝑡′

𝜕𝜕𝜕𝜕
𝛿𝛿2  ⋯    𝑤𝑤�𝑛𝑛𝑛𝑛  𝜕𝜕𝑅𝑅𝑡𝑡

′

𝜕𝜕𝜕𝜕
𝛿𝛿𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

𝑡𝑡

, (15b) 

where  𝑤𝑤�𝑖𝑖𝑖𝑖 is the element of (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1. The diagonal elements of the matrix in Eq. 

(15b), which we denote as 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡, is the direct effect, which represents the productivity 

change for industry 𝑖𝑖 itself at time 𝑡𝑡. However, the indirect effect has two different 

interpretations depending on which directions to sum the off-diagonal elements. The 

row-sum of off-diagonal elements, which we denote 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟, represents the aggregate 

spillover that each industry received from all of its neighbors through the spatial linkages 

while the compound productivity change for industry 𝑖𝑖, measured by the summation of 

the direct effect and indirect effect received from all other industries, is denoted as 

                                                             
6 Please see Appendix A for the derivations of the elasticities. 
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𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑟𝑟. The column-sum of off-diagonal elements, which we denote 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜 , represents the aggregate spillover that each industry provides its neighbors. 

Likewise, the compound productivity change for industry 𝑖𝑖 measured by the summation 

of direct effect and indirect effect provided to all other industries is denoted as 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑜𝑜. 

2.4 Decomposition of technology spillovers by domestic and international effect 

In the production system of the global value chain, knowledge spillovers not only involve 

industries within a country, but knowledge spillovers also cross national borders. Suppose 

there are two countries 𝑠𝑠  and 𝑟𝑟 , with 𝑄𝑄𝑠𝑠  and 𝑄𝑄𝑟𝑟  industries respectively, in a 

production system with a global value chain, then the spatial weight matrix 𝑊𝑊𝑁𝑁 can be 

split into a block structure such as:  

𝑊𝑊𝑁𝑁 ≡ �𝑊𝑊𝑠𝑠𝑠𝑠 𝑊𝑊𝑠𝑠𝑠𝑠
𝑊𝑊𝑟𝑟𝑟𝑟 𝑊𝑊𝑟𝑟𝑟𝑟

�, (16) 

where 𝑊𝑊𝑠𝑠𝑠𝑠  is 𝑄𝑄𝑠𝑠 × 𝑄𝑄𝑠𝑠  matrix, 𝑊𝑊𝑠𝑠𝑠𝑠  is 𝑄𝑄𝑠𝑠 × 𝑄𝑄𝑟𝑟  matrix, 𝑊𝑊𝑟𝑟𝑟𝑟  is 𝑄𝑄𝑟𝑟 × 𝑄𝑄𝑠𝑠  matrix and 

𝑊𝑊𝑟𝑟𝑟𝑟 is 𝑄𝑄𝑟𝑟 × 𝑄𝑄𝑟𝑟 matrix. 𝑊𝑊𝑠𝑠𝑠𝑠 and 𝑊𝑊𝑟𝑟𝑟𝑟 represent the linkages of the industries within 

the border of each country, and 𝑊𝑊𝑠𝑠𝑠𝑠 and 𝑊𝑊𝑟𝑟𝑟𝑟 represent the linkages of industries across 

country borders. 

In order to decompose the different spillover effects into portion involving the 

domestic value chain and a portion involving the international value chain, we define the 

left multiplier in Eq.(14b) as the global multiplier 𝐺𝐺 ≡ (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁)−1, which represents 

the global interactions that include the feedbacks through higher order of linkages though 

neighbors, and define the local multiplier of country 𝑠𝑠 as 𝐻𝐻𝑠𝑠𝑠𝑠 ≡ �𝛪𝛪𝑄𝑄 − 𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠�
−1

.  This 

latter term we call the local multiplier of a country and it represents the domestic 

interactions of industries within the border of country 𝑠𝑠.  We can define the local 
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multiplier of country 𝑟𝑟 as 𝐻𝐻𝑟𝑟𝑟𝑟 in the same way. Then the global multiplier  𝐺𝐺 can be 

decomposed into7:  

𝐺𝐺 ≡ �𝐺𝐺𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝐺𝐺𝑟𝑟𝑟𝑟

� = �𝐻𝐻𝑠𝑠𝑠𝑠 0
0 𝐻𝐻𝑟𝑟𝑟𝑟

� + �𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠𝐺𝐺𝑟𝑟𝑟𝑟𝐻𝐻𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝜌𝜌𝑊𝑊𝑟𝑟𝑟𝑟𝐺𝐺𝑠𝑠𝑠𝑠𝐻𝐻𝑟𝑟𝑟𝑟

�, (17) 

where the first matrix composed by 𝐻𝐻𝑠𝑠𝑠𝑠 and 𝐻𝐻𝑟𝑟𝑟𝑟 in the diagonal in the right of Eq.(17) 

corresponds to the domestic multiplier, and the second matrix corresponds to the 

international multiplier which captures the international spillover processes: the 

off-diagonal blocks represent the diffusions between the two countries and the diagonal 

blocks represent the country’s diffusion firstly go aboard and then feedback to itself.  

That is, the sub-matrix of 𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠𝐺𝐺𝑟𝑟𝑟𝑟𝐻𝐻𝑠𝑠𝑠𝑠 corresponds to the process of the technology 

firstly transmitted from country 𝑠𝑠 to country 𝑟𝑟 directly and then retransmitted back to 

country 𝑠𝑠 and diffused among the industries within country 𝑠𝑠.  

Following Eq.(14b), the matrix 𝐸𝐸𝑘𝑘  measuring the direct and indirect effects of 

per-worker capital can be decomposed into a domestic effect, 𝐸𝐸𝐸𝐸𝑘𝑘, and an international 

effect, 𝐸𝐸𝐸𝐸𝑘𝑘. 

𝐸𝐸𝐸𝐸𝑘𝑘 ≡ �𝐻𝐻𝑠𝑠𝑠𝑠 0
0 𝐻𝐻𝑟𝑟𝑟𝑟

� �

𝛼𝛼   𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝛼𝛼) …        
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝛼𝛼 …        

⋮ ⋮ ⋱        

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝛼𝛼)  ⋯                   𝛼𝛼           

� (18) 

𝐸𝐸𝐸𝐸𝑘𝑘 ≡

�𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠𝐺𝐺𝑟𝑟𝑟𝑟𝐻𝐻𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝜌𝜌𝑊𝑊𝑟𝑟𝑟𝑟𝐺𝐺𝑠𝑠𝑠𝑠𝐻𝐻𝑟𝑟𝑟𝑟

� �

𝛼𝛼   𝑤𝑤12(𝜙𝜙 − 𝜌𝜌𝛼𝛼) …        
𝑤𝑤21(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝛼𝛼 …        

⋮ ⋮ ⋱        

𝑤𝑤1𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)
𝑤𝑤2𝑁𝑁(𝜙𝜙 − 𝜌𝜌𝛼𝛼)

⋮
𝑤𝑤𝑁𝑁1(𝜙𝜙 − 𝜌𝜌𝛼𝛼) 𝑤𝑤𝑁𝑁2(𝜙𝜙 − 𝜌𝜌𝛼𝛼)  ⋯                   𝛼𝛼           

�. (19) 

With the matrices of 𝐸𝐸𝐸𝐸𝑘𝑘 and 𝐸𝐸𝐸𝐸𝑘𝑘, we can calculate the mean direct, indirect and 

total domestic effects of per-worker capital expressed as  𝑒𝑒𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑒𝑒𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  and 𝑒𝑒𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 

                                                             

7 With the definition of 𝐺𝐺, we have: (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝑊𝑊𝑁𝑁) 𝐺𝐺 = �
𝛪𝛪𝑄𝑄 − 𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠 𝑊𝑊𝑠𝑠𝑠𝑠

𝑊𝑊𝑟𝑟𝑟𝑟 𝛪𝛪𝑄𝑄 − 𝜌𝜌𝑊𝑊𝑟𝑟𝑟𝑟
� �𝐺𝐺𝑠𝑠𝑠𝑠 𝐺𝐺𝑠𝑠𝑠𝑠
𝐺𝐺𝑟𝑟𝑟𝑟 𝐺𝐺𝑟𝑟𝑟𝑟

� = �
𝛪𝛪𝑄𝑄 0
0 𝛪𝛪𝑄𝑄

� then we can 

get the relationship of 𝐺𝐺𝑠𝑠𝑠𝑠  and 𝐻𝐻𝑠𝑠𝑠𝑠  as  �𝛪𝛪𝑄𝑄 + 𝜌𝜌𝑊𝑊𝑠𝑠𝑠𝑠𝐺𝐺𝑟𝑟𝑟𝑟�𝐻𝐻𝑠𝑠𝑠𝑠 = 𝐺𝐺𝑠𝑠𝑠𝑠  and the relationship of 𝐺𝐺𝑟𝑟𝑟𝑟  and 𝐻𝐻𝑟𝑟𝑟𝑟   �𝛪𝛪𝑄𝑄 +

𝜌𝜌𝑊𝑊𝑟𝑟𝑟𝑟𝐺𝐺𝑠𝑠𝑠𝑠�𝐻𝐻𝑟𝑟𝑟𝑟 = 𝐺𝐺𝑟𝑟𝑟𝑟. 
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respectively, and direct, indirect and total international effects of per-worker capital 

expressed as 𝑒𝑒𝑒𝑒𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑒𝑒𝑒𝑒𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼  and 𝑒𝑒𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇  respectively. Correspondingly, we can get the 

decomposition results for other inputs and the time trend of productivity.  

This two-country setting easily can be extended to a multi-country scenario by setting 

𝐸𝐸𝐸𝐸𝑘𝑘 as a block diagonal matrix composed of any given number of country blocks.  

With 𝐸𝐸𝐸𝐸𝑘𝑘 = 𝐸𝐸𝑘𝑘 − 𝐸𝐸𝐸𝐸𝑘𝑘, one can calculate the corresponding effects for the capital input. 

 

3 Estimation 

We outline the estimator for the SAR specification developed in the previous section.  

