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Abstract

Our chapter details a wide variety of approaches used in estimat-
ing productivity and efficiency based on methods developed to es-
timate frontier production using Stochastic Frontier Analysis (SFA)
and Data Envelopment Analysis (DEA). The estimators utilize panel,
single cross section, and time series data sets. The R programs in-
clude such approaches to estimate firm efficiency as the time invariant
fixed effects, correlated random effects, and uncorrelated random ef-
fects panel stochastic frontier estimators, time varying fixed effects,
correlated random effects, and uncorrelated random effects estima-
tors, semi-parametric efficient panel frontier estimators, factor models
for cross-sectional and time-varying efficiency, bootstrapping methods
to develop confidence intervals for index number-based productivity
estimates and their decompositions, DEA and Free Disposable Hull
estimators. The chapter provides the professional researcher, analyst,
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statistician, and regulator with the most up to date efficiency modeling
methods in the easily accessible open source programming language
R.

Keywords: Production (technical) efficiency; Stochastic frontier
analysis; Data envelopment analysis; Panel data; Index numbers; Non-
parametric analysis; Bootstrapping

1 Introduction

Our chapter provides a discussion of various statistical and mathematical
procedures that firms, regulators, and academics and policy makers utilize
in order to better understand performance and production (technical) effi-
ciency of the entities they are benchmarking against other competitors or
peers. As well we discuss, give examples of, and provide extensive links to
R programs that implement these various methods and approaches. The
various methods and approaches distinguish themselves by leveraging the es-
timation of relative performance and of production efficiency measures on
regression-based methods and on linear programming methods, the former
referred to as Stochastic Frontier Analysis (SFA) and the latter as Data En-
velopment Analysis (DEA). We discuss the main approaches in turn, their
relative strengths and weaknesses, and briefly touch on ways to aggregate
the various methods using model averaging approaches.

Our chapter is organized in the following way. We first briefly discuss the
motivation for using such methods that rest on the presence of production ef-
ficiency differences among units of production that are being compared. The
various sets of rationales for such a discipline as efficiency and productivity
analysis can be categorized into three main groups of motivating factors.
They are based on varying management practices, which deliver heteroge-
neous outcomes, behavioral economics, and the presence of X-efficiency. We
then discuss the two main classes of production efficiency estimators, the SFA
and the DEA estimators. We next discuss examples of R programs that im-
plement these various classical estimators and various extensions that have
been introduced in the recent literature as well as protocols for accessing R
programs on well-documented websites and other open source sites. We then
provide concluding remarks.
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2 Why Estimate Production (Technical) Ef-

ficiency?

One of the most compelling rationales for the study of production efficiency
is substantial heterogeneity in management practices and resulting changes
in the operating efficiency of a firm. A consensus in the empirical literature
exists that indicates substantial productivity differences both within a firm1

over time and among firms (Lieberman et al. (1990); Foster et al. (2008);
Hsieh and Klenow (2009); Hall and Jones (1999)). Glaister (2014), among
others, have noted that management practices are a key factor in explain-
ing such productivity differences. Other factors, such as expenditures on
R&D, utilization of capacity, and technology adoption, which are key deci-
sions of management (Nallari and Bayraktar (2010)), are typically controlled
by management practices. Bloom et al. (2012) regressed gross domestic prod-
uct (GDP) per capita on a set of indicators of management practices among
17 countries. These indicators of management practices explained 87% of
the variation in per capita GDP. These findings are corroborated in a more
micro oriented study of Indian firms by Bloom et al. (2013). The engineer-
ing mechanism, blueprints, formal structural statistical model, or economic
model that explains how a firm’s productivity is linked to management skills
and practices has not been developed in a way that lends itself to empiri-
cal analysis and to the generation of relative technical efficiency differences
among peer firms. We thus tend to view such a factor as an unobservable la-
tent factor and assume that management practices are one of the key factors
in firm productivity. Another factor is innovation but innovation is often-
times facilitated by decisions and practices of management. The literature on
the effects of management practices on production efficiency, labor efficiency,
and related measures of a firm’s financial success is quite dense.2 Behavioral
economics provides another motivation for why firms may not operate at the
frontier of production efficiency. The assumptions of efficient markets and
rational decision makers have been leveraged with substantial success by neo-
classical economists, but the footing on which these assumptions rest may be
a bit loose and slippery.

1We will use the term “firm” to denote any generic unit whose production efficiency is
being measured and estimated.

2Much of this literature is summarized and referenced Grifell-Tatjé and Lovell (2013,
2015) and Grifell-Tatjé et al. (2018).
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X-efficiency theory is a pragmatic paradigm that admits to the prevalence
of various sources on inefficiency in economics. It was introduced by Leiben-
stein (1966, 1975, 1987), who pointed out that agency problems, asymmetric
information, and monitoring by regulators were all factors that generated
incentives to engage in sub-optimal decision making, absent these factors
and constraints. Drawing from studies of the health care industry, telecom-
munications, airlines, and education, Frantz (1997, 2007) have documented
the ubiquitous existence of levels of inefficiency with the predictions from X-
efficiency theory and have also concluded that such production inefficiency is
much more significant than inefficiencies due to incorrect output and input
allocations (allocative inefficiency). Other studies that have documented
such inefficiency levels in the banking system can be found in Kwan (2006);
Jiang et al. (2009); Fu and Heffernan (2009); Yao et al. (2008); Rezvanian
et al. (2011); Bauer and Hancock (1993); Mester (1993); DeYoung (1998).
And as emphasized by Frantz (1997)

“...what becomes of the word maximize if non-maximize is not possible?
Is the concept of efficiency important if the possibility of inefficiency is ruled
out a priori? The importance of efficiency remains as long as economics
remains important...”

X-efficiency theory and the methods that we present in our chapter is
based on an interdisciplinary approach that combines psychology, manage-
ment, statistics, applied mathematics, and engineering.

Finally, the usefulness and importance of SFA and DEA methods have
passed the market test as they are required to be used in a wide variety
of regulatory decision-making settings in Europe and elsewhere (Bogetoft
(2013), Agrell et al. (2017)).

