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Abstract

We examine aggregate productivity in the presence of inter-sectoral linkages. Cross-sectional

dependence is inevitable among industries, in which each sector serves as a supplier to the other

sectors. However, the chains of such interconnections cause indirect relationship among indus-

tries. Spatial analysis is one of the approaches to address cross-sectional dependence by using a

priori a specified spatial weights matrix. We exploit the linkage patterns from the input–output

tables and use them to assign spatial weights to describe the economic interdependencies. By

using the spatial weights matrix, we can estimate the industry-level production functions and

productivity of the U.S. from 1947 to 2010. Cross-sectional dependencies are the consequences of

indirect effects, and they reflect the interactions among industries linked via their supply chain

networks result in larger output elasticities as well as scale effects for the networked production

processes. However, productivity growth estimates are reportedly comparable across various

spatial and non-spatial model specifications.

Keywords: cross-sectional dependence, spatial panel model, spatial weights matrix, stochastic

frontier analysis, industry-level productivity

JEL Classification: C21, C23, C51, O47, R15

1 Introduction

A nation’s aggregate productivity can be decomposed into the productivity of each industry and the

allocation of factor inputs among industries. These two components may interact with one another.

A productivity shock in one sector may result in misallocation of inputs in the other sectors, while

the misallocation of inputs in a sector may invoke productivity shocks in the other sectors due to

production linkages via the production supply chain. Such linkages have been studied extensively

in the literature. Timmer et al. (2014, 2015), and Timmer and Ye (2017) summarized and provided

new insights into many of the productivity aspects of supply chain networks. Jones (2012) argued

that the effects of misallocation may be amplified through the input–output structure, and that

the contagion of the negative effects caused by misallocations can reduce total factor productivity
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(TFP). Similarly, Acemoglu et al. (2012) believed that microeconomic idiosyncratic shocks can lead

to aggregate fluctuations through input–output linkages. Hence, the productivity of each industry

may be dependent on the productivity of other industries.

Measurement of industry-level productivity has been examined in many studies by using various

methodologies. However, most studies have not considered the possibility of cross-sectional depen-

dencies. Much of the current research has focused on the contributions of industries to aggregate

productivity. Growth–accounting techniques and index–number approaches are widely used by

many statistical agencies. However, these approaches separately estimate the productivity growth

of each industry. Statistical agencies also assume that industries are independent, thus neglect-

ing the possibility of interdependencies. However, interdependency is inevitable, especially among

economic industries, in which the outputs of many sectors are used as inputs of others.

Substantial evidence supports the contributions of each industry to aggregate productivity,

which changes over time. The contribution of each industry to the economy can be defined as the

productivity for the industry weighted by its share in output for the economy as a whole (Jorgenson

et al., 2012). Hence, changes in the level of industry productivity and its relative importance in the

economy will impact its contribution to aggregate productivity growth. In addition, the relative

importance of industries may be affected by the linkages among industries. For example, Figure 1

shows the evolution of the share of industries to gross output of the U.S. by comparing shares

from 1947 to 20101. Clearly, the gross output share of each industry has changed substantially

over the last six decades. Total manufacturing, e.g., food, beverages, and tobacco (Ind3), textiles,

leather, and footwear (Ind4), and basic metals and fabricated metal (Ind11), lost their shares. By

contrast, tertiary industries, e.g., financial intermediation (Ind24), real estate, renting, and business

activities (Ind25, Ind26), education(Ind 28), and health and social work (Ind29), increased their

shares. The change in output shares is a result of industrial structural change in general. However,

the change can also represent the transition of key sectors. Jorgenson et al. (2012) also argued the

possible influential power of several key sectors. For instance, the role of the non-IT industries has

shrunk, whereas the contributions of IT-producing and IT-using industries have risen.