The SAR specification associated with Eq.(7) is: 

0
1

,
N

it ij jt it i t t i it
j

y w y X Z R R u vρ β γ δ
=

′ ′ ′ ′= + + + + +∑  (20) 

where wij is the ijth element of the (N×N) spatial weights matrix WN, to be given 

exogenously, ui is assumed to be an iid zero mean random variable with covariance 

matrix∆ , and itν  is an iid disturbance term that follows a 2(0, )N νσ  distribution. The 

matrix form of Eq. (20) is given by8: 

0( ) ,N Ty W I y X QU Vρ β γ δ= ⊗ + + + + +Z R  (21) 

where  y   and  V   are  1NT ×   vectors,  X   is an  NT K×   matrix,

( )TZ ι= ⊗Z  ,  Z   is an  N J×   matrix,  Tι   is a  T   dimensional vector of 

ones,  ( )N Rι= ⊗R  ,  1 2( , , , )TR R R R ′=   ,  ( )NQ diag Ri= ⊗   is an  NT LN×   

                                                             
8The observations are stacked with t being the fast-running index and i the slow-running index, i.e.,

11 12 1 1( , , , , , , , )T N NTy y y y y y ′=     . The order of observations is very important for writing correct codes. 

In typical spatial analysis literature, the slower index is over time, the faster index is over individuals. 
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matrix,  β   is a  1K ×   vector,  γ   is a  1J ×   vector,  0δ   is an  1L×   

vector, and  U   is an  1LN ×   vector. 

 The Spatial Durbin specification associated with Eq. (10) is: 

0
1 1

,
N N

it ij jt it ij jt i t t i it
j j

y w y X w X Z R R u vρ β λ γ δ
= =

′ ′ ′ ′ ′= + + + + + +∑ ∑  (22) 

where  ijw   is the  ij  th element of  ( )N N×   spatial weights matrix  NW  , to be 

given exogenously,  iu   is assumed as  iid   zero mean random variables with 

covariance matrix  ∆  , and  itv  , is a random noise following  2(0, )vN σ  9. In 

addition, the matrix form of Eq.(22) is given by: 

0( ) ( ) ,N T N Ty W I y X W I X QU Vρ β γ δ= ⊗ + + ⊗ + + + +Z Rλ  (23) 

where  y   and  V   are  1NT ×   vectors,  X   is an  NT K×   matrix,  

( )TZ ι= ⊗Z  ,  Z   is  N J×   matrix,  Tι   is a  T   dimensional vector of ones,  

( )N Rι= ⊗R  ,  1 2( , , , )TR R R R ′=   ,  ( )NQ diag Ri= ⊗   is an  NT LN×   matrix,  

β   is a  1K ×   vector,  γ   is a  1J ×   vector,  0δ   is an  1L×   vector, and  

U   is an  1LN ×   vector. 

 Production functions are typically estimated by using various parametric, 

nonparametric, and semi-parametric techniques. A standard approach to production 

function estimation is to adhere to the average production technology instead of the 

best-practice technology, which is accomplished in the stochastic frontier literature by 

neglecting the assumption that all producers are cost or profit efficient. Minimal 

differences, if any differences exist at all, usually appear in the estimates of the basic 

production model parameters, such as in output elasticities, among others. However, the 
                                                             
9We may want to specify different spatial correlation structures on dependent variable and independent variables.  

However, we use the same dependence structure for both variables. 
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stochastic frontier analysis (SFA) approach can decompose the Solow-type residual into 

two components.  The identification of the decomposition of TFP growth into separate 

efficiency and technical change components is based on the assumption that the average 

production function represents the maximum level of output given the levels of inputs on 

the average. Shifts in this average level of productivity over time, which are usually 

represented as a common trend by using either a time variable or a time index, indicates 

technical change. Inefficiency is interpreted as the productivity of a unit at a specific time 

period relative to the average best-practice production frontier, and it typically includes a 

one-sided term (negative) that represents the short-fall in a firm's average production 

relative to a benchmark set by the most efficient firm. One-sided distributions, such as 

half-normal, truncated normal, exponential, or gamma distribution, are often used in 

parametric models. Schmidt and Sickles (SS) (1984) and Cornwell, Schmidt, and Sickles 

(CSS) (1990) suggested the avoidance of strong distributional assumptions by utilizing 

the structure of a panel production frontier.  Schmidt and Sickles (1984) assumed 

inefficiency to be time-invariant and unit-specific, while Cornwell et al. (1990)  relaxed 

the time-invariant assumption by introducing a flexibly parametrized function of time, 

thereby replacing individual fixed effects. In the present study, we follow the CSS 

method as it allows us to estimate time-varying efficiency without requiring further 

distributional assumptions on the one-sided efficiency term. 

 The non-spatial CSS model, given in Eq. (4) can be estimated via three techniques: 

within transformation, generalized least squares, and efficient instrumental variable 

approach. However, the extended models (Eqs.7 and 10) have several difficulties in 

estimation because they include additional spatially correlated variables. A 

quasi-maximum likelihood estimation (QMLE) is thus used in our analysis. QMLE can 

provide robust standard errors against misspecification of the error distributions.  QMLE 

enables us to minimize the number of parameters to be estimated via the concentrated 

likelihood function instead of using the full likelihood function. We typically substitute 
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the closed-form solutions of a set of parameters into the likelihood function, and the 

resultant concentrated likelihood function becomes a function of spatial coefficient 

parameters only. The optimization with the concentrated likelihood is known to give the 

same maximum likelihood estimates after maximizing the full likelihood.  We will 

outline the estimation procedure here briefly. The details are presented in Appendix B 

and are from Han (2016).     

 We can find closed-form solutions for the parameters, except for the spatial 

autoregressive parameter  ρ  , by using the first-order conditions of the likelihood 

functions of Eqs.7 and 10. The spatial parameters of  λ   are the coefficients of the 

spatially weighted independent variables. We treat the spatially weighted independent 

variables as additional regressors. The substitution of the closed-form solutions into the 

likelihood functions gives the concentrated likelihood functions with  ρ   as the only 

unknown variable. However, ρ̂ can be obtained by maximizing the concentrated 

likelihood function.  Hence, all other parameters can be found by using  ρ̂  . Once we 

obtain the estimates of the parameters  , , iβ ρ δ  , and  2
vσ  , we can recursively solve 

for an estimate of  itα  , although we cannot separately identify  0δ   and  iu  . By 

using the estimate of  itα  , we can obtain the relative inefficiency measure following SS 

and CSS. In particular, from Eq.??, we know the estimate of  itα   is ˆˆ .it t iRα δ′=  

 Estimates of the frontier intercept  tα   and the time-dependent relative inefficiency 

measure  itu   can be derived as10: 

                                                             

10Hence, the relative efficiency score can be written as  
 ˆitu

itEFF e−=  . 
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ˆ ˆmax( ),

ˆ ˆˆ .

t jtj

it t itu

aa

aa

=

= −
 

4 Data 

International comparisons of the patterns of output, input and productivity are very 

challenging (Jorgenson, et al., 2012). We integrate several databases for the empirical 

analysis of the productivities under the global value chain labor-division network. The 

countries in our sample are United States, China, Japan, Korea and India, which are the 

main economies in the Asia & Pacific area. The international production network has 

rapidly developed among these countries since 1980’s. We extract the output measures of 

gross output and input measures of capital service, labor service and intermediate input 

from the KLEMS database.  

The WORLD KLEMS database provided the quantity and price indices data for the 

United States, Japan, Korea and India.  2005 is the reference year11.  Data for China 

are collected from the China Industrial Productivity (CIP) Database, which provided the 

real and nominal gross output and intermediate input by reconstructing China’s 

input-output table (Wu and Keiko, 2015; Wu, 2015; Wu, et al, 2015). We calculate the 

growth rates for gross output and intermediate input in constant prices by single deflation. 

CIP also provided the capital and labor input indices which are consistent with the 

KLEMS database and we converted the reference year from 1990 to 2005.  

The inter-country input-output data are draw from the World Input-Output database 

(WIOD) database. We match and aggregate some industries since there are some 

difference in the industry classification across the databases of KLEMS, WIOD and CIP, 

although they are all broadly consistent with the ISIC revision 3. The nominal volumes 

                                                             
11 In Asia KLEMS database, the reference years of the indices for Korea is 2000, and the labor and capital indices for 

Korea is 1981. The reference years for other indices are 2005, which is in accordance with US KLEMS data. 
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for each index are used to generate the weights for calculating the input and output 

indices of the aggregated industries. We omitted non-market economy industries, which 

are mostly local public services that include Housing, Public Administration and Defense, 

Education, Health and Social Work, Other Community, Social and Personal Services12. 

The industry classifications we use are listed in Table 1. The sample period is 1980-2010. 

We extract industry-level linkages among the five countries from the input-output table 

for 1995, which is the mid-year of the sample period.  

 

 Table 1: Industry classifications and codes 

No.  Industry ISIC Rev. 3 

1 Agriculture, Hunting, Forestry and Fishing AtB 

2 Mining and Quarrying C 

3 Food , Beverages and Tobacco 15t16 

4 Textiles and Textile, Leather, leather and 

footwear 

17t19 

5 Wood and of Wood and Cork 20 

6 Pulp, Paper, Paper , Printing and 

Publishing 

21t22 

7 Coke, Refined Petroleum and Nuclear Fuel 23 

8 Chemicals and Chemical 24 

9 Rubber and Plastics 25 

10 Other Non-Metallic Mineral 26 

11 Basic Metals and Fabricated Metal 27t28 

12 Machinery, Nec 29 

                                                             
12 We also remove the whole and retail trade, Renting of Machine and Equipment and Other Business Activities in 

India for the data are missing. 



19 

 

13 Electrical and Optical Equipment 30t33 

14 Transport Equipment 34t35 

15 Manufacturing Nec; Recycling 36t37 

16 Electricity, Gas and Water Supply E 

17 Construction F 

18 Wholesale and Retail trade 50to52 

19 Hotels and Restaurants H 

20 Transport, storage & post services 60t64 

21 Financial Intermediation J 

22 Renting of Machine and Equipment and 

Other Business Activities 
71t74 

 

International trade has been an important channel for transmitting growth across 

countries (Ho, et al., 2013). Coe and Helpman (1995) show that domestic productivity 

depends on the import share of a weighted sum of R&D expenditure in other countries. 

Ertur and Koch (2011) use the average bilateral trade flow as spatial weight matrix in the 

technological interdependence study of economic growth. We use the inter-industry 

intermediate flows in the World input-output table to construct the spatial weight matrix 

on an industry level, as the intermediates embody technical know-how and are the main 

drivers in acquiring knowledge from other industries through domestic and international 

supply chains. For this reason we use the lower triangular matrix of the input-output table 

to present the channel of spillover that based on the inputs from upstream industries.  