3 Regression-Based Methods to Estimate Pro-

duction Efficiency

We begin our formal discussion of production efficiency measurement by first
defining a few sets and functions that are necessary for our presentation
of methods and how to implement them. To facilitate further discussion,
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let inputs and outputs be represented by x = (x1, ..., xN)′ ∈ RN
+ and y =

(y1, ..., yM)′ ∈ RM
+ , respectively and the production process characterized by

a technology set T that satisfies standard regularity conditions (Sickles and
Zelenyuk (2018)). The output set is defined as

P (x) ≡ {y ∈ <M+ : y is producible from x ∈ <N+}. (1)

The production function f : <N+ → <1
+ is defined as f(x) ≡ max{y: y ∈

P (x)}. The maximum of the production function exists and is unique owing
to the fact that P(x) is a compact set. Details on the regularity conditions
that assure the maximum is unique and exists also can be found in Sickles
and Zelenyuk (2018). When there is more than one output one can use
the generalization of the production function, output orientated (Shephard
(1970)) distance function Do : <N+ × <M+ → <1

+ ∪ {+∞} as Do(x, y) ≡
inf{θ > 0 : y/θ ∈ P (x)}. For a technology with only one output and holding
the inputs constant, Do is the ratio of actual output to potential (maximal)
output. Then frontier production is f(xo) = yo/Do(x

o, yo). When there
are multiple-outputs, the Shephard output distance function is the smallest
scalar required to radially expand all outputs to the output set’s boundary,
again at a fixed level of inputs.

3.1 The Stochastic Frontier Paradigm

In cross-sectional Stochastic Frontier Analysis (SFA) there are at least two
sources of error (panel extensions may extend the identifiable error compo-
nents for four distinct sources of error). In addition to the error that is
appended to the parametric or nonparametric production or distance func-
tion to account for standard statistical noise (assumed to have mean zero) an
additional source of error is added to address the asymmetry in the errors dis-
played by most production or distance function estimates that is due to the
boundary property of the function being estimated. Such a one-sided error
is utilized additively as a placeholder for production or technical inefficiency,
which diminishes the level of observed output from the frontier production
or distance function specified parametrically or nonparametrically. An ex-
ample of such an SFA model for a linear in logs (Cobb-Douglas) production
function is,

ln(y) = β0 +
N∑
k=1

βk ln(xk) + ε, (2)
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ε = v − u. (3)

Here v is a random term with mean zero and variance σ2
v . The error term

u represents the latent production inefficiency term. The latent production
inefficiency term has positive support with a mean µ > 0 and a variance σ2

u.
3

Although these assumptions have been modified to account for more realistic
empirical settings, this forms the basis for the canonical model used in SFA.
Most of the literature in SFA has worked to generalize the distributions of
u and v, their moment properties, stochastic properties of the inputs (and
for multi-output distance functions the outputs as well), and different de-
pendency patterns among the disturbances and the inputs and outputs, as
well as possibly distinguishing between variables that are used in developing
the production boundary and environmental or confounding factors that may
influence production efficiency, that is the deviations between the boundary
and non-boundary observations, as opposed to influencing the boundary per
se.

3.1.1 Corrected OLS

One of the first approaches to develop measures of production efficiency is
the corrected ordinary least squares. The steps employed in such an exer-
cise involve first estimating the production (or distance) function by ordinary
least squares to get estimates of the average production relationship. In the
second step one simply shifts the intercept (the example here is for the single
output production function) to ensure that the residuals are all non-positive
(Olson et al. (1980)). With only mild assumptions, OLS will yield mini-
mum variance unbiased linear estimators. The step with the Cobb-Douglas
production function involves estimating

ln(yi) = β0 + β1 ln(xi1) + · · ·+ βN ln(xiN) + εi, i ∈ {1, ..., n}. (4)

The second step uses the intercept correction

β̂cols0 := β̂0 + max
i
{ε̂i}, i = 1, ..., n, (5)

where ε̂i are OLS residuals. The last step estimates production efficiency for
a firm as

Technical Inefficiency = ε̂colsi := max
i
{ε̂i} − ε̂i, i ∈ {1, ..., n}. (6)

3Cost inefficiency can be modeled with a one-sided error with only negative support.
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Thus the corrected production function that estimates the production frontier
is

ln(yi) = β̂cols0 + β̂1 ln(xi1) + · · ·+ β̂N ln(xiN)− ε̂colsi , i ∈ {1, ..., n}. (7)

3.1.2 Stochastic Frontier Model

Aigner et al. (1977) (hereafter ALS) and Meeusen and van den Broeck (1977)
pursued a parametric model of the stochastic frontier based via maximum
likelihood. Average inefficiency is defined in terms of the performance of a
firm to the firm identified as having the best-practices, as measured by its
level of efficiency. The original ALS model used a half-normal distribution
for the efficiency term and a normal error for the idiosyncratic disturbance.
Many other distributions have been considered, usually for the inefficiency
term. These include the exponential, truncated normal, gamma, and dou-
bly truncated normal (Stevenson (1980), Greene (1980a,b),Qian and Sickles
(2008), Almanidis and Sickles (2012), and Almanidis et al. (2014)). In the
canonical SFA the composite error terms are assumed to be independent. If
the production function is linear in logs then a convenient parameterization
is

yi = f(xi|β) exp(εi), i = 1, · · · , n (8)

and for ε = v − u the inefficiency of firm i is measured as

exp(−ui) ≡
yi

f(xi) exp(vi)
, i = 1, · · · , n. (9)

The model is usually specified after log-transforming the production re-
lationship

ln yi = ln f(xi|β) + vi − ui, i = 1, · · · , n (10)

and assuming
vi ∼ N (0, σ2

v)

and
ui ∼ |N (0, σ2

u)|

and that ui and vi are independent and i.i.d., it follows that the density of εi
is:

fεi(ε) =
2

σ
φ
( ε
σ

)[
1− Φ

(
ελ

σ

)]
, −∞ ≤ ε ≤ +∞ (11)
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where Φ(·) is the standard normal distribution function, σ2 = (σ2
v +σ2

u) , and
λ = σu/σv. The composite errors, ε1, · · · , εn, are of course not observed, but
from our model we know that

εi = ln yi − ln f(xi), i = 1, · · · , n. (12)

The log-likelihood function is

`(y1, ..., yn|β, λ, σ2) =
n

2
ln
( 2

π

)
− n

2
ln(σ2)− 1

2σ2

n∑
i=1

[
ln yi − ln f(xi)

]2
+

n∑
i=1

ln
[
1− Φ

( [ln y − ln f(xi)]λ

σ

)]
.