The research on productivity measurement has a long history. Modern methods and approaches

are usually traced back to the pioneering work of Cobb and Douglas (1928). The ambiguous concept

of productivity was clarified owing to contributions of Solow (1957), Griliches (1960), and Jorgenson

and Griliches (1967). Solow (1957) measured productivity growth by using the residuals of output

growth that have not been explained by capital accumulation or increased labor services. The field

has developed in various directions, and index–number approaches have become the main metric for

measuring productivity growth (Jorgenson and Griliches, 1967; Diewert, 1976). Direct estimation of

the production function by using econometric techniques has also been pursued. Hulten (2001) re-

ported that a number of pitfalls are present in the econometric approach. These pitfalls include the

possible odd-shaped isoquants without appropriate a priori restrictions, the abundance of param-

eters to estimate with limited information, and the complication of flexible models. Although the

1Source: World KLEMS database (http://www.worldklems.net/)
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Figure 1: A comparison of Gross-output share of industries: 1947 vs. 2010

econometric approach has its shortcomings, it still offers model flexibility. Such flexibility extends

to the econometric setting in which panel data are utilized, thereby employing fixed or random

effects specifications to address firm-specific unobserved heterogeneity. However, the econometric

approach often does not address spatial interactions. Exceptions in the production function litera-

ture can be found in the endogenous growth literature and formal spatial econometric specifications

based on both average production/cost models and frontier production/cost models. Models ex-

tending the multiplicative spillover effects by framing production in a spatial autoregressive (SAR)

setting to address network effects or trade flows among countries have been formulated by Ertur

and Koch (2007) and Behrens et al. (2012). General stochastic frontier treatments that do not

force efficiency on the productive units—whether they are countries, states, or firms—have been

introduced by Druska and Horrace (2004) in the cross-sectional setting and for the panel modeling,

as shown in the series of papers by Glass et al. (2013, 2015, 2016a,b) and by Han et al. (2016a,b).

The ignored cross-sectional dependence has caused the standard OLS estimators to become

inefficient and the estimated standard errors to become biased (Phillips and Sul, 2003; Chudik

and Pesaran, 2013). We expand the standard stochastic frontier model to spatially dependent

specifications in the present study.

Models with spatial structures are found in the fields of regional science, economic geography,

and urban economics, and such methodology has been applied recently in panel data studies in

international economics, public economics, and agricultural economics. The approach captures the

structure of cross-sectional correlation with the exogenous spatial weights matrix and estimates

the spatial effects via spatial parameters. The spatial weights matrix is usually formed on the

basis of spatial (geographical) characteristics. However, the characteristics also can be based on
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economic or socio-economic distance among units. A distinctive feature of the spatial econometric

approach is that the spatial weights matrix is generally specified a priori based on an exogenous

conceptualization of the structure of spatial dependence. Hence, selecting the right spatial weights

matrix is crucial for correct model specification.

We aim to propose a novel approach to create a spatial weights matrix based on economic dis-

tance when physical distance does not properly capture the spatial linkages. We examine industry-

specific data. Thus, a formal distance metric based on geographical distance has no obvious appeal.

Instead, we define economic distance, analogous to a geographic distance by using the supply flows

that can be found in the input–output tables. In succeeding sections, we specify spatial produc-

tion models by utilizing SAR models and spatial Durbin model (SDM) and estimate the model

by using Cornwell et al. (1990) type stochastic frontier approaches. By using the weights matrix

created from the input–output tables, we examine the production technology and industry-level

productivity of the U.S. from 1947 to 2010.

The remainder of the paper is organized as follows. In section 2, we start with a typical

production model of the economy and expand the model to associated spatial specifications. We

also discuss how to estimate the production technology of the economy and the efficiency score of

each industry within the stochastic frontier framework. In section 3, we provide a novel methodology

to define a supply chain-based metric for economic distance by using the input–output tables and

form the corresponding spatial weights matrix. In section 4 we apply our methodology to estimate

a production frontier function by using industry-level data for the U.S. from 1947 to 2010. Finally,

we discuss concluding remarks and possible extensions for the future research in section 5.