We also examine the channel of spillovers through production for downstream 

industries by exploiting the upper triangular matrix. The spatial weights matrices are 

expressed as 𝑊𝑊1  with elements of 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖  for ∀𝑖𝑖 > 𝑗𝑗 , indicating 

intermediate inputs from industry i to industry j in nominal US dollar values, and 𝑊𝑊2 

with elements of 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖  for  ∀𝑗𝑗 > 𝑖𝑖 , indicating intermediate outputs of 
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industry i to industry j. The diagonal elements of 𝑊𝑊1 and 𝑊𝑊2 are all 0. Elhorst (2001) 

propose a normalization method by dividing the matrix by the maximum eigenvalue 

when row normalization may cause the matrix to lose its economic interpretation of 

distance decay. However, in this paper, we assumes that the productivity spillover is 

dependent on the share weighted sum of the productivity of their intermediate suppliers 

(or users)13, which is consistent with the seminal article of Coe and Helpman (1995). 

Therefore, 𝑊𝑊1 and 𝑊𝑊2 are row normalized to generate the spatial weight matrix.  

5 Empirical results 

We model the industry-specific productivity growth with 𝑅𝑅(𝑡𝑡)′𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑡𝑡 to and country 

dummies to control for different technology states in different countries. To avoid 

possible endogeneity problems between input factor levels and productivity, we lag the 

inputs one period (Ackerberg, et al., 2015).  In order to control for possible endogeneity 

between spatial linkages and output, we use the input-output table in the mid-year of the 

sample period (i.e. 1995) to construct the spatial weight matrices following the spatial 

literature that address the constructions of socioeconomic weight matrices (Case, et al., 

1993; Cohen and Paul, 2004). 

 

                                                             

13 This is more intuitive than assuming spillover to be proportional to the value of linkage, by normalizing 

the weight matrix by maximum eigenvalue, i.e. small enterprise may be more influenced by its major 

supplier or customer than big enterprise, although big company may use more products from the same 

supplier (or sell more products to the same customer) than the small company. 
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5.1 Estimations of Production Functions 

 In Table 1, we provide estimates of the Solow-type production function for the 

industries for our selected countries, without a spatial specification in Eq. (4).  We use 

the Cornwell, Schmidt, Sickles (CSS) (1990) estimator.  The CSS estimator with 

time-varying fixed effects (CSSW), and its special case of time-invariant fixed effects 

introduced by Schmidt and Sickles (SS), are based on standard projections used in the 

average production approach but with the added option to decompose the error term from 

the within residuals after, e.g., a fixed effects regression.  In the stochastic frontier 

analysis paradigm, when no scale economies exist, and they do not appear to be in this 

analysis, TFP change = technical change (coefficient of year dummies) + technical 

efficiency change (CSS estimated efficiency). When estimating the average production 

function, we estimate the coefficients and TFP as the Solow residual. One other aspect of 

the SS and the CSS slope estimates is that they also are semiparametric efficient when the 

joint distribution of the effects and the regressors are specified non-parametrically and are 

equivalent to the standard panel fixed effect estimates when the fixed effects and means 

of the regressors are correlated, such as in the Mundlak and Pesaran setups (Park, Sickles, 

and Simar (JOE, 1998, 2003, 2007). However, use of the decomposition of TFP into 

efficiency and an innovation component is often useful and informative. 

The dependent variable is gross-output index. All coefficient estimates for the factor 

inputs are statistically significant. The coefficients of inputs can be interpreted as output 

elasticities. The elasticity of intermediate input is the largest, while capital is the smallest. 

We also can estimate the parameters for the time trend of productivity in the CSS random 

effects model (CSSG).  Hausman-Wu statistic for the fixed effects v. random effects 

specification of the CSS estimator is 22.408 with a p-value of 0.803 and thus we do not 

reject the time-varying random effects specification.  The coefficient on the Time 
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variable is about 0.009 which implies the average growth rate of the economy is about 

0.9% in this period.  

 

TABLE 1 
Estimate of Non-spatial Cobb-Douglas Production Function 

 (1) (2) 

Variables CSSW CSSG 

lnk(α) .110*** 

(.012) 

.108*** 

(.011) 

lnm(β) .576*** 

(.011) 

.591*** 

(.010) 

Country-dummy No Yes 

Year-dummy Yes Yes 

Intercept  
-0.084* 

(.044) 

Time  
.009*** 

(.002) 

Implied γ .314 .301 

# of industries 108 108 

# of obs. 3132 3132 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

 

The first and last four columns of Table 2 provide estimates of the SAR and SDM 

specified production functions with spatial spillovers based on Eq. (8) and Eq. (10), 
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respectively. All of the coefficients for the factor inputs in the SAR and SDM 

specifications are statistically significant at the 1% significance level. The coefficient of 

the spatially lagged dependent variableρ is estimated in a range of 0.223 to 0.287 for 

SAR and 0.283 to 0.348 for SDM.. The parameters of ϕ and φ, which represent the local 

spatial relationships of factor inputs, can be calculated based on the expressions in Eq. 

(10). In the SDM-upstream model, ϕ and φ are both positive, whereas the coefficient of 

the spatially weighted capital input is not significant. In the SDM-downstream model, the 

coefficients of the spatially weighted independent variables are significant, and ϕ and φ 

are negative and positive respectively, which suggests that the neighbour’s capital and 

intermediate inputs have a negative and positive effect respectively for the productivity of 

an industry. The intuitive implication for a negative effect is related to the indirect effect 

that we more fully explain in Section 5.2 below.   
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TABLE 2 

Estimate of SAR and SDM Production Function 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 SAR-upstream SAR-downstream SDM-upstream SDM-downstream 

 CSSW CSSG CSSW CSSG CSSW CSSG CSSW CSSG 

lnk .094*** .094*** .103*** .101*** .098*** .096*** .108*** .107*** 

(.011) (.010) (.011) (.010) (.011) (.010) (.011) (.010) 

lnm .568*** .583*** .566*** .580*** .568*** .583*** .570*** .583*** 

 (.011) (.010) (.011) (.010) (.011) (.010) (.011) (.010) 

W•lnk     .016 .011 -.042* -.052** 

     (.039) (.033) (.024) (.022) 

W•lnm     -.137*** -.090** -.136*** -.077** 

     (.048) (.045) (.036) (.034) 

Country-dummy No Yes No Yes No Yes No Yes 

Year- 

dummy 
Yes Yes Yes Yes Yes Yes Yes Yes 

Intercept  .009  .005  -.005  -.040 

  (.044)  (.043)  (.047)  (.045) 

Time  .001  .002  .002  .005** 

  (.002)  (.002)  (.002)  (.002) 

W•lny(ρ) .287*** .259*** .239*** .223*** .348*** .302*** .331*** .283*** 

 (.026) (.019) (.021) (.017) (.031) (.031) (.025) (.025) 

σv
2 .009 .009 .009 .009 .009 .009 .009 .009 

R2 .814 .817 .819 .824 .812 .816 .815 .819 

Adjusted R2 .798 .802 .804 .808 .796 .799 .799 .803 

LL 2988.595 2897.538 2994.418 2905.608 2993.257 2901.253 3009.440 2918.744 
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Impliedγ .337 .323 .331 .318 .334 .321 .321 .311 

Implied ϕ     .050 .040 -.006 -.021 

Implied φ     .061 .087 .053 .088 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

The intercept terms estimated with the CSSG model are positive in the SAR model and 

negative in SDM model but insignificantly different from zero. In the SAR and 

SDM-upstream model, the coefficients for linear time trends for both specifications of 

spatial weight matrices are small and insignificant from zero. However, in the 

SDM-downstream model, the estimated parameter for the time trend is 0.005 which is 

significantly different from zero for the spatial weight matrices specified by the output 

intermediate flows.  

In Figure 2 we calculate aggregate productivity growth for the five countries based on 

the CSSG estimation of the non-spatial, SAR and SDM models. Domar weights are used 

for the aggregation of economy-wide productivity growth that was introduced and 

developed by Domar (1961) and Hulten (1978).  The weights account for the effects of 

productivity changes of an individual industry on those downstream industries that 

benefit from more efficiently produced intermediate inputs14. The weighted average 

growth in the non-spatial model is higher than the SAR models and is close to the SDM 

models. We can compare the goodness-of-fit of the SAR and SDM model using the 

likelihood ratio test as SAR is nested in SDM. The LR test statistics are 7.43 and 26.27 

for the input and output spatial weight matrices, respectively, which suggests that the 

                                                             
14 To be consistent with general practices in the growth literature, we follow the methodology suggested by OECD 

(2001) to calculate the Domar weights by considering each country as a closed economy.  This does not take account 

of the productivity change effect that comes from the imported intermediate inputs during our aggregation process on 

the country level. The imported intermediates and intra-industry flows are removed from the gross output for the 

calculation of Domar weights. We also provide the aggregation result with Domar weights that consider each country as 

an open economy and incorporate the influence of productivity change of imported intermediate inputs and simple 

gross output weighted average productivity change on country level in Appendix D. 
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SDM specification is more statistically significant than SAR specification, which in turn 

implies that there exist capital and intermediate externalities in the growth process. 

Therefore, the models with spatial weighted independent variables are the appropriate 

specification for the samples15. Furthermore, the partial Spatial Durbin model with the 

spatial weight matrix based on downstream linkages is our preferred model because it 

yields the highest log likelihood values. The estimated technical change in the 

SDM-downstream model suggests that China has the fastest aggregate productivity 

growth of 2.64%. But comparing this with the value of 3.86% in the non-spatial model, 

ignoring the spatial interactions appears to leads to an overestimation of China’s 

productivity growth. However, for the developed countries, such as the US and Japan, the 

non-spatial model results indicate a much lower level of TFP growth rates. They are 0.87% 

and 0.61% in the non-spatial model and 1.36% and 1.33% respectively in 

SDM-downstream model. 