(13)
Inefficiency has a mean and variance given by

E(ui) ≡ µ =

√
2√
π
σu (14)

and

V (ui) =

(
π − 2

π

)
σ2
u (15)

and thus the composed error’s mean and variance is

E(εi) = E(vi − ui) = E(−ui) = −µ = −
√

2√
π
σu (16)

V (εi) = V (vi − ui) = V (v) + V (u) = σ2
v +

(
π − 2

π

)
σ2
u (17)

and
cov(εi, εj) = 0,∀i 6= j. (18)

Estimation of individual inefficiencies Cross-sectional SFA, unfortu-
nately, does not provide a consistent estimate of the efficiency of each firm.
A simple solution by Materov (1981) and further developed in Jondrow et al.
(1982) uses E(ui|εi) as a point estimate of ui. This estimator has its draw-
back as it is contaminated by statistical noise but it is appealing in that,
from the law of iterated expectations,

E(ui) = Eε[E(ui|εi)] (19)
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and thus to develop a consistent estimator of E(ui|εi) we can write

E(ui|εi) ≡
∞∫
0

ufui|εi(u|ε)du (20)

where, from the definition of the conditional density,

fui|εi(u|ε) ≡
fui,εi(u, ε)

fεi(ε)
. (21)

Based on the normal/half normal composed error structure typically used in
SFA we can write

E(ui|εi) = µ∗ + σ∗
1

1− Φ(−µ∗/σ∗)
φ

(
−µ∗
σ∗

)
(22)

or

E(ui|εi) = σ∗

[
µ∗
σ∗

+
1

1− Φ(−µ∗/σ∗)
φ

(
−µ∗
σ∗

)]
. (23)

Using the parameterization −µ∗
σ∗

= σ2
uε

σ2 σvσu
σ

= σuε
σσv

= ελ
σ

, the conditional expec-

tation is:

E(ui|εi) =
σvσu
σ

[
−εiλ
σ

+
φ (εiλ/σ)

1− Φ(εiλ/σ)

]
(24)

for which a consistent estimate can be obtained based on consistent estimates
of the model parameters (e.g., obtained via MLE or COLS, or the Modified
OLS procedures of Olson et al. (1980)). Thus a (conditional) consistent
estimator of each firm’s efficiency level can be based on this last equation.

3.1.3 Panel Stochastic Production Frontiers

The cross-sectional stochastic frontier model has a number of drawbacks that
have been addressed over the forty years since it was introduced. As we
pointed out, a consistent estimate for a firm’s technical efficiency is not
available, only a consistent estimate of the conditional mean of the firm’s
efficiency level. Of course the canonical ALS model is fully parametric and
inputs are assumed to be uncorrelated with the regressors, which is partic-
ularly troubling when the regressors are inputs and the latent factor that
typically is assumed to account for inefficiency is unobservable managerial
expertise, an input whose independence from the levels of capital and labor
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used in production is a questionable assumption, and of course if a firm is
aware of its level of technical efficiency this information, although unknown
to the analyst, should not be independent of the firm’s input choices.

These problems are potentially avoidable if one has panel data (Pitt and
Lee (1981); Schmidt and Sickles (1984)), although the possible endogeneity
of input choice must be addressed with care and its treatment using fixed
effects type estimators may not be completely satisfactory. We will return
to this issue shortly. If we have a panel of firms, then if the unobserved
firm effects represent technical efficiency they can be estimated consistently
for large T (assuming that our sample of firms n is large) after controlling
for inputs and other environmental and observable factors that may impact
production. To show how this is accomplished with panel data we use the
general treatment discussed in Schmidt and Sickles (1984) (SS), which also
considers the Pitt and Lee (1981) parametric random effects model. The
model is

yit = α + x′itβ + vit − ui, i = 1, ..., n; t = 1, ..., T, (25)

which can be rewritten as

yit = α∗ + x′itβ + vit − u∗i (26)

where α∗ = α − µ; u∗i = ui − µ; E(ui) = µ ≥ 0, and where xit is a vector of
N inputs. If we let αi = α∗ − u∗i then the model becomes the usual panel
data model

yit = αi + x′itβ + vit (27)

and cross-sectional effects that can be viewed as random, fixed, or simply ig-
nored. Five estimators of the classical panel data model with time-invariant
effects are discussed in SS. These are the pooled OLS model, the fixed effects
within estimator, the random effects model, the Hausman-Taylor estimator,
and the fully parametric random effects MLE model (Pitt and Lee (1981)).
Schmidt and Sickles (1984) discuss the asymptotics of each of these estima-
tors and the assumptions needed in order for the parameter estimates and
estimates of the technical efficiency level to be consistently estimated.

Technical efficiency effects estimates with the SS estimators do not change
over time and this is a strong and often unreasonable assumption that is not
necessary. The suite of panel stochastic frontier estimators developed by
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Cornwell et al. (1990) (CSS) had a parameterization that allowed for time-
varying heterogeneity and is based on the model:

yit = x′itβ + z′iγ + w′itδi + vit i = 1, · · · , n; t = 1, · · · , T, (28)

where xit, zi and wit are N ×1, J×1 and L×1 vectors, respectively, and the
parameter vectors β, γ and δi are dimensioned conformably. With δ0 = E[δi],
and δi = δ0 + ui the model can be written as:

yit = x′itβ + z′iγ + w′itδ0 + εit,

where

εit = vit + w′itui (29)

and where ui is assumed to be i.i.d., zero mean random variables with co-
variance matrix ∆.The error term vit is assumed to be i.i.d., with zero mean
and constant variance σ2

v . The basic model assumes that vit is uncorrelated
with z, x, and ui. In order to allow for time-varying technical efficiency the
stochastic frontier model of Schmidt and Sickles (1984)

yit = α + x′itβ + vit − ui = αi + x′itβ + vit. (30)

can be modified by replacing the αi with, e.g.,

αit = θi1 + θi2t+ θi3t
2, (31)

and the model in matrix form becomes

y = Xβ + Zγ +Wδ0 + ε, (32)

ε = Qu+ v. (33)

Details of the estimator can be found in Cornwell et al. (1990). Fixed
effects, random effects, and Hausman-Taylor estimators of the CSS model
were developed to estimate productivity efficiency that is time varying and
allow for consistent estimation under large n and T asymptotics of the time
varying productivity efficiency for each firm. The parameter δi is estimated
by regressing the residuals (yit − x

′
itβ) for firm i on wit. This amounts to

regressing the within residual on a constant term, time, and time-squared for
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the specification we introduced for αit above and relative efficiencies can be
approximated (in the linear in logs production function) by

α̂t = max
i

(α̂it) i = 1, ..., n (34)

ûit = α̂t − α̂it. (35)

Parametric MLE case also be used to estimate a random effects time
varying technical efficiency models. Kumbhakar (1990) and Battese and
Coelli (1992) present two such models. In the former inefficiency is modeled
as

uit = (1 + exp(bt+ ct2))−1τi, (36)

where a and b are parameters to be estimated and where τi’s distribution is
assumed to be i.i.d N+(0, σ2

τ ) and vit is i.i.d N (0, σ2
v). In the latter specifi-

cation inefficiency is modeled as

uit = ηtτi = {exp[−η(t− T )]}τi, t = 1, . . . , T ; i = 1, . . . , n, (37)

where vit is i.i.d N (0, σ2
v) random variables, τi is assumed to be i.i.d. and has

a non-negative truncated distribution N (µ, σ2), and η is a scalar parameter.