2 Models

2.1 Production function with heterogeneity in intercepts and slopes

Consider the following production function with Hicks-neutral technological change:

Yit = AitF (Xit), i = 1, · · · , N, t = 1, · · · , T, (1)

where Ait is the unobservable productivity term, which differs between economic units and time

periods. If we consider a log-linear functional form (e.g., Cobb–Douglas production function) for

F (·), then by taking the logarithm of Eq. (1) we derive the following standard linear regression

model:

yit = α+X ′itβ + εit,

where yit and Xit are the logged variables of Yit and Xit, α represents the intercept, and εit is an

unobservable term. The εit term can be decomposed into a productivity term uit, which is known

to the firm, or a representation of firms in an industry that is well-informed, but not known to the

econometrician, and a statistical noise term vit. Hence, the model becomes
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yit = α+X ′itβ + uit + vit. (2)

Cornwell et al. (1990) extended the model (Eq. (2)) to allow heterogeneity in slopes and

intercepts, and they modeled the time-dependent individual effect αit in the following multiplicative

form:

αit = α+ uit = R′tδi, (3)

where Rt is an L×1 time-varying component that globally affects all individual units, and δi denotes

L × 1 coefficients that depend on i. The time-dependent individual effect αit can be decomposed

into a common time trend R′tδ0 and a unit-specific term R′tui. After adding the time-invariant fixed

effects Zi for a general model specification the standard log-linear production function, Eq. (2) can

be written as

yit = X ′itβ + Z ′iγ +R′tδ0 +R′tui + vit, i = 1, · · · , N, t = 1, · · · , T, (4)

where Zi is a J ×1 vector, ui is assumed as iid zero mean random variables with covariance matrix

∆, and vit is a random noise following iid N(0, σ2v). If R contains only a constant, for instance,

then Eq. (4) is reduced to the standard panel data model.

2.2 Spatial production models

The model in Eq. (4) is misspecified if cross-sectional dependencies exist in the error terms. It is

well-known that estimators are inefficient and estimated standard errors are biased if cross-sectional

dependencies in the error term are ignored. If the structural model needs to be represented by a

SAR model, then ignoring such spatial linkages renders the estimates biased and inconsistent.

Spatial analysis is one of the approaches that can explicitly address cross-sectional dependence.

Spatial econometric models specify an a priori spatial weights matrix that can capture the explicit

dependence structure, which is assumed to exist among units. On the basis of the exogenous spatial

weights matrix, the spatial approaches essentially include new variables consisting of the weighted

averaged variables of neighboring observations. The omission of such spatially correlated variables

will cause omitted variable bias for the estimation of the coefficient parameters.

Spatial econometric approaches can model possible spatial interactions by determining the type

and extent of spatial dependence that exists among economic units. Three types of spatial depen-

dence are usually considered to reflect the interactions that should be modeled by the inclusion of

spatially weighted dependent variables (i.e., Spatial Autoregressive Model; SAR), spatially weighted

independent variables (i.e., Spatial lagged-X regression model; SLX), or spatial dependence cap-

tured in the error term (i.e., Spatial Error Model; SEM). Allowing more than one dependence

structure is possible. In the present study, we consider either a spatially weighted dependent vari-

able (i.e., SAR) or both spatially weighted dependent variable and independent variables (i.e.,
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Spatial Durbin Model; SDM) to avoid problems with over-parameterization and to focus on a rel-

atively parsimonious setting, thus allowing us to explore our new approach when constructing the

weights matrix.