 

FIGURE 2 

Aggregate productivity growth of each country by model 

                                                             
15 The unrealistic assumption of a common ratio of the direct and indirect elasticities for all production factors in the 

SAR model, as discussed by Elhorst (2014) and Glass et al. (2015), may lead to misspecification in empirical studies of 

economic growth. 
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The productivity level and growth of each industry can be measured based on the 

CSSG estimations of the SDM-downstream model. In the US, the industry of Electrical 

and Optical Equipment (30t33) exhibits the most rapid productivity growth not only in 

US but also in the world with a growth rate of 6.6%, whereas the industry of 

Construction (F) is the lowest and falls at the rate of -1.2%. Electrical and Optical 

Equipment (30t33) is also the fastest growing industry in both Japan and Korea, with a 

2.7% and 4.2% growth rate respectively. Manufacturing Nec and Recycling (36t37) in 

China and Transport Equipment (36t37) in India show the most rapid growth in each 

country at 6.5% and 3.1% respectively. In Figure 3 we list the industries that exhibit the 

highest productivity growth in the five countries based on our preferred 

SDM-downstream model.  

 

 

 

 
FIGURE 3 

Highest Productivity Growth Industries in Five Countries 

(a) Productivity Level (b) Productivity Growth 
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5.2 The elasticity of input factors and spatial spillovers 

The coefficients of the independent variables represent the output elasticities of input 

factors in a non-spatial production function setting. Whereas, when cross-section 

interaction exists, the output change of one industry due to the adjustment of the factor 

input should not only consider changes in the factor input itself, but also induced changes 

in its neighbor’s inputs. Therefore the output elasticity for the all the industries should be 

a 𝑁𝑁 × 𝑁𝑁  matrix. As suggested by LeSage and Pace (2009), we diagonalize the 

coefficient of independent variables and add the local interaction from neighbor’s inputs, 

then multiply the inverse matrix, (𝛪𝛪𝑁𝑁 − 𝜌𝜌𝜌𝜌)−1 , to derive the expressions for the 

matrix-formed output elasticity of input factors given in Eq. (14). Hence, an elasticity in a 

spatial setting includes two parts: the internal elasticity expressed by the direct effect, 

which is the average along the diagonal, and external elasticity measured by the indirect 

effect, which is the average of the row (or column) sums of the off-diagonal elements. 

Average total output elasticity is expressed by the sum of the direct and indirect effects.  

We calculate the direct, indirect and total effects. To test for the significance of these 

effects, we follow the algorithms LeSage and Pace (2009) suggested by drawing 

parameter estimates 1000 times based on the variance-covariance matrix of the 

parameters to get the corresponding distribution of these effects, and then we compute 

their means and standard deviations based on the simulation. 

The top row of Table 2 shows the internal, external and total output elasticity of each 

factor input in the SDM-downstream model. The internal elasticities of capital and 

intermediate inputs are 0.109 and 0.590 respectively and both are statistically significant, 

which is approximately consistent with the results in the non-spatial model. The external 

elasticities reflect the spillover effects of the input factors. From the perspective of 

industry production, the spillover effects are two-fold. When the factor input of industry 

A is increased, the output of its neighbor, industry B, may decrease because of factor 
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scarcities. However, the increased input of industry A will also increase industry A’s 

output, which will improve the supply of industry A’s intermediate inputs for industry B 

through the industrial linkages and hence increase the output of industry B. The external 

elasticities of capital and intermediate inputs in Table 2 are 0.051 and 0.193 respectively, 

which suggest that the complementary relationship on capital and intermediate input 

outweighs the competitive relationship among industries for scarce inputs, which implies 

that the output of the industry may benefit when its neighbor industries are expanding 

their capital and intermediate inputs. The output elasticity of the labor input can be 

decomposed into its internal and external portions, which are 0.302 and -0.244, resulting 

in a total elasticity of 0.058. The negative external elasticity suggests a negative spillover 

effect of a neighbor industry’s labor input. 

 

 

TABLE 2 

Internal, External and Total Elasticity of input factors 

SDM-downst

ream 

 Internal External Total 

 Elasticity asy.t-stat Elasticity asy.t-stat Elasticity asy.t-stat 

 Capital 0.109*** 9.810 0.051*** 3.123 0.160*** 7.097 

overall Intermediate 0.590*** 58.188 0.193*** 6.510 0.783*** 23.509 

 Labor 0.302 - -0.244 - 0.058 - 

 Capital 0.109*** 9.810 0.048*** 3.129 0.156*** 7.257 

domestic Intermediate 0.590*** 58.192 0.181*** 6.589 0.770*** 24.722 

 Labor 0.302 - -0.228 - 0.073 - 

 Capital 0.000*** 2.878 0.003*** 3.031 0.003*** 3.030 

international Intermediate 0.000*** 4.568 0.013*** 5.525 0.013*** 5.523 

 Labor 0.000 - -0.016 - -0.016 - 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 
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We next decompose the elasticities based on Eq. (18) and Eq. (19) in order to measure 

the spillovers that spread among domestic and international industries separately. As 

shown in the last 2 rows of Table 2, for the internal elasticity, the international part is 

negligible because only a small part of the feedback component in the direct effect can be 

attributed to the international linkage. From the decomposition of the external elasticity, 

however, we find that international spillovers constitute about 6.5% of the external 

elasticity for each of the factor inputs. Since the calculation is based on a time-invariant 

specification of the spatial weight matrix in 1995, and the growth of international 

intermediate trade has been much higher than the growth of world GDP since then, we 

may expect an increasing trend for the international part in the overall spillover16.  

5.3 Hicks-neutral technical change and spatial spillovers 

One advantage of our spatial model with heterogenetic technical change is that we can 

estimate the industry-specific Hicks-neutral technical change and its direct and indirect 

effect in the global value chain setting. Complete empirical results of Hicks-neutral 

technical change in the SDM-downstream model for all cross-sectional samples are 

displayed in Table 3. The Domar-weighted aggregate of the five countries are shown in 

Figure 4. The direct and indirect effects, and their decompositions into domestic and 

international spillovers, are constructed from Eq. (15b) and Eq. (19). Standard errors for 

the direct and indirect effects are based on simulations wherein we bootstrap 1000 times 

to calculate the variance-covariance matrix for 𝛿𝛿𝑖𝑖 and other parameters in SDM model, 

then follow same process as LeSage and Pace (2009) to get significance levels.  

                                                             
16 We estimate the model with spatial weight matrix constructed by the world input-output table of 2010. The 

international spillovers constitute about 9.8% of the external elasticity of each factor inputs. The elasticity results are 

given in Appendix C. 
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The left side of Figure 4 represents the technological growth measured by the direct 

and indirect effects from the receiving perspective. The direct effect represents the 

technological growth by the industry itself that mostly comes from the independent 

innovation or improvement within the industry. On country level, China exhibits the most 

rapid internal technological growth measured by the direct effect at 5.92%, while the 

growth rates for Korea, India, Japan and US are 4.78%, 4.09%, 3.89% and 3.84%, 

respectively. The indirect effects represent the Hicks-neutral technology spillovers that 

industries receive through producing intermediate inputs for their user industries. The 

weighted average indirect effects for China, Korea, India, US and Japan are 2.68%, 

1.90%, 1.60%, 1.56% and 1.44%, respectively. The spillovers received account for 27% 

to 31% of the total technological growth of the countries in our sample.  
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TABLE 3 