3.1.4 Second-and Third-Generation Stochastic Frontier Models

The models we have just discussed provide the basic statistical intuition for
SFA. Much has been done to extend and generalize the canonical models we
have discussed and space prohibits us from providing comparable detail on
these second and third generation extensions. However, the R codes that we
will discuss shortly are equipped to deal with a number of these relatively
new modeling scenarios and so we give a brief summary of what these second
and third generation SFA models deliver and the general ideas behind how
they are formulated and specified. We leave it to the reader to seek out the
original sources and recent books, handbooks, and survey articles that we
have referenced and that provide more detailed treatments.

Researchers have provided further generalizations of the CSS time-varying
technical efficiency model that focus on two main aspects of the model. The
first is to allow for a factor-type structure for the cross-section and time
varying technical efficiency term (these are almost all exclusively panel data
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extensions). The second is to decompose the time invariant and time varying
efficiency terms into a portion that is skewed, to represent technical ineffi-
ciency, and a portion that is symmetric, the latter somewhat courageously
called the “true” effects model. There are four other generalizations that
some may view as comparable to these but there is simply not enough space
to address them in any substantive way. We will mention them and pro-
vide several references as well as links to R codes that deal with these four
additional issues, which are: environmental factors, endogeneity, Bayesian
methods for SFA, and nonparametric specifications of the technology and of
the error structure.

We briefly discuss these sets of generalizations and available R code to
implement them.

Factor Models and SFA
Lee (1991) and Lee and Schmidt (1993) were the first to propose a (one

component) factor model to address time-varying and cross-sectional specific
production efficiency. Their model is

yit = αt + x′itβ + vit − uit for i = 1, . . . , n; t = 1, . . . , T, (38)

or as

yit = x′itβ + αit + vit, (39)

where αit = αt − uit is the time varying cross-sectional specific technical
efficiency term, which are modeled as s as

αit = ηtδi. (40)

Here ηt, t = 1, ..., T, are the time-varying effects to be estimated and δi, i =
1, ..., n, are the firm effects. Lee and Schmidt (1993) provide fixed-effects
and random effects estimators for this one-factor model based one nonlinear
regression estimators.

Ahn et al. (2007) generalized this model to allow for multiple factors that
change over time and specify the production frontier as

yit = δt + x′itβ + vit − uit (41)

= x′itβ + ηit + vit, i = 1, 2, . . . , n, t = 1, 2, . . . , T, (42)
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where, again, vit is the usual disturbance term and uit ≥ 0 is the inefficiency
term and where ηit ≡ δt − uit is the time-varying and cross-sectional spe-
cific technical efficiency term that is expressed as a linear combination of p
unrestricted components,

ηit = θ1tα1i + θ2tα2i + · · ·+ θptαpi =

p∑
j=1

θjtαji. (43)

The model is estimated using generalized methods of moments. Ahn et al.
(2013) provide a focused study of consistency properties of their Ahn et al.
(2007) model when different sorts of dependency relationships exist between
the production efficiency effects and the regressors.

In the Ahn et al. (2007) model the effects are multiplicative. Kneip et al.
(2012) (KSS) provided a more general model than Ahn et al. (2007) by al-
lowing for a general nonparametric time-varying and cross-section specific
productivity efficiency. The KSS model is:

yit = β0(t) +
N∑
j=1

βjxitj + ui(t) + vit, i = 1, . . . , n; t = 1, . . . , T. (44)

The ui(t)’s are assumed to be smooth time-varying individual effects that
satisfy a normalization that

∑
i ui(t) = 0 and are a linear combination of

L < T basis functions (common factors) g1, ..., gL:

ui(t) =
L∑
r=1

θirgr(t). (45)

The term β0(t) is an average function that is eliminated by centering the
model yielding

yit−ȳt =
N∑
j=1

βj(xitj−x̄tj)+ui(t)+vit−v̄i, i = 1, . . . , n; t = 1, . . . , T (46)

where ȳt = 1
n

∑
i yit, x̄tj = 1

n

∑
i xitj and v̄i = 1

n

∑
i vit. As with the CSS

and many other panel stochastic frontier estimators, technical efficiency is
calculated as TEi(t) = exp{ui(t)−maxj=1,...,n(uj(t))}, just as it is calculated
with the CSS estimator. The estimator used is a three step one that first esti-
mates β using penalized least squares and smoothing splines to approximate
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the factors, then second generates estimates of the covariance structure of the
ui(t)

′s , and the third step estimates the basis functions ĝr and then updates
estimates of ui by

∑
L
r=1θ̂irĝr. The KSS estimator and related estimators

such as those introduced by Bai and Ng (2002) and Bai (2009), as well as
tests for the number of factors, have been programmed in R and are available
not only in the suite of programs we discuss at the end of this chapter but
also can be found on the website referenced in Bada and Liebl (2014).

True Fixed Effects and SFA
Greene (2005a,b) proposed a stochastic panel frontier model in which the

intercept fixed effects were not measures of persistent inefficiencies, as had
been assumed by SS, but rather was simply firm specific heterogeneity. This
has become known as the“true”fixed effects model, although a less ambitious
label may be the panel frontier with only transitory inefficiency. The model
is

yit = αi + x′itβ + vit − uit (47)

εit = vit − uit, (48)

or

yit = αi + x′itβ + εit (49)

and thus the source of inefficiency is uit, which is distinguished from the in-
tercept terms αi. Greene outlines estimators for both the fixed effects and
random effects panel stochastic frontier model with only transitory ineffi-
ciency based on simulated MLE and technical efficiency estimates are based
on the familiar expression

T̂Eit = exp[−{max(ûit)− ûit}]. (50)

Colombi et al. (2011), Colombi et al. (2014), and Tsionas and Kumbhakar
(2014), provided further generalizations of this model and alternative estima-
tors based on Bayesian methods, full information maximum likelihood, quasi-
MLE, and method of moments. One important generalization proposed by
these authors specifies the persistent and transitory efficiency terms as sepa-
rate skew-normal errors based on the following parameterization ofColombi
et al. (2014)

yit = x′itβ + αi + vit − uit − ηi, (51)
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where εit = αi+vit−uit−ηi is the error structure and where uit and ηi are non-
negative random variables that capture firm-specific random effects, random
noise, short-run technical inefficiency, and long-run technical inefficiency.