The SAR specification associated with Eq.(4) is:

yit = ρ
N∑
j=1

wijyjt +X ′itβ + Z ′iγ +R′tδ0 +R′tui + vit, (5)

where wij is the ijth element of (N ×N) spatial weights matrix WN , to be given exogenously, ui

is assumed as iid zero mean random variables with covariance matrix ∆, and vit is a random noise

following N(0, σ2v). The matrix form of Eq.(5) is given by2:

y = ρ(WN ⊗ IT )y +Xβ +Zγ +Rδ0 +QU + V, (6)

where y and V are NT × 1 vectors, X is an NT ×K matrix, Z = (Z ⊗ ιT ), Z is an N × J matrix,

ιT is a T dimensional vector of ones, R = (ιN ⊗ R), R = (R1, R2, · · · , RT )′, Q = ιN ⊗ diag(R) is

an NT × LN matrix, β is a K × 1 vector, γ is a J × 1 vector, δ0 is an L × 1 vector, and U is an

LN × 1 vector.

The Spatial Durbin specification associated with Eq.(4) is:

yit = ρ
N∑
j=1

wijyjt +X ′itβ +
N∑
j=1

wijX
′
jtλ+ Z ′iγ +R′tδ0 +R′tui + vit, (7)

where wij is the ijth element of (N ×N) spatial weights matrix WN , to be given exogenously, ui is

assumed as iid zero mean random variables with covariance matrix ∆, and vit, is a random noise

following N(0, σ2v)
3. In addition, the matrix form of Eq.(7) is given by:

y = ρ(WN ⊗ IT )y +Xβ + (WN ⊗ IT )Xλ+Zγ +Rδ0 +QU + V, (8)

where y and V are NT × 1 vectors, X is an NT ×K matrix, Z = (Z ⊗ ιT ), Z is N × J matrix,

ιT is a T dimensional vector of ones, R = (ιN ⊗ R), R = (R1, R2, · · · , RT )′, Q = ιN ⊗ diag(R) is

an NT × LN matrix, β is a K × 1 vector, γ is a J × 1 vector, δ0 is an L × 1 vector, and U is an

LN × 1 vector.

2The observations stacked with t being the fast-running index and i the slow-running index, i.e., y =
(y11, y12, · · · , y1T , · · · , yN1, · · · , yNT )′. The order of observations is very important for writing correct codes. In
typical spatial analysis literature, the slower index is over time, the faster index is over individuals.

3We may want to specify different spatial correlation structures on dependent variable and independent variables.
However, we use the same dependence structure for both variables.
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3 Spatial weights matrix: economic distance

The spatial weights matrix is a crucial element in spatial econometric modeling, and it is often

specified a priori and assumed to be an exogenous conceptualization of the structure of spatial

dependence. According to Getis and Aldstadt (2004), a model with a wrong choice of spatial

weights matrix is essentially inappropriately-specified. Unlike spatial weight matrices in typical

spatial analyses that rely on geographic relationships, we are unable to define the physical distances

among units because the aggregate production function is examined at the industry level. Thus we

need to define an economic distance measure for the construction of the spatial weights matrix.

3.1 Input–output table and multiplier product matrix

The economic distance measure should be able to exploit the interconnectivity between a pair of

individual units. For example, Han et al. (2016b) used a country’s relative bilateral trade volume

as an economic distance measure. In this paper, we consider the relationship among industries,

thus the economic relationships among industries should be initially understood. An input–output

table is appropriate for this purpose. Input–output analysis was developed by Leontief in the late

1930s, and its fundamental purpose is to analyze the interdependence of industries in an econ-

omy. An input–output table is constructed by using observed data for a particular economic area.

Traditionally the area includes a nation or a state, but recently there are attempts to reflect in-

creasing fragmentation of production processes across borders by the World Input-Output Database

(WIOD).

An input–output table contains data on the flows of products from each sector to the other

sectors. Inter-sectoral flows are measured in monetary terms, that is, accounts are presented in

their monetary terms in anticipation of measurement problems that may arise if different products

with varying prices are considered in terms of their physical units only. Because the dimension

of the input–output table depends on the number of industries, we will explain how we construct

the spatial weights matrix by using the input–output table via a hypothetical example with two

sectors.