Technical change and spatial spillovers for SDM-downstream model 

 Direct 
Received Offered 

 Indirect  Total  Indirect  Total Sum Domestic Int'l Sum Domestic Int'l 
US.s1 0.0308*** 0.0058** 0.0053** 0.0006** 0.0366*** 0.0135** 0.0108** 0.0027** 0.0443*** 
US.s2 0.0212*** 0.0086*** 0.0084*** 0.0002** 0.0298*** 0.0082** 0.0078** 0.0004** 0.0294*** 
US.s3 0.0172*** 0.0082*** 0.0080*** 0.0002* 0.0254*** 0.0083** 0.0075** 0.0007** 0.0255*** 
US.s4 0.0216*** 0.0088*** 0.0085*** 0.0004** 0.0304*** 0.0033** 0.0028** 0.0005** 0.0249*** 
US.s5 0.0117* 0.0067** 0.0064*** 0.0003** 0.0184*** 0.0023*** 0.0021*** 0.0002*** 0.0140* 
US.s6 0.0085 0.0098*** 0.0094*** 0.0004** 0.0183*** 0.0041*** 0.0035*** 0.0006*** 0.0126*** 
US.s7 0.0319*** 0.0072*** 0.0070*** 0.0002** 0.0391*** 0.0137** 0.0126*** 0.0012** 0.0456*** 
US.s8 0.0150*** 0.0094*** 0.0086*** 0.0008*** 0.0244*** 0.0065* 0.0048* 0.0017* 0.0215*** 
US.s9 0.0193*** 0.0084*** 0.0082*** 0.0002* 0.0277*** 0.0078** 0.0073** 0.0005** 0.0271*** 
US.s10 0.0219*** 0.0063** 0.0061** 0.0002* 0.0282*** 0.0036** 0.0033** 0.0003* 0.0255*** 
US.s11 0.0187*** 0.0091*** 0.0088*** 0.0003** 0.0277*** 0.0132** 0.0122** 0.0010* 0.0319*** 
US.s12 0.0146*** 0.0080*** 0.0076*** 0.0004** 0.0226*** 0.0048* 0.0041* 0.0008* 0.0195*** 
US.s13 0.0795*** 0.0072*** 0.0059*** 0.0013*** 0.0867*** 0.0439*** 0.0332*** 0.0107** 0.1234*** 
US.s14 0.0175*** 0.0104*** 0.0101*** 0.0003** 0.0279*** 0.0099* 0.0090** 0.0010** 0.0274*** 
US.s15 0.0310*** 0.0078*** 0.0076*** 0.0002* 0.0388*** 0.0058** 0.0054** 0.0004* 0.0368*** 
US.s16 0.0171*** 0.0085*** 0.0085*** 0.0001*** 0.0256*** 0.0037** 0.0036** 0.0001** 0.0208*** 
US.s17 0.0014 0.0092*** 0.0091*** 0.0001*** 0.0107* 0.0009* 0.0009* 0.0000* 0.0024* 
US.s18 0.0320*** 0.0081*** 0.0080*** 0.0002* 0.0401*** 0.0194*** 0.0185*** 0.0009*** 0.0513*** 
US.s19 0.0146*** 0.0079*** 0.0079*** 0.0001*** 0.0225*** 0.0066* 0.0063* 0.0002* 0.0211** 
US.s20 0.0247*** 0.0086*** 0.0082*** 0.0004** 0.0333*** 0.0159** 0.0138** 0.0021** 0.0406*** 
US.s21 0.0188*** 0.0085*** 0.0081*** 0.0004** 0.0273*** 0.0018** 0.0014** 0.0003* 0.0206*** 
US.s22 0.0093 0.0083*** 0.0081*** 0.0002** 0.0176*** 0.0027*** 0.0024*** 0.0003*** 0.0120*** 
CN.s1 0.0002 0.0136*** 0.0133*** 0.0003** 0.0138** -0.0000** -0.0000** -0.0000** 0.0002** 
CN.s2 -0.0178*** 0.0114*** 0.0110*** 0.0004** -0.0065** -0.0091** -0.0087** -0.0004* -0.0269*** 
CN.s3 0.0490*** 0.0028*** 0.0025*** 0.0003* 0.0518*** 0.0252*** 0.0244*** 0.0008* 0.0742*** 
CN.s4 0.0423*** 0.0091*** 0.0080*** 0.0011** 0.0514*** 0.0170*** 0.0127*** 0.0043*** 0.0594*** 
CN.s5 0.0645*** 0.0097*** 0.0093*** 0.0004** 0.0743*** 0.0089*** 0.0085*** 0.0005** 0.0735*** 
CN.s6 0.0432*** 0.0106*** 0.0102*** 0.0004** 0.0538*** 0.0089*** 0.0085*** 0.0004** 0.0521*** 
CN.s7 0.0186*** 0.0061** 0.0059** 0.0002** 0.0247*** 0.0066** 0.0065** 0.0001** 0.0252*** 
CN.s8 0.0457*** 0.0110*** 0.0106*** 0.0004** 0.0567*** 0.0185*** 0.0178*** 0.0007** 0.0642*** 
CN.s9 0.0452*** 0.0138*** 0.0134*** 0.0004** 0.0589*** 0.0155*** 0.0149*** 0.0006* 0.0607*** 
CN.s10 0.0500*** 0.0066*** 0.0064*** 0.0002* 0.0566*** 0.0285*** 0.0278*** 0.0006* 0.0785*** 
CN.s11 0.0415*** 0.0107*** 0.0103*** 0.0004** 0.0523*** 0.0338*** 0.0326*** 0.0012** 0.0753*** 
CN.s12 0.0495*** 0.0125*** 0.0122*** 0.0003** 0.0620*** 0.0193*** 0.0188*** 0.0005* 0.0688*** 
CN.s13 0.0498*** 0.0126*** 0.0113*** 0.0013*** 0.0624*** 0.0228*** 0.0213*** 0.0015** 0.0726*** 
CN.s14 0.0594*** 0.0124*** 0.0121*** 0.0003** 0.0718*** 0.0155*** 0.0151*** 0.0004* 0.0749*** 
CN.s15 0.0780*** 0.0127*** 0.0123*** 0.0003** 0.0907*** 0.0077*** 0.0073*** 0.0004** 0.0856*** 
CN.s16 0.0109** 0.0059** 0.0057** 0.0002* 0.0168*** 0.0018* 0.0018* 0.0000* 0.0127** 
CN.s17 0.0048 0.0146*** 0.0145*** 0.0002* 0.0195*** 0.0031*** 0.0031*** 0.0000*** 0.0080*** 
CN.s18 0.0017 0.0131*** 0.0127*** 0.0003** 0.0147** 0.0006** 0.0006** 0.0000** 0.0023** 
CN.s19 -0.0036 0.0088*** 0.0086*** 0.0002* 0.0052* -0.0008* -0.0008* -0.0000* -0.0045* 
CN.s20 0.0106* 0.0100*** 0.0091*** 0.0008** 0.0205*** 0.0053*** 0.0049*** 0.0005*** 0.0159* 
CN.s21 0.0036 0.0076** 0.0060** 0.0016*** 0.0112* 0.0003* 0.0002* 0.0001* 0.0038* 
CN.s22 -0.0152** 0.0102*** 0.0097*** 0.0005** -0.0050** -0.0021* -0.0021* -0.0000* -0.0173** 
JP.s1 0.0239*** 0.0054** 0.0052** 0.0003** 0.0293*** 0.0076** 0.0072** 0.0004** 0.0315*** 
JP.s2 0.0207*** 0.0071*** 0.0070*** 0.0002* 0.0278*** 0.0030** 0.0028** 0.0002** 0.0237*** 
JP.s3 0.0146** 0.0067** 0.0063** 0.0004** 0.0213*** 0.0071* 0.0067* 0.0004* 0.0217** 
JP.s4 0.0077 0.0086*** 0.0073*** 0.0013*** 0.0163** 0.0010** 0.0006** 0.0003** 0.0087** 
JP.s5 0.0179*** 0.0063*** 0.0059*** 0.0004** 0.0242*** 0.0040* 0.0037* 0.0004* 0.0219*** 
JP.s6 0.0113* 0.0084*** 0.0081*** 0.0003* 0.0197*** 0.0042*** 0.0039*** 0.0003*** 0.0155* 
JP.s7 0.0117** 0.0082*** 0.0079*** 0.0003* 0.0199*** 0.0039* 0.0034* 0.0005* 0.0156** 
JP.s8 0.0236*** 0.0073*** 0.0065*** 0.0008** 0.0308*** 0.0101** 0.0074** 0.0027** 0.0337*** 
JP.s9 0.0150*** 0.0086*** 0.0083*** 0.0004* 0.0236*** 0.0070** 0.0064** 0.0007** 0.0221*** 
JP.s10 0.0229*** 0.0062*** 0.0060*** 0.0003* 0.0291*** 0.0060** 0.0053** 0.0007* 0.0289*** 
JP.s11 0.0175*** 0.0074*** 0.0069*** 0.0005** 0.0249*** 0.0154** 0.0131** 0.0023* 0.0329*** 
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JP.s12 0.0260*** 0.0079*** 0.0072*** 0.0008** 0.0340*** 0.0087** 0.0070** 0.0017** 0.0347*** 

TABLE 3 (Continued ) 