Environmental factors can be introduced into the SFA paradigm in a
natural way by including them in a vector of variables that is assumed to
impact the mean and the variance of production efficiency. For an excellent
treatment of the problem see Wang and Schmidt (2002), Simar and Wilson
(2008) and Kim and Schmidt (2008). The marginal effects of the environ-
mental factors, based on Battese and Coelli (1995), can be estimated using
the R package Frontier (http://cran.r-project.org/web/packages/frontier/)
developed by Arne Henningsen.

Various dependency structures have been assessed within the SFA paradigm.
An excellent source of recent work on this topic can be found in Kumbhakar
and Schmidt (2016).

No one has had more of an impact on the introduction of Bayesian meth-
ods into the SFA and DEA paradigms than Mark Steel and Mike Tsionas
(Griffin and Steel (2007), Tsionas and Papadakis (2010), and Liu et al.
(2017)). The WinBUGS package of Steele is Fortran and Matlab-based open
source code that can be modified to run in R. Nonparametric models in SFA
have been studied in a variety of settings by Park et al. (1998), Adams et al.
(1999), Park et al. (2003), Park et al. (2007), among others, and the R codes
for the latter models are discussed in more detail in the last sections of this
chapter on specific implementation of open source R codes for SFA and DEA.
Experimental R codes that can estimate both parametric and non-parametric
stochastic frontiers can also be found in the experimental R-Forge package
maintained by Arne Henningsen.

4 Envelopment Estimators

In this section we will briefly review another very popular approach in the
measurement and empirical estimation of the efficiency of economic systems
(firms, industries, etc.), called Data Envelopment Analysis (DEA).

4.1 The Origins of DEA

In a nutshell, DEA is rooted in and coherent with theoretical economic mod-
eling using Activity Analysis Models (AAM) and is estimated via the powerful

16



linear programming approach. Its name was branded in the seminal work of
Charnes et al. (1978), who refined and generalized the approach of Farrell
(1957) to estimate production efficiency, which in turn was influenced by
seminal works of Debreu (1951), Koopmans (1951a,b) and Shephard (1953,
1970).

4.2 The Basic DEA Model

In his seminal work, Farrell (1957) focused on the constant returns to scale
model, with multiple inputs and a single output. About two decades later,
Charnes et al. (1978) generalized Farrell’s approach to the multi-output case
but started with a very different formulation–a fractional programming prob-
lem formulation with the objective being to optimize the ratio of a weighted
aggregate of outputs to a weighted aggregate of inputs (i.e., a kind of produc-
tivity index). They then transformed this problem into a linear programming
(LP) problem and derived its dual, which turned out to be the (generalized
version of) AAM proposed by Farrell. Specifically, the formulation of Charnes
et al. (1978) for estimating the efficiency score of a firm or decision-making
unit (DMU) j ∈ (1, ..., n) with an allocation (xj, yj), states

Ej
i,CCR = max

v1,...,vN ;
u1,...,uM

{ ∑M
m=1 umy

j
m∑N

l=1 vlx
j
l

:
∑M
m=1 umy

k
m∑N

l=1 vlx
k
l

≤ 1, k = 1, ..., n,

um ≥ 0, vl ≥ 0, l = 1, ..., N ;m = 1, ...,M

}
(52)

where u′ = (u1, ..., uM) and v′ = (v1, ..., vN) are optimization variables (also
called here ‘multipliers’). This DEA formulation is more popular in the
operations research and management science literature and is often referred
to as the ‘CCR model’ or the ‘multiplier form of DEA’ under CRS, additivity
and free disposability.

Importantly, Charnes et al. (1978) then showed that (52) is equivalent to
the AAM version of the DEA-estimator of the Farrell input oriented technical
efficiency score of a DMU with an allocation (xj, yj) under the assumption
of CRS (also assuming additivity and free disposability of all inputs and all
outputs), formulated as

17

rsickles
Pencil



Êi(x
j, yj) ≡ min

λ,z1,...,zn
λ (53)

s.t.
n∑
k=1

zkykm ≥ yjm,m = 1, ...,M, (54)

n∑
k=1

zkxkl ≤ λxjl , l = 1, ..., N, (55)

λ ≥ 0, zk ≥ 0, k = 1, ..., n, (56)

which is an LP problem that can be solved via any standard LP solver.
This formulation is more common in the economics literature (largely due
to its connection to works of Debreu (1951) and Koopmans (1951a,b)), and
is often referred to as the envelopment form of DEA under CRS, additivity
and free disposability. We will use this envelopment formulation to describe
other variants of DEA, though it is useful to keep in mind that there is
also a multiplier form that optimizes what can be viewed as a normalized
productivity index.

The previous formulation looks at minimization of all inputs, while keep-
ing outputs fixed, and hence is called the input orientation. Similarly, the
DEA-estimator of the Farrell output oriented technical efficiency score of
any (xj, yj) allocation, under the assumptions of CRS, and additivity and
free disposability of all outputs and all inputs is formulated as

Êo(x
j, yj) ≡ max

λ,z1,...,zn
λ (57)

s.t.
n∑
k=1

zkykm ≥ λyjm,m = 1, ...,M, (58)

n∑
k=1

zkxkl ≤ xjl , l = 1, ..., N, (59)

λ ≥ 0, zk ≥ 0, k = 1, ..., n. (60)

Immediately note that for these formulations we have
Êi(x

j, yj) = 1/Êo(x
j, yj) for any (x, y), as is required theoretically due to

CRS.
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Also note that the reciprocals of these estimated Farrell efficiency mea-
sures also give estimates of the input and output oriented Shephard’s distance
functions (Shephard (1953, 1970)), under the same assumptions on technol-
ogy, i.e., CRS, additivity and free disposability.