Table 1 presents a hypothetical situation for a two-sector economy. The total output of sector 1

(Y1) is supposed to be consumed by each sector (z11, z12), household consumers, government, and

abroad (F1). Because the input–output table represents an equilibrium state, total sector output

is assumed to be fully utilized by the sectors that require the products as intermediate inputs and

by the final consumer including households, government, and abroad. On the other hand, the

total outlay of sector 1 (Y1) is composed of the total value of intermediate inputs purchased from

the other sectors and the input factors such as labor and capital. Therefore, the total outlay is

assumed to be the sum of intermediate inputs used by a sector and the value-added (V A). After

considering the appropriate inventory changes, the total sector output is equal to the total outlays

of the industry.

It should be noted that the components of an input–output table cannot directly represent the
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Table 1: Input-Output Table for Two-sector Economy

Demanding Sectors
Final

Demand

Total
Sector
Output

1 2 (F) (Y)

Supplying 1 z11 z12 F1 Y1

Sectors 2 z21 z22 F2 Y2

Payments Value-added VA1 VA2 VAF VA

Total Outlays (Y) Y1 Y2 F Y

linkage of paired industries; thus, the industries cannot be compared directly with one another

because their scales have not been adjusted. Even if the scaling effects are adjusted, the relative

importance of a sector to the other sectors may be ambiguous depending on which of total sector

outputs or total outlays we are using for the normalization. Suppose that z11 = 2, z12 = 3, z21 = 1,

and z22 = 5. In this example, sector 1 is more important than sector 2 to sector 1 in terms of

outlay of intermediate inputs (2/3 vs. 1/3). However, sector 2 is more important than sector

1 to sector 1 in terms of the demander of the production from sector 1 (2/5 vs. 3/5). In fact,

these are the input and output direct requirements defined in Eqs.(9) and (10), respectively. The

coefficients of input direct requirements represent the amount of inputs that is purchased directly

to produce one dollar of output, whereas the coefficients of output direct requirements represent

the proportion of outputs of a specific sector that is sold to each purchasing sector. Each of the

direct requirements captures direct and indirect relationships, but we lose one of demand-side and

supply-side relationships without considering them together.

A =

[
a11 a12

a21 a22

]
=

[
z11
Y1

z12
Y2

z21
Y1

z22
Y2

]
, (9)

Ā =

[
ā11 ā12

ā21 ā22

]
=

[
z11
Y1

z12
Y1

z21
Y2

z22
Y2

]
. (10)

Meanwhile, from the definitions of the input–output table, we have the following two relations:

Y = Zi + F , and Y = i′Z + VA, where i is a vector of ones. By using the relations and the

proportional relationships, we can then establish the relationships among Y , F , A, and Ā as

Y = (I −A)−1F, (11)

Y = (I − Ā)−1VA. (12)
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The inverse matrices in Eqs. (11) and (12), which describe the relationship among final con-

sumption, value-added, and outputs (or outlays), are called Leontief inverse matrix and Ghosh

inverse matrix, respectively. Let us denote Leontief inverse matrix as B = (I − A)−1 and Ghosh

inverse matrix as B̄ = (I − Ā)−1. The Leontief inverse matrix illustrates how much production

will be induced in a certain industry by one unit of increase in demand by another industry. The

Ghosh inverse matrix is derived when we consider the output direct requirements matrix (Ā) and

the relationship between intermediate input supply and payments of each sector from the supply

side. The basic assumption of the supply-side inverse matrix is that one may expect increasing

sales from sector i to each of the other sectors when the output of sector i increases.

The attempts to determine a unified measure for the economic effects of a particular sector on

the other sectors have been undertaken, and backward and forward linkages are the most commonly

used measures. If industry j increases output, then the demands from industry j on the industries

whose products are used as intermediate inputs will increase. The backward linkage measure

indicates the interrelation of a particular industry with other industries from which intermediate

inputs are purchased. The increased output in industry j suggests increased supplies from industry

j to the other industries that use commodity j in their production. Meanwhile, the forward linkage

measure indicates the interrelation of a particular industry to other industries to which outputs are

sold. Backward and forward linkages are derived from the Leontief inverse matrix and the Ghosh

inverse matrix, respectively. The direct backward (B) and direct forward (F) linkages are defined

by the column-sum of Leontief inverse matrix and row-sum of Ghosh inverse matrix, respectively,

i.e.:

Bj =

n∑
i′=1

bi′j , Fi =

n∑
j′=1

b̄ij′ ,

where bij and b̄ij are the ijth element of Leontief inverse matrix B, and Ghosh inverse matrix B̄,

respectively.