 Direct 
Received Offered 

 Indirect  Total  Indirect  Total Sum Domestic Int'l Sum Domestic Int'l 
JP.s13 0.0397*** 0.0082*** 0.0064*** 0.0019*** 0.0479*** 0.0207*** 0.0151*** 0.0056** 0.0604*** 
JP.s14 0.0199*** 0.0087*** 0.0082*** 0.0005** 0.0286*** 0.0080* 0.0068** 0.0012* 0.0278*** 
JP.s15 0.0142** 0.0075*** 0.0072*** 0.0004** 0.0217*** 0.0016*** 0.0015* 0.0002* 0.0158** 
JP.s16 0.0311*** 0.0071*** 0.0070*** 0.0001*** 0.0382*** 0.0100** 0.0096*** 0.0004*** 0.0411*** 
JP.s17 0.0110** 0.0075*** 0.0072*** 0.0003** 0.0185*** 0.0120* 0.0113* 0.0008* 0.0231** 
JP.s18 0.0273*** 0.0071*** 0.0068*** 0.0003** 0.0344*** 0.0230** 0.0216** 0.0013* 0.0502*** 
JP.s19 0.0109* 0.0077*** 0.0075*** 0.0002* 0.0186*** 0.0059*** 0.0057*** 0.0002*** 0.0168* 
JP.s20 0.0214*** 0.0074*** 0.0071*** 0.0003** 0.0289*** 0.0112** 0.0103** 0.0009* 0.0326*** 
JP.s21 0.0183*** 0.0076*** 0.0073*** 0.0003** 0.0259*** 0.0019** 0.0017** 0.0002* 0.0202*** 
JP.s22 0.0151*** 0.0073*** 0.0071*** 0.0002* 0.0224*** 0.0034* 0.0033* 0.0001* 0.0185*** 
KR.s1 0.0203*** 0.0060** 0.0051** 0.0008* 0.0263*** 0.0074** 0.0072** 0.0002** 0.0277*** 
KR.s2 0.0490*** 0.0089*** 0.0084*** 0.0005*** 0.0579*** 0.0034*** 0.0034*** 0.0001*** 0.0524*** 
KR.s3 0.0169*** 0.0070** 0.0056** 0.0014** 0.0238*** 0.0060** 0.0057** 0.0003** 0.0228*** 
KR.s4 0.0214*** 0.0091*** 0.0042*** 0.0050*** 0.0305*** 0.0035** 0.0027** 0.0008** 0.0248*** 
KR.s5 0.0252*** 0.0065** 0.0056** 0.0008* 0.0317*** 0.0025** 0.0024** 0.0001* 0.0277*** 
KR.s6 0.0157*** 0.0085*** 0.0074*** 0.0012** 0.0242*** 0.0044** 0.0043** 0.0001** 0.0201*** 
KR.s7 0.0236*** 0.0090*** 0.0084*** 0.0007*** 0.0327*** 0.0107** 0.0105** 0.0003* 0.0344*** 
KR.s8 0.0319*** 0.0091*** 0.0070*** 0.0021** 0.0410*** 0.0129** 0.0119** 0.0010** 0.0448*** 
KR.s9 0.0139** 0.0105*** 0.0092*** 0.0013** 0.0244*** 0.0051* 0.0049* 0.0002* 0.0190** 
KR.s10 0.0283*** 0.0076*** 0.0068*** 0.0008* 0.0360*** 0.0121*** 0.0118*** 0.0003* 0.0405*** 
KR.s11 0.0212*** 0.0088*** 0.0073*** 0.0015** 0.0300*** 0.0134** 0.0128** 0.0006* 0.0345*** 
KR.s12 0.0317*** 0.0091*** 0.0070*** 0.0020** 0.0408*** 0.0094** 0.0089** 0.0005** 0.0411*** 
KR.s13 0.0557*** 0.0111*** 0.0052*** 0.0059*** 0.0668*** 0.0251*** 0.0228*** 0.0024** 0.0808*** 
KR.s14 0.0300*** 0.0104*** 0.0081*** 0.0023** 0.0404*** 0.0107** 0.0101** 0.0006* 0.0408*** 
KR.s15 0.0194*** 0.0080*** 0.0068*** 0.0012** 0.0275*** 0.0040** 0.0039** 0.0001* 0.0235*** 
KR.s16 0.0324*** 0.0073** 0.0066*** 0.0008* 0.0397*** 0.0081*** 0.0080*** 0.0001* 0.0406*** 
KR.s17 0.0039 0.0102*** 0.0089*** 0.0013** 0.0141** 0.0031** 0.0031** 0.0001** 0.0070** 
KR.s18 0.0226*** 0.0087*** 0.0074*** 0.0013** 0.0312*** 0.0061** 0.0059** 0.0002* 0.0287*** 
KR.s19 0.0051 0.0097*** 0.0087*** 0.0009** 0.0147** 0.0018** 0.0018** 0.0000** 0.0069** 
KR.s20 0.0266*** 0.0081*** 0.0063*** 0.0018** 0.0347*** 0.0147** 0.0135*** 0.0011** 0.0413*** 
KR.s21 0.0192*** 0.0093*** 0.0082*** 0.0011** 0.0286*** 0.0009** 0.0009** 0.0000* 0.0202*** 
KR.s22 -0.0003 0.0096*** 0.0086*** 0.0011** 0.0094** -0.0000** -0.0000** -0.0000** -0.0003** 
IN.s2 0.0233*** 0.0079*** 0.0077*** 0.0002* 0.0312*** 0.0215** 0.0213** 0.0002* 0.0448*** 
IN.s3 0.0136** 0.0080*** 0.0078*** 0.0002* 0.0216*** 0.0046* 0.0045* 0.0000* 0.0181** 
IN.s4 0.0263*** 0.0081*** 0.0079*** 0.0002** 0.0344*** 0.0092** 0.0091** 0.0001* 0.0354*** 
IN.s5 0.0283*** 0.0088*** 0.0083*** 0.0006** 0.0371*** 0.0081** 0.0079** 0.0002** 0.0364*** 
IN.s6 -0.0208*** 0.0078** 0.0076** 0.0002* -0.0130* -0.0044** -0.0044** -0.0000* -0.0252*** 
IN.s7 0.0174*** 0.0080*** 0.0074*** 0.0006** 0.0254*** 0.0020** 0.0020** 0.0000** 0.0195*** 
IN.s8 0.0075 0.0077*** 0.0076*** 0.0001*** 0.0152** 0.0040** 0.0040** 0.0000** 0.0116** 
IN.s9 0.0288*** 0.0084*** 0.0078*** 0.0006** 0.0372*** 0.0105*** 0.0103*** 0.0002** 0.0392*** 
IN.s10 0.0215*** 0.0093*** 0.0090*** 0.0004** 0.0308*** 0.0052** 0.0051** 0.0001* 0.0267*** 
IN.s11 0.0339*** 0.0050** 0.0047** 0.0003** 0.0389*** 0.0086** 0.0085** 0.0001** 0.0425*** 
IN.s12 0.0352*** 0.0074*** 0.0072*** 0.0002** 0.0426*** 0.0344*** 0.0342*** 0.0002* 0.0696*** 
IN.s13 0.0056 0.0106*** 0.0101*** 0.0005** 0.0162** 0.0013** 0.0013** 0.0000** 0.0069** 
IN.s14 0.0446*** 0.0095*** 0.0088*** 0.0007*** 0.0541*** 0.0058** 0.0058*** 0.0001** 0.0505*** 
IN.s15 0.0237*** 0.0093*** 0.0090*** 0.0004** 0.0330*** 0.0095** 0.0094** 0.0001* 0.0331*** 
IN.s16 0.0346*** 0.0104*** 0.0101*** 0.0003** 0.0449*** 0.0093** 0.0092** 0.0001** 0.0439*** 
IN.s17 0.0350*** 0.0070*** 0.0067*** 0.0003** 0.0420*** 0.0114*** 0.0113*** 0.0001** 0.0464*** 
IN.s19 0.0066 0.0084*** 0.0081*** 0.0003** 0.0150** 0.0043** 0.0043** 0.0000** 0.0109** 
IN.s20 0.0302*** 0.0088*** 0.0087*** 0.0001* 0.0390*** 0.0044** 0.0043** 0.0000* 0.0346*** 
IN.s21 0.0174*** 0.0081*** 0.0078*** 0.0003** 0.0255*** 0.0107** 0.0106** 0.0001* 0.0281*** 
IN.s22 0.0274*** 0.0080*** 0.0078*** 0.0002** 0.0354*** 0.0010** 0.0010** 0.0000** 0.0284*** 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 
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By decomposing the indirect effects into domestic and international spillovers, Korea 

is found to have benefited most from international spillovers, with an international 

indirect effect of 0.41%, which constitutes 21.5% of the total spillovers that Korea’s 

industries received. Japan has an international effect of 0.08%, which constitutes 5.6% of 

the total spillover Japan’s industries received. The international parts are relatively small 

for the remaining three countries, with less than 5% in total received spillovers.  

The right side of Figure 4 represents the technological growth of each country from the 

offering perspective. The direct effects are comparable to values on the left side of Figure 

4. The aggregated indirect effects for China, Japan, India, Korea and US are 2.72%, 

2.12%, 2.09%, 1.88% and 1.79%17. However, the international spillovers that each 

country offers are different from those that they receive. The US and Japan contribute the 

most international spillovers with a growth impact of 2.15‰ and 1.94‰, which accounts 

for 10.83% and 10.14% of their total offered spillovers. The international spillovers for 

China, Korea and India are 1.41‰, 1.21‰ and 0.18‰. Our results suggest that while 

China is the most rapidly growing economy in the world, the developed countries, such 

as US and Japan, still contribute the most to international knowledge diffusion 18. 

Combined with the results of the international spillovers received by each country, we 

can find that US and Japan made the most net contributions with net international 

spillovers at 1.37‰ and 1.34‰, followed by China at 0.19‰. Korea benefits most with 

net international spillovers at -2.88‰. 

The relatively small role for India in terms of international spillovers is mirrored by its 

relatively small international indirect effect of 0.18‰, which is only 2% of its indirect 

                                                             
17 The summation of indirect effect received and offered are not equal because the average is weighted by the output of 

the industries. 
18 We calculate the technological growth components with estimates based on the 2010 input-output tables and found 

China and US had become the net contributors for international knowledge diffusion. The result is given in Appendix 

C. 
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effect, suggesting the outward international technology linkages of Indian industries are 

still under-developed compared to other countries in our sample.19 

 

 

 

 

 

 

 

Figure 5 displays the matrices based on the indirect effects of technical change for each 

country in our sample. The dots represent the receiving and offering spillovers for each 

industry. The position on the horizontal axis indicates the indirect effect offered to other 

industries and the position on vertical axis indicates the indirect effect received from 

other industries. The sequence number of industry is labeled near the dot. 

                                                             
19 The international direct effect is negligible since the international feedback part of direct effect is quite small. 

FIGURE 4 

Direct and Indirect Effect of Hicks-neutral Technological Change 
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Figure 6 clearly indicates the different distributions of spillovers measured by the 

direction of spillovers received and offered. The spillover received is measured by 

average growth weighted by the linkages defined by the spatial weight matrix. The 

spillover offered is measured by the growth of the industry itself augmented by the 

linkages with other industries. Thus, the spillover measured by offering is more disperse 

than the spillover measured by receiving. The top 3 industries with the largest spillovers 

offered on average are the manufacturing industries Electrical and Optical Equipment 

(s13), Basic Metals and Fabricated Metal (s11), Machinery and Nec and Recycling (s12), 

with indirect effects of 0.023, 0.017 and 0.015. The service industry with the most 

spillovers offered on average is Wholesale and Retail trade (s18), with an indirect effect 

of 0.012. The industry with the most spillover received on average is Machinery, Nec 

FIGURE 6 

Spillover offered and received for all industries 



37 

 

(s12), with an indirect effect of 0.014. The other industries are relatively concentrated in 

distribution. 

We also measure the direct and indirect effects of time trends in value of gross output 

from the perspective of the receiving spillover by decomposing the increment of gross 

output into a direct increment and an indirect increment. From Eq. (6) and Eq. (15b) we 

have the total increment of gross output, ∆𝑌𝑌𝑡𝑡+1𝑟𝑟 = 𝑒𝑒𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑟𝑟𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡, from the perspective of 

the receiving spillover. Since there is an interactive influence from the direct and indirect 

effect, to qualify the explanation from both, we follow the two-polar-averaging 

decomposition method of Dietzenbacher and Los (1998) to calculate the contributions of 

each component. The direct and indirect increment of output in 2010 for the US is 

320,459 and 126,213 million US dollars respectively, which contributed 72% and 28% of 

total output increment of the industries in our sample20. The industries in China benefit 

most from the spillovers since the increment of gross output from indirect effect is 

177,113 million US dollars, which contributed 28% of total output increment. 

 

TABLE 4 
Increment of gross output decomposed by direct and indirect effect 

(in million US dollars) 

 Direct effect Indirect effect Total effect 

US 320,459 126,213 446,672 

CHN 466,879 177,113 643,992 

JPN 145,985 53,314 199,299 

KOR 55,523 19,995 75,519 

                                                             
20 We remove the non-market industries from our sample. These industries in US accounts for 43% of total gross 

output and this ratio is much smaller than the ratio in other countries. Therefore the total increment of gross output 

seems relatively smaller than China. 
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IND 51,531 19,798 71,329 

 

5.4 Productivity level and change for selected industries: electrical and optical 

equipment 

The information and communication technology (ICT) industry is one of the fastest 

growing industries in the world and highlights the increasingly important role of the 

global production system in the past 30 years. Jorgenson et al. (2012) note the important 

role of ICT-producing industries, including software and hardware manufacturing and 

services, and they found a substantial contribution of these industries to economic growth. 

Due to the importance of ICT as a main industry in which innovation takes places and 

provides an engine for long-run growth in an economy, we next examine the Electrical 

and Optical Equipment industry to show the performance of the ICT industry in the five 

countries we study and the way in which spillovers are diffused through domestic and 

international supply chains. 
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Productivity change and spillovers in the electrical and optical equipment industry 

measured in our models are shown in Figure 5. Panel (a) and (b) are the total factor 

productivity estimates of Electrical and Optical Equipment in each country based on the 

estimation results of the non-spatial CSSG model and SDM-downstream CSSG model. 