Sometimes a researcher may not be interested in fixing only the levels
of inputs or outputs, but may want to simultaneously expand outputs and
contract inputs, thus requiring other orientations. The DEA-estimator of a
general efficiency measure of any (xj, yj) allocation in such a case (also here
under the assumptions of CRS and additivity and free disposability of all
outputs and all inputs), can be obtained as follows

ĜEo(x
j, yj) ≡ max

λ1,...,λN ,,θ1,...,θM ,z1,...,zn
f(λ1, ..., λN , , θ1, ..., θM) (61)

s.t.
n∑
k=1

zkykm ≥ θmy
j
m,m = 1, ...,M, (62)

n∑
k=1

zkxkl ≤ xjl /λl, l = 1, ..., N, (63)

λ ≥ 0, zk ≥ 0, k = 1, ..., n, (64)

where certain restrictions can be imposed on the objective function
f(λ1, ..., λN , , θ1, ..., θM) and its arguments, depending on the interest of the
researcher. For example, restricting f to be additive (but summing only pos-
itive arguments) will give the DEA estimate of the general Russell efficiency
measure and an additional restriction of θ1 = ... = θM = 1 will turn it into
the input oriented Russell efficiency measure (as was originally introduced
by Färe and Lovell (1978)). If one instead restricts λ1 = ... = λN = 1
then one obtains the output oriented Russell efficiency measure. Mean-
while, restricting f(λ1, ..., λN , θ1, ..., θM) to be multiplicative (a geometric
mean) will generate the multiplicative-Russell efficiency measure introduced
by Färe et al. (2007). Furthermore, if instead one imposes θ1 = ... = θM = θ
and λ1 = ... = λN = λ then the DEA estimate of the what has been termed
the general hyperbolic efficiency measure is obtained. This latter measure
sometimes also appears with the additional restriction that θ = λ, which im-
poses the properties of equiproportional expansion (contraction) of all output
(inputs). Note that in general, this last formulation is no longer an LP prob-
lem and therefore, it is typically more challenging to estimate.
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Another very general measure, as well as a primal characterization of
technology, is the directional distance function,4, which can be estimated via
the following DEA formulation (here also under the assumptions of CRS and
additivity and free disposability of all outputs and all inputs):

D̂d(x
j, yj|dx, dy) ≡ max

λ,z1,...,zn
λ, (65)

s.t.
n∑
k=1

zkykm ≥ yjm + λdym ,m = 1, ...,M, (66)

n∑
k=1

zkxkl ≤ xjl − λdxl , l = 1, ..., N, (67)

λ ≥ 0, zk ≥ 0, k = 1, ..., n. (68)

In a similar fashion, DEA can be used to model and estimate cost, revenue
and profit functions and associated efficiency measures. More details on this
can be found in Sickles and Zelenyuk (2018).

4.3 The Myriad of DEA models

The approach briefly described in the previous section in the context of differ-
ent efficiency measures constitutes the canonical forms of the DEA paradigm.
Essentially, all the other versions are modifications or extensions of the mod-
els we have outlined. In this section we briefly discuss a few of these modi-
fications and extensions.

Oftentimes, extensions are obtained by imposing various additional con-
straints onto either the envelopment form or the multiplier form of DEA,
with an aim to better mimic the particular actual production process under
study. Such additional restrictions should be imposed with care, since they
may (and often do) affect other desirable properties related to previously
added constraints, such as CRS, convexity, free disposability, additivity, etc.

Additional constraints also may create computational complications, e.g.,
turning the problem from a linear to a non-linear one or a hybrid problem

4The origins of ideas for this function go back to at least Allais (1943), Diewert (1983),
and Luenberger (1992), and were later revived and thoroughly developed by Chambers
et al. (1996)
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that may require integer-programming problems. This may result in possibly
making the problem much harder to compute, possibly infeasible, or may give
inferior local optima or degenerate solutions.

4.3.1 Relaxing Constant Returns to Scale and Convexity

The first wave of extensions of the DEA-CRS model mainly focused on re-
laxing assumptions such as CRS and convexity. This line of research was
pursued by a number of researchers who extended and enriched the DEA
paradigm, among them Afriat (1972); Färe et al. (1983); Banker et al. (1984);
Deprins et al. (1984) and Petersen (1990); Bogetoft (1996), to mention a few.

Out of the many modifications and extensions of the canonical DEA prob-
lem the several that have sustained the test of time and popularity are the
DEA-VRS (variable returns to scale) and the DEA-NIRS (non-increasing re-
turns to scale) models, which simply amount to adding additional constraints
in the form of

∑n
k=1 zk = 1 or

∑n
k=1 zk ≤ 1, respectively, to the DEA-CRS

formulations as described above.
Meanwhile, the Free Disposal Hull (FDH) approach, can be implemented

via a hybrid of the linear programming and the integer programming prob-
lems, which is formulated in exactly the same way as the DEA-VRS program-
ming problem with the exception that the constraints “zk ≥ 0, k = 1, ..., n”
are replaced with “zk ∈ {0, 1}, k = 1, ..., n”. For example, using the output
oriented Farrell efficiency with an allocation (xj, yj) the FDH formulation is
given by

Êo(x
j, yj) ≡ max

θ
θ (69)

s.t.
n∑
k=1

zkykm ≥ θyjm,m = 1, ...,M, (70)

n∑
k=1

zkxkl ≤ xjl , l = 1, ..., N, (71)

n∑
k=1

zk = 1, (72)

θ ≥ 0, zk ∈ {0, 1}, k = 1, ..., n. (73)

The value of such formulation is that it hints at the relationship between
FDH and DEA-VRS: indeed, the DEA-VRS estimated technology set is sim-
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ply the convex closure of the FDH-estimated technology set. Thus, the FDH
estimator can be viewed as a special case of the data envelopment analy-
sis approach since it also envelopes the data but does so without imposing
convexity. For historical reasons these names are kept separate to avoid
confusion. An alternative yet equivalent form of the FDH estimator can be
given via the min-max problem, which is faster to compute (e.g., see Simar
and Wilson (2013) for more details).

Finally, stochastic versions of DEA and FDH are also available (e.g.,
Simar (2007); Simar and Zelenyuk (2011)).

4.3.2 Modeling with Undesirable Outputs or with Congesting In-
puts

Another important stream of DEA literature has focused on estimating tech-
nologies with weak disposability of inputs or (and especially) outputs, to
account for the fact that some outputs are undesirable (‘bad’) and some
inputs can cause congestion.