Even if the backward and forward linkages are appropriate for measuring the economic influences

of expansion and shrinkage of industries as a whole, they do not provide consistent measures for

linkages between two industries. Moreover, a large backward linkage does not guarantee a large

forward linkage and vice versa. Consider the hypothetical supply flows of intermediate inputs

illustrated in Figure 2. Sector A supplies for itself, and thus, its expansion cannot induce output

growth in the other sectors in terms of forward linkage. However, Sector A can influence the other

sectors in terms of backward linkage because it uses products from all sectors. Accordingly, Sonis

and Hewings (1999) proposed an index called the multiplier product matrix (MPM) to connect the

properties of backward and forward linkages as

MPM =
1

V
F · B, (13)

where

9
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Figure 2: Hypothetical supply flows of intermediate inputs

V =

n∑
j=1

Bj =

n∑
i=1

Fi. (14)

MPM provides a measure of the relationships among industries, thus allowing them to be

organized into a rank-sized hierarchy. MPM measures the impacts of a certain industry on the

other industries. However, MPM is not symmetric because the forward linkage of a particular

industry mostly differs from its backward linkage (e.g., Figure 4). To be utilized as a proxy for

economic distance, we modify MPM to be symmetric by taking the Euclidean norm of its elements

of the MPM, such that

mE
ij = mE

ji =
√
m2
ij +m2

ji. (15)

3.2 Economic distance and weights matrix

We utilize the MPM defined in the previous section to create a spatial weights matrix based on

economic distance. Geographic distance is not a meaningful spatial concept that can link the

supply chains embedded in the sectoral flows among industries. At first glance, one may perceive

the MPM values as useful in filling the weighting elements of the matrix. However, MPM values

have opposite interpretations as those of the weights matrix based on typical geographical distance.

Moreover, the differences in distances may not be significant across industries. Thus, to address

these issues, we define an economic distance metric that is analogous to physical distance and

introduce a distance-decay function to give more weights on closely related industries.

We first define a measure of economic distance between industry i and j as

dij ≡ max
i′

mE
i′j −mE

ij , (16)

where mE
ij is the element of MPM, as discussed in the previous section4. Once we obtain economic

distance, we can assign weights according to distance. Several schemes are used to assign weights,

such as contiguous neighbors, inverse distances, lengths of shared borders divided by perimeter,

4The diagonals of MPM are non-zero and in fact are mostly the largest element in their columns (or rows). Hence
we need to set the diagonals to zero afterward to satisfy the regularity assumption A1.
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bandwidth, centroid distance, and k-nearest neighbors. The widely used weighting scheme for

spatial weights matrices should exclude observations that are beyond threshold distance d∗, that

is,

wij =

{
1 if dij < d∗;

0 otherwise.
(17)

However, the spatial weighting function presented in Eq. (17) suffers from discontinuity. One

way to circumvent this problem is to assume a continuous function denoted by dij . For continuous

weighting schemes, the application of a distance-decay function or a decline function allows more

weights to be designated to closely associated units than to the areas far from one another (Brunsdon

et al., 1996; McMillen, 2003). A negative exponential function is suggested by Brunsdon et al. (1996)

as follows:

wij = e−ηd
2
ij , (18)

where η is the spatial scale parameter that determines the degree of distance-decay. The larger

the value of η, the more abrupt is the cut-off of influence of distant economic units. The degree

of distance-decay varies between different concepts of distance, groups of economic units, and

estimation approaches.