The estimated productivity levels from the two models are comparable, with an 

increasing trend for US, China, Korea and Japan and a decreasing trend for India. The 

direct effect, which represents the technical progress of each industry, suggests that the 

US, with a growth rate of 6.59%, is the most successful country in the developing ICT 

industry, although the gross output in that industry in China has soared 30% during this 

period (by 1,734,075 million US$), while increasing by less than 10% in the US (by 

519,011 million US$).  The Korean, Chinese, and Japanese annual growth rates were of 

4.21%, 3.60% and 2.65%, while productivity in the Indian sector falls during this period. 

FIGURE 5 

Productivity Level, Growth and Spillover of Electrical and Optical Equipment 
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The gross output of electrical and optical equipment industry in India in 2010 is $72,824 

million US$, which is only 4.2% of the gross output in China, suggesting a large gap in 

scale exists with other countries in our sample.  

The technological spillovers offered and received can help us understand the role of an 

industry in technological diffusion within the global value chain. Panel (c) and (d) of 

Figure 5 provide more detailed comparisons for productivity growth spillovers from the 

perspective of receiving and offering. In panel (c), the estimates of spillovers received 

show that China benefits most from the production network with the indirect effect of 

1.26%. However, the domestic indirect effect of China is 1.13%, indicating the spillovers 

mostly are coming from the domestic industrial linkages within China. The ICT of Korea 

is the industry that absorbs the largest international spillover with an international indirect 

effect of 0.59%.  

As shown in panel (d), the spillover of productivity growth offered by US Electrical 

and Optical Equipment is 4.39%, which is the highest of all industries in our sample, 

suggesting that the US ICT industry is in the position of an innovation hub in the global 

value chain. Korea, China and Japan follow in descending order with indirect effects of 

2.51%, 2.28% and 2.07%. Compared with the sample average indirect effect of 0.86%, 

ICT in these countries seems to be an important engine for regional economic 

development. The Electrical and Optical Equipment sector in the US also has the highest 

international growth spillover at 1.07%, followed by Japan, Korea and China at 0.56%, 

0.24% and 0.15%, respectively. Therefore, although China could be thought of as 

representative of a developing country while OECD member Korea, representing NIEs, 

have the fastest growth measured by output of ICT, the developed countries such as the 

US and Japan still have the largest contributors measured by the productivity growth 

spillover offered.  



41 

 

6 Conclusion 

In this paper, we develop a growth model which allows for technological interdependence 

on an industry-level with heterogeneous productivity growth in the GVCs. The World 

Input-output tables are used to construct the spatial weight matrix, which describes the 

spatial linkages between any pair of industries. We also propose a method to measure 

technology spillovers by each factor input as well as Hicks-neutral technical change. 

These spillovers are then decomposed into a domestic and international effect by 

separating out the local multipliers from the global multiplier of the spatial effect. We 

estimate the model using non-spatial, SAR and SDM specifications. 

The SDM specification is preferred over the SAR specification based on standard 

statistical criteria. Results from the SDM-downstream model suggest that the internal 

elasticities of factor inputs measured by direct effects are comparable to those from the 

non-spatial model. However, with the spatial model we are able to estimate the indirect 

effect, and we found negative external elasticities for capital and labor input and a 

positive external elasticity for the intermediate input. The international indirect effect 

accounts for about 6.5% of the external elasticity for each factor. The Domar-weighted 

direct technical change growth rate for China, Korea, India, the US and Japan is 

estimated to be 2.64%, 2.04%, 1.75%, 1.36% and 1.33%, respectively. The spillovers 

received account for 27% to 31% of their total technological growth and its international 

portion varies across the countries, with the highest, Korea, at 22% and lowest, India, at 

3.5%. The developed countries such as US and Japan are the highest in net international 

spillovers offered. The important Electrical and Optical Equipment sector of the US has 

the fastest productivity growth and offers the most spillovers in our sample, although 

China has predominance in scale in this industry. 

Our paper also speaks to anxieties felt by both rich and poor countries as trade and 

supply chains become increasingly global. Developed countries worry that technology is 
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imitated by developing countries, which may shake their dominate position in global 

value chain and induce a series of problems such as industry hollowing-out and 

unemployment. Developing countries worry that they are locked in low value added 

activities of GVCs and have no limited options to be engaged in higher value-added 

activities such as design, R&D and marketing. Our results suggest that China, as a 

representative of a developing country, has experienced high productivity growth in the 

globalization, but the spillovers received are mostly from domestic linkages, which may 

benefit from the great varieties of industrial category in China. The international 

spillovers are more likely to occur between countries at similar stages of development. 

Further research oriented towards developing a spatial weight matrix that may better 

depict the network of knowledge transfers among industries and estimation techniques 

for time-varying social-economic spatial weight matrix with the problem of endogeneity 

resolved is under way.  These may allow us to better uncover the mechanism of 

technology interaction among countries and sectors within them and provide more 

accurate measurements of the dynamic spillover process. 
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Appendix 

A. Elasticity analysis for output with respect to capital, intermediates, and labor 

In the SAR model from Eq.12: 

 

𝑦𝑦 = 𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑘𝑘 + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑚𝑚 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉�(20) 

 

We have 

 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙 =

𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1(𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙) + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1(𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙) + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 +

𝑞𝑞𝑞𝑞 + 𝑉𝑉� (A.1) 

 

Then 𝑙𝑙𝑙𝑙𝑙𝑙 can be expressed as follows 

 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑙𝑙𝑙𝑙𝑙𝑙 

+(𝛾𝛾𝛾𝛾 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1𝑙𝑙𝑙𝑙𝑙𝑙 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉� (A.2) 

 

Then sum the elasticities of the Output to Capital intermediate and Labor 

 

𝐸𝐸𝐾𝐾 + 𝐸𝐸𝑀𝑀 + 𝐸𝐸𝐿𝐿 = 𝛼𝛼(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 + 𝛽𝛽(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 + (𝛪𝛪 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽−𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)(𝛪𝛪 −

𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 = 𝛪𝛪 (A.3) 

 𝐸𝐸𝐿𝐿 = (𝛪𝛪 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽−𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 = 𝛪𝛪 − (𝛼𝛼 + 𝛽𝛽)(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 (A.4) 
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The constant return to scale assumptions still hold to the industries as an aggregate in 

SAR model, but not hold for individual industries if the effects from the neighbor 

industries were considered.  

 

In the SDM model from Eq.13: 

 

𝑦𝑦 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑘𝑘 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛽𝛽 + (𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑚𝑚 

+(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉�  (A.5) 

 

We have  

 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇](𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙) + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛽𝛽𝛽𝛽 +

(𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇](𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙) + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉� (A.6) 

 

Then we can get the expression of 𝑙𝑙𝑙𝑙𝑙𝑙 

 

𝑙𝑙𝑙𝑙𝑙𝑙 =

(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑙𝑙𝑙𝑙𝑙𝑙 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛽𝛽𝛽𝛽 + (𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇]𝑙𝑙𝑙𝑙𝑙𝑙 +

[𝛾𝛾 − (𝜙𝜙 + 𝜑𝜑)𝑊𝑊𝑁𝑁(𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1]𝑙𝑙𝑙𝑙𝑙𝑙 + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1� ω0 + 𝑟𝑟𝑟𝑟𝑔𝑔 + 𝑞𝑞𝑞𝑞 + 𝑉𝑉� (A.7) 

 

Then summing the elasticities of the Output to capital intermediate and labor we can still 

get the constant return to scale result. 

 

𝐸𝐸𝐾𝐾 + 𝐸𝐸𝑀𝑀 + 𝐸𝐸𝐿𝐿 = (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇] + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛽𝛽𝛽𝛽 + (𝜑𝜑 −

𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇] + (𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1[𝛾𝛾𝛾𝛾 + (−𝜙𝜙 − 𝜑𝜑 + 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇] = [𝛼𝛼𝛼𝛼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇 + 𝛽𝛽𝛽𝛽 +

(𝜑𝜑 − 𝜌𝜌𝜌𝜌)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇 + 𝛾𝛾𝛾𝛾 − 𝜌𝜌𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)− (𝜙𝜙 + 𝜑𝜑)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇](𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1  
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= [(𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾)𝐼𝐼 + (𝜙𝜙 − 𝜌𝜌𝜌𝜌 + 𝜑𝜑 − 𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌 − 𝜙𝜙 − 𝜑𝜑)𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇](𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 =

[𝐼𝐼 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇](𝛪𝛪 − 𝜌𝜌𝑊𝑊𝑁𝑁⨂𝐼𝐼𝑇𝑇)−1 = 𝛪𝛪 (A.8) 

B. Detailed derivation of estimation procedure  

 The Quasi-Maximum Likelihood Estimator for ρ and its implementation are 

developed in the following way. Let 2( , , , )vψ β γ ρ σ ′= . The log-likelihood function of Eq. 

(7) is:  

2

2

2
1 1 1

log ( , ; ) log(2 ) log | |
2

1 ,
2

i v N

N T N

it ij jt it i t i
i t jv

NTL y T I W

y w y X Z R

y δ πσ ρ

ρ β g δ
σ = = =

= − + −

 
′ ′ ′− − − − − 

 
∑∑ ∑

(B.1) 

 The first order condition of maximizing Eq. (B.1) with respect to iδ  is  

2
1 1 1

log 1 0.
N T N

t it ij jt it i t i
i t ji v

L R y w y X Z Rρ β g δ
δ σ = = =

 ∂ ′ ′ ′= − − − − = 
∂  

∑∑ ∑   (B.2) 

 By solving for (B.2), we can obtain  

1

1

ˆ ( ) .
N

i t t t it ij jt it i
j

R R R y w y X Zδ ρ β γ−

=

 
′ ′ ′= − − − 

 
∑                  (B.3) 

Substituting (B.3) into the log-likelihood function (B.1), we obtain the concentrated 

likelihood function  

2 2
2

1log ( ; , , ) log(2 ) log | | ,
2 2v v N

v

NTL y T I W V Vβ ρ σ πσ ρ
σ

′= − + − −  
      (B.4) 

 where ( )Q Q N T QV M y M W I y M Xρ β= − ⊗ − , and 1( ' ) 'Q NTM I Q Q Q Q−= − . 
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Within Estimator 

Assuming that T L≥ , the projections onto the column space of Q  and the null space of  

Q  are denoted by 1( )QP Q Q Q′− ′=  and Q NT QM I P= −  , respectively21.  Suppose that the 

true value of ρ  is known, and is ρ∗ .  Pre-multiplying by QM , we have the 

within-transformed model 

 