The ideas for such modeling approaches go back to at least Shephard
(1974), and then was elaborated on in Färe and Svensson (1980); Färe and
Grosskopf (1983); Grosskopf (1986); Tyteca (1996); Chung et al. (1997),
which defined the mainstream approach on this matter. More recently this
mainstream approach was re-evaluated in several important works, includ-
ing Seiford and Zhu (2002), Färe and Grosskopf (2003, 2004, 2009), Før-
sund (2009), Podinovski and Kuosmanen (2011), Pham and Zelenyuk (2018,
2017).5

While many proposals have been made, the most popular approach in
this context so far continues to be the mainstream one. In this approach, for
example, if one is interested in measuring the radial expansion of the good
outputs (g) while having no more inputs (x) and no more of bad outputs (b),
then the DEA estimate of the good-output-oriented Farrell technical efficiency

5Also see Dakpo et al. (2017) and Sueyoshi et al. (2017) for reviews of this research
stream.
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(under VRS) is given by

T̂Eg(x, g, b) ≡ max
γ,z1,...,zn,δ

γ (74)

x ≥
n∑
k=1

zkxk (75)

gγ ≤ δ
n∑
k=1

zkgk, γ ≥ 1 (76)

b = δ
n∑
k=1

zkbk, 0 ≤ δ ≤ 1 (77)

n∑
k=1

zk = 1, zk ≥ 0, k = 1, ..., n. (78)

For more theoretical and practical (computational) discussions on this
topic see Pham and Zelenyuk (2017) and references therein.

4.3.3 Other Streams of DEA

Another stream of DEA focuses on accounting for the network structure of
production technologies whether static or dynamic. This stream originated
in the seminal works of Färe and Grosskopf (1996); Färe et al. (1996) and
was taken further in many other works, e.g., see Kao (2009a,b, 2014) and
references therein.

Another important stream of DEA literature is on the topic of weight re-
strictions in multiplier form of DEA and the classical works here are by Dyson
and Thanassoulis (1988); Charnes et al. (1990); Thompson et al. (1990), with
more recent and fundamental contributions including new interpretations (as
‘technological trade-offs’) of various weight restrictions in DEA from Podi-
novski and Bouzdine-Chameeva (2013), to mention just a few. Also see
reviews on this topic by Allen et al. (1997); Podinovski (2015).

Yet another interesting research stream of DEA overlaps with game the-
ory, which also has its roots in the seminal work of von Neumann (1945) and
more explicit treatment, for example, in Hao et al. (2000); Nakabayashi and
Tone (2006); Liang et al. (2008); Lozano (2012).
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4.4 Statistical analysis of DEA and FDH

Another key research wave that brought DEA and FDH to a totally different
level is related to their statistical aspects—this wave was mainly influenced
by the seminal works of Léopold Simar and many of his co-authors.

The first breakthrough in this area was made by Banker (1993), where the
first proof of consistency of the DEA estimator was sketched for the single-
output case (in output oriented context), and was pointed out that it belongs
to the class of maximum likelihood estimators. This important discovery was
then substantially enriched by Korostelev et al. (1995a,b) who proved con-
vergence of the estimated technology to the true technology for both DEA
and FDH estimators, and derived convergence rates of these estimators, clar-
ifying that they depend on the dimension of the production model, yet also
have some optimality properties under certain conditions.

The convergence properties for the multi-input-multi-output case were
first presented in the seminal work of Kneip et al. (1998). Meanwhile, the
discovery of the limiting distribution of the DEA estimator was done by Gi-
jbels et al. (1999), only for the 1-input-1-output case and a decade later,
Kneip et al. (2008) derived it for the fully multivariate case for DEA with
VRS and also proved consistency of various bootstrap procedures. The lim-
iting distribution for the case of DEA with CRS was established by Park
et al. (2010) and the limiting distribution of the FDH estimator for the fully
multivariate case was also derived by Park et al. (2000), while consistency
of the bootstrap for FDH estimator was first presented in Jeong and Simar
(2006).

This stream also includes the approach of analyzing the DEA (or FDH)
estimated efficiency scores. Perhaps the most popular of these is the so-
called ‘two-stage DEA’, which involves regression analysis of efficiency scores
on some factors. The state of the art here is the approach proposed by Simar
and Wilson (2007), which is based on truncated regression where the inference
is done with the help of a double bootstrap.6 A non-parametric version of
this approach (based on non-parametric truncated regression) was proposed
by Park et al. (2008). Furthermore, methods to analyze the distributions of
DEA and FDH efficiency scores were explored in Simar and Zelenyuk (2006),
while methods to analyze industry efficiency were explored by Simar and
Zelenyuk (2007). These approaches were applied in various contexts and
industries, e.g., Zelenyuk and Zheka (2006), Demchuk and Zelenyuk (2009),

6Also see Simar and Wilson (2011) for the discussion on caveats and limitations.
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Curi et al. (2015), Chowdhury and Zelenyuk (2016), Du et al. (2018), to
mention a few.

A particularly notorious drawback of DEA and FDH—not allowing for
noise and sensitivity to ‘super-efficient’ outliers—was addressed by Simar
(2007); Simar and Zelenyuk (2011), who proposed their version of Stochastic
DEA and Stochastic FDH, which consists of two stages: (i) filter the data
from the noise using a non-parametric stochastic frontier method7 and then
(ii) use DEA or FDH on the filtered data.

More recently, Kneip et al. (2015) derived new central limit theorems
for the context where DEA or FDH estimates are used in place of the true
efficiency and thus provided the foundation for many useful statistical tests
involving DEA or FDH estimators, including the two-stage ‘DEA+regression’
context. This foundation was then used by Kneip et al. (2016); Daraio et al.
(2017b) to develop various statistical tests and by Simar and Zelenyuk (2017)
to develop two new central limit theorems for the aggregate efficiency scores
(industry efficiency, etc.) of the type described above and more work contin-
ues in this area.

5 SFA Efficiency Software in R

Reproducing the R code needed to implement the methods we have discussed
in our chapter is not feasible and thus we provide a short tutorial on how to
use a suite of estimators that can easily be accessed via the website “Produc-
tivity in R”that can be found as https://sites.google.com/site/productivityinr/.
We use standard notations in the codes and let n be the number of firms,
T the number of time series and nT the total number of observations, i.e.,
nT = n× T . The data input files configured with the first column a nT × 1
column vector of the dependent variable y, and the next k containing nT × 1
vectors of the independent variables contained in x′. The convention used is
for the first T observations to be for the first cross-section, the second T ob-
servations for the second cross-section and so on. The default program output
(‘results.out’ is the default output filename) contains parameter estimates,
standard errors, t-values, average technical efficiency, correlation of effects
and efficiencies, Spearman rank order correlation of effects and efficiencies,

7While originally Simar and Zelenyuk (2011) considered the approach of Kumbhakar
et al. (2007) for the first stage, one could use other non-parametric SFA approaches, e.g.
a more general version proposed by Park et al. (2015) or Simar et al. (2017).
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R-squared and adjusted R-squared.