We suggest Eq. (18) as the spatial weights elements to reflect input–output relationship among

industries. The spatial weights matrix should be appropriately modified to follow the standard

assumptions in the literature as follows:

Assumption A1 W values are row-normalized non-stochastic spatial weights matrices with zero

diagonals.

Assumption A2 IN −ρW is invertible for all ρ ∈ Λ, where the parameter space Λ is compact and

ρ is in the interior of Λ.

Assumption A3 W values are uniformly bound in both row and column sums in absolute value.

In addition, (IN − ρW )−1 values are uniformly bound in ρ ∈ Λ.

4 Estimation

The estimation of Eqs. (6) and (8) involves a nonlinear two-step procedure: Step 1) estimation

of scale parameter η to obtain the optimal weights matrix, and Step 2) estimation of the model

parameters. The estimation of the exponent parameter η is crucial because it determines the degree

of interaction. For the second step, we estimate model parameters with QMLE. We also estimate

the relative efficiency scores via the approach suggested by Schmidt and Sickles (1984) and Cornwell

et al. (1990).
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Production functions are typically estimated by using various parametric, nonparametric, and

semi-parametric techniques. A standard approach to production function estimation is to adhere to

the average production technology instead of the best-practice technology, which is accomplished in

the stochastic frontier literature by neglecting the assumption that all producers are cost or profit

efficient. Minimal differences, if any differences exist at all, usually appear in the estimates of

the basic production model parameters, such as in output elasticities, among others. However, the

stochastic frontier analysis (SFA) approach can decompose the Solow-type residual into two compo-

nents that utilize either the TFP and its change over time or the TFP growth. The identification of

the decomposition of TFP growth into separate efficiency and technical change components is based

on the assumption that the average production function represents the maximum level of output

given the levels of inputs on the average. Shifts in this average level of productivity over time, which

are usually represented as a common trend by using either a time variable or a time index, indicates

technical change. Inefficiency is interpreted as the productivity of a unit at a specific time period

relative to the average best-practice production frontier, and it typically includes a one-sided term

(negative) that represents the short-fall in a firm’s average production relative to a benchmark set

by the most efficient firm. One-sided distributions, such as half-normal, truncated normal, expo-

nential, or gamma distribution, are often used in parametric models. Schmidt and Sickles (1984)

and Cornwell et al. (1990) suggested the avoidance of strong distributional assumptions by utilizing

the structure of a panel production frontier. Schmidt and Sickles (1984) assumed inefficiency to be

time-invariant and unit-specific, while Cornwell et al. (1990) relaxed the time-invariant assumption

by introducing a flexibly parametrized function of time, thereby replacing individual fixed effects.

In the present study, we follow the work of Cornwell et al. (1990) for estimation. This method

allows us to estimate time-varying efficiency without requiring further distributional assumptions

on the one-sided efficiency term.

According to Cornwell et al. (1990), the non-spatial model (Eq. (4)) can be estimated via three

techniques: within transformation, generalized least squares, and efficient instrumental variable

approach. However, the extended models (Eqs.(5) and (7)) have several difficulties in estima-

tion because they include additional spatially correlated variables. A quasi-maximum likelihood

estimation (QMLE) is used in our analysis. QMLE can provide robust standard errors against

misspecification of the error distributions (Yang, 2013). QMLE enables us to minimize the number

of parameters to be estimated via the concentrated likelihood function instead of using the full

likelihood function. We typically substitute the closed-form solutions of a set of parameters into

the likelihood function, and the resultant concentrated likelihood function becomes a function of

spatial coefficient parameters only. The optimization with the concentrated likelihood is known to

give the same maximum likelihood estimates after maximizing the full likelihood (LeSage and Pace,

2009). We will outline the estimation procedure briefly. The details are presented in Appendix A.

We first find η by minimizing the mean-squared error as

η̂ = argmin
η∈E

1

N

∑
i

[
yi − y∗6=i(η)

]2
,
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where E = {η ∈ R : η > 0}, and y∗6