( ) .Q Q N T QM y M W I y M X Vρ β∗= ⊗ + +   

(B.5) 

 Estimates of ( )β ρ∗  and 2 ( )vσ ρ∗  are derived by  

1

2

ˆ ( ) ( ) ( ( ) ),
1ˆ ( ) ( ) ),

( )

W Q Q N T

v

X M X X M y W I y

e
N T L K

β ρ ρ

σ ρ ρ

∗ − ∗

∗ ∗ ′∗

′ ′= − ⊗

=
− −

 

(B.6-B.7) 

respectively, where ˆ( ) ( ) ( )N T We y W I y Xρ ρ β ρ∗ ∗ ∗= − ⊗ − . By substituting the closed 

form solutions for the parameters ( )β ρ∗ and 2 ( )vσ ρ∗  into Eq. (B.4), we can concentrate 

out β  and 2
vσ , and the concentrated log-likelihood function with single parameter ρ  

takes the form:  

[ ]log ( ; ) log ( ) ( ) log | |,
2 N

NTL y C e e T I Wρ ρ ρ ρ′= − + −  

(B.8) 

                                                             

21 Q needs to be a full column rank matrix for estimation of the individual 'i sδ . 
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where C is a constant term that is not a function of ρ . By maximizing the concentrated 

log-likelihood function Eq. (B.8) with respect to ρ , we can obtain the optimal solution for

ρ . Even if there is no closed-form solution for ρ , we can easily find a numerical solution 

because the equation is concave in ρ . Finally, the estimators for β  and 2σ  can be 

calculated by plugging in ˆρ ρ∗ =   into Eq. (B.6) and Eq. (B.7).  

 The asymptotic variance-covariance matrix of parameters 2( , , )β ρ σ  is given by:  

2 2

2 2

4

2

1
1 1

1

2

. ( , , )

( )

( ) ( ) ( ) ,
v v

v v

v

v

T

T
T

NT

AsyVar

X X X W I X

T tr W W W W X W W I X tr W

ss

ss

s

β rs

β

β β

′ ′

′ ′

−
∗

′ ′∗ ∗ ∗ ∗ ∗ ∗ ∗

 ⊗
 
 = − ⋅ + + ⊗ 
 − −
  

0   

 
(B.9) 

where  QX M X=   and  1( )NW W I Wρ∗ −= −  . 

Generalized least squares estimator 

 Alternatively, we can estimate Eq. (7) by generalized least squares (GLS). Denote the 

variance-covariance matrix of the composite error QU Vε = +  as cov( )ε = Ω .  The 

GLS estimator is the SAR estimator applied to the following transformed equation:  
1/2 1/2 1/2 1/2

1/2 1/2
0

( )
,

v v N T v v

v v

y W I y Xσ ρσ σ β σ γ

σ δ σ ε

− − − −

− −

W = W ⊗ + W + W

+ W + W

Z
R

 

(B.10) 

where QU Vε = + , 2cov( ) ( )v NT NI Q I Qε σ ′Ω = = + ⊗∆  . The estimation procedure for 

Eq. (B.10) is comparable to the procedure for within-estimation. Let  0( , , )η β γ δ= . 
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Assuming we know the true value of ρ ρ∗= , the GLS estimators of ( )η ρ∗  are 

1 1 1

1 1 1

1 1 1

ˆ ( ) [( , , ) ( , , )] ( , , ) ( ( ) )
[( , , ) ( , , )] ( , , )

[( , , ) ( , , )] ( , , ) ( ) .

G N T

N T

X X X y W I y
X X X y

X X X W I y

η ρ ρ

ρ

∗ ′− − ′− ∗

′− − ′−

∗ ′− − ′−

= − ⊗

=

− ⊗

Z R Z R Z R
Z R Z R Z R

Z R Z R Z R
 

(B.11) 

Hence, the GLS estimators of η  can be represented as a difference of OLS estimators of 

regressing 

y  on 

  
( , , )X Z R  and regressing 

( )N TW I y⊗  on 

  
( , , )X Z R  pre-multiplied by 

the spatial autoregressive coefficient ρ∗ , where tilde represents GLS transformation.  Ω

then can be estimated by:  

2ˆ ˆˆ( ) ( ( )) .v NT NI Q I Qρ σ ρ∗ ∗ ′Ω = + ⊗∆  

(B.12) 

 Following Cornwell, et al. (1990), ∆ can be estimated as  

1 1 2 1

1

1ˆ ˆ( ) ( ( ( )) ,
N

i i v
i

R R e e R R R
N

ρ σ∗ ′− ′ ′− ′−

=

′ ∆ = − ∑  

(B.13) 

where ˆ( )i R i i R N T i i R i Wie M y M W I y M Xρ ρ β∗ ∗= − ⊗ − , which represents the IV residuals for 

individual i , and ( )RM ′= 1R R R′ − is the projection onto the column space of R . 

 Consider next the likelihood function of Eq. (B.10). Since 1/2
vσ ε−Ω  has mean zero and 

variance 2
vσ , the likelihood function can be written in the form of  

2 11log ( , ; ) log(2 ) log | | ,
2 2v N

NTL y T I Wη ρ πσ ρ ε ε′−= − + − −  

(B.14) 
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where 0( )N Ty W I y Xε ρ β γ δ= − ⊗ − − −Z R  . Substitution of Eq. (B.11) and Eq. (B.12) 

into Eq. (B.14) gives the concentrated likelihood function:  

[ ]log ( ; ) log ( ) ( ) log | |,
2 N

NTL y C e e T I Wρ ρ ρ ρ′= − + −  

(B.15) 

where 

1/2 1/2 1/2 1/2 1/2
0

ˆ ˆˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )v v N T v v ve y W I y Xρ σ ρ ρσ ρ σ ρ β σ ρ γ σ ρ δ− − − − −= W − W ⊗ − W − W − WZ R  , 

(B.16) 

and where C is a constant term that is not a function of ρ . Finally, as is the case of the 

within estimator, we can obtain the estimators for η  and Ω  using the estimate of ρ  

from Eq. (B.15).  

 Implementation of this estimator requires that we combine the procedure suggested by 

Elhorst (2014) and a typical two-stage approach of Feasible Generalized Least Squares 

(FGLS).  The implementation consists of the following steps.  

[Within Estimator] 

 From Eq. (B.6) it can be shown that 0 1
ˆ
W b bb ρ∗= − , where 0b  and 1b  are the OLS 

estimators from regressing QM y  and ( )Q N TM W I y⊗  on QM X , respectively. Similarly, 

the estimated residuals from Eq. (B.5), ( )e ρ∗ , can be expressed as 0 1( )e e eρ ρ∗ ∗= − , 

where 0e  and 1e  are the associated OLS residuals based on 0b  and 1b , respectively. 

Hence the first step is obtaining 0 1 0, ,b b e , and 1e  . Second, we maximize Eq. (B.8) with 

respect to ρ after replacing 0 1( )e e eρ ρ= − , i.e.,  

[ ]0 1 0 1max log ( | ) log ( ) ( ) log | | .
2 N

NTL y C e e e e T I W
ρ

ρ ρ ρ ρ′= − − − + −  
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 Third, replacing ˆρ ρ∗ =  in Eq. (B.6) and (B.7), gives the within estimator ˆ
Wβ  and 

the estimated variance 2σ̂ . Finally, the asymptotic variance-covariance matrix of the 

parameters ˆ ˆ ˆ( , , )W vβ ρ σ can be calculated by Eq. (B.9).  

[GLS Estimator] 

 Unlike the within estimator case, we are unable to find the separate OLS estimators of 

regressing 1/2
v yσ −Ω  and 1/2 ( )v N TW I yσ −W ⊗ on 1/2 ( , , )v Xσ −Ω Z R in advance of having  

ρ̂ , even if Eq. (B.11) is expressed as a subtraction of two terms. This is because the 

feasible Ω  is obtainable only after we have a value for ρ . Instead of following the steps 

of within estimator, we can obtain ρ̂ by simply maximizing the concentrated 

log-likelihood function (B.15). Once we have an estimate ρ̂ , Eq. (B.13), Eq. (B.12), and 

Eq. (B.11) give ˆ( )ρ∆ , ρ̂Ω , and ˆ( )Gη ρ . 

C. Estimation with spatial weight matrix based on the 2010 input-output tables 

TABLE 5 

Estimate of SDM Production Function with spatial weight matrix of 2010 

 

 (1) (2) 

 SDM-downstream 

 CSSW CSSG 

Lnk .103*** .100*** 

(.011) (.011) 

Lnm .569*** .582*** 
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 (.011) (.010) 

W•lnk -.027** -.037* 

 (.023) (.022) 

W•lnm -.108*** -.057* 

 (.034) (.031) 

Country-Dummy No Yes 

Intercept   -.001 

   (.044) 

Time  .003** 

  (.002) 

W•lny(ρ) .344*** .305*** 

 (.025) (.025) 

σv
2 .009 .009 

R2 .823 .829 

Adjusted R2 .808 .814 

LL 3023.667 2934.214 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

 

TABLE 6 

Elasticity of input factors by estimation with spatial weight matrix of 2010 

SDM-downst

ream 

 Internal External Total 

 Elasticity asy.t-stat Elasticity asy.t-stat Elasticity asy.t-stat 

 Capital 0.103*** 9.114 0.051*** 3.078 0.153*** 6.858 

overall Intermediate 0.590*** 58.377 0.212*** 6.181 0.802*** 21.138 

 Labor 0.302 - -0.244 - 0.058 - 

 Capital 0.103*** 9.114 -0.046*** 3.089 0.148*** 7.091 
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domestic Intermediate 0.590*** 58.387 0.191*** 6.300 0.782*** 22.871 

 Labor 0.302 - -0.220 - 0.082 - 

 Capital 0.000*** 2.812 -0.005** 2.963 -0.005*** 2.963 

international Intermediate 0.000*** 4.429 0.021*** 5.238 0.021*** 5.235 

 Labor 0.000 - -0.024 - 0.024 - 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

 

 

 
 

 

 

FIGURE 7 

Direct and Indirect Effect of Hicks-neutral Technological Change with spatial weight 
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D. Aggregate productivity growth of each country with different weights 

 

FIGURE 8 

Aggregate productivity growth with Domar weights on open-economy assumption 

 

 

 

FIGURE 9 

Gross output weighted average productivity growth of each country  
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