5.1 Basic Model Setup

The default model is the panel data model we introduced in section 3, which
we rewrite here:

yit = α + x′itβ − uit + vit, (79)

where the global mean (α) is subtracted out in the regression and where this
demeaning method is applied to the suite of estimators discussed in SS and
CSS as well as for the Battese and Coelli (1992) (BC) estimator. Time
trends can be added as well to account for disembodied technical change
that is available for adoption by all firms and various right-hand-side (rhs)
variables that may be correlated with the effects can be identified in the main
R file. Efficiencies can also be averaged over different estimators using model
averaging weights based on a simple average (AVE=0), AIC weights (AVE=1),
or BIC weights (AVE=2). Outliers can be addressed by trimming (this does
not apply to the BC and the DEA estimators).

5.2 Figures and Tables

Figures and tables are selected by setting values of 1 to print and 0 to skip
the results. There are a number of figures that are already set up to print.
For example, when fig1=1 a figure for the average of efficiencies of the time-
variant estimators is printed. When fig2=1 one for the efficiencies from the
time-variant estimators is printed. When fig3=1 a figure for the average of
efficiencies from all estimators is printed, while fig4=1 the weighted average
of the efficiencies is printed. tab1=1 prints a table for the average of efficien-
cies from the time-variant estimators, tab2=1 prints one for the efficiencies
from the time-variant estimators are printed and tab3=1 prints a table of
the individual effects from all estimators. Also, setting firmeff=1 saves
the efficiencies of each individual firm for each estimator utilized.

5.3 Different Estimators

The R codes for the SFA models include the fixed effect, random effects, and
the Hausman-Taylor (HT) version of the stochastic panel frontier models of
Schmidt and Sickles (1984). The FR and the HT global parameters are set
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to determine which model is estimated. Since the HT estimator of the panel
stochastic frontier allows for selected regressors to be correlated with the ef-
ficiency effects term the global option k1 is set at the number of variables
in X not correlated with the efficiency effects and are loaded into the first
k1 columns for the regressors. These different models are referred to as FIX,
RND, and HT. The global options PSS1, PSS2, PSS3 designate the estimators
for the Park, Sickles and Simar (1998, 2003, 2007) models. The value of 1
prints the results and 0 skips the results. Bandwidth selection is based on
leave-one-out least squares cross-validation. The CSS global option allows for
the estimates of the Cornwell et al. (1990) models to be generated. A global
option of CSS=1 prints results of the Fixed Effects/Within estimator (CSSW)
estimator, while CSS=2 generated the GLS random effects estimator. The
efficient IV estimator (analogous to the HT estimator for the SS Model) is
engaged with CSS=3. Finally, CSS=4 prints out all four model results. Time
invariant variables should be placed at the end of X. The parameter zp is
set equal to the number of time invariant variables. The Kneip, Sickles and
Song (2012) factor-model is called by setting the global parameter KSS=1.

The KSS estimator also finds the number of factors and the code varies the
number of factors from Lmax to Lmin and finds the first highest number at
which the dimensionality test is not rejected. Cross-validation is used to
estimate the optimal smoothing parameter. gr_st is the starting point of
the grid search, gr_in is the increment in the grid search, and gr_en is the
end point of the grid search. The Battese and Coelli (1992) model is called
by setting the BC option=1. The bounded inefficiency model of Almanidis,
Qian, and Sickles (2014) is called by setting the BIE option=1. Different
distributions for the lower bound on inefficiency can also be specified using
the bie_dist parameter. For a bie_dist=0 the truncated is specified,
while bie_dist=1 uses the truncated half normal, and bie_dist=2 the dou-
bly truncated normal distribution. Finally, the Kutlu (2018) endogeneity
correction for selected regressors (e.g., input levels in the production fron-
tier) based on the CSS estimator is also available on this website along with
instructions for its use.

6 DEA Efficiency Software in R

The Jeon and Sickles (2004) model is the directional distance function method
outlined in the section on DEA estimators. This estimator also allows us to
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address the presence of undesirable outputs. Jeon and Sickles (JS) used
this DEA estimator to examine the productivity effects of controlling for
carbon dioxide emissions on productivity growth using Mamlquist indexes.
The JS estimator uses OECD data while Efficiency software uses UNIOD
and Bank data. The JS R codes are in a separate Jeon Sickles 2004.zip
file on the website. The default results that are printed by the R codes are
productivity growth, efficiency change, and technology change and confidence
intervals for the growth decompositions are based on the Simar and Wilson
(2007) bootstrapping method. Next, we have the Simar and Zelenyuk (2006)
model, which implements the Li (1996) test in the context of comparing
distributions of efficiency estimated via DEA and the Simar and Zelenyuk
(2007) model that constructs confidence intervals and bias corrections for
DEA-estimated aggregate efficiencies of a set of firms. It also provides a test
for the comparison of these group efficiencies.

There are other open source R code platforms other than the one that
we have focused on in our discussions so far. The Benchmarking package
in R prepared by Peter Bogetoft and Lars Otto is one such program and
the manual and other directions for its use can be found at https://cran.r-
project.org/web/packages/Benchmarking/Benchmarking.pdf. This can be
used to estimate both DEA and FDH models. There have been many other
programs developed by Simar and his colleagues in Matlab and these can
be compiled into R using Matlab-to-R converters. One such package, the
‘matconv’ package by Siddarta Jairam is a useful conversion tool, although
some testing for accuracy is always advised for such automatic translations.8

Many of these Matlab programs can be found at
https://sites.google.com/site/productivityefficiency.9 Finally, Daraio et al.
(2017a) provide a survey on a variety of software platforms that can estimate
SFA and DEA models, including a number with R coding.

8See https://cran.r-project.org/web/packages/matconv/matconv.pdf for more details.
9Arne Henningsen has provided the R conversion to a number of Fortran-based pro-

grams (FRONTIER) developed by Tim Coelli as well as a set of new programs in his
A Package for Stochastic Frontier Analysis (SFA) in R. This platform is available at
https://cran.r-project.org/.
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7 Summary and Final Remarks

This chapter has discussed a number of statistical and programming tech-
niques used to evaluate the production efficiency of economic units, whether
they be firms, sectors, or countries. We have discussed the methods most
widely used for these sorts of evaluations and have provided references and
url’s to the most up to date websites that provide the R code to implement
these methods. We trust that the interested reader will find our discussions
and the software helpful for the purposes of practical evaluations of the per-
formance of business entities as well as in their academic research. We have
also provided an up to date set of references that productivity and efficiency
researchers can use for extended and deeper readings on these widely used
and adopted performance benchmarkingu; methods.
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Färe, R., Grosskopf, S., 2009. A comment on weak disposability in nonpara-
metric production analysis. American Journal of Agricultural Economics
91 (2), 535–538.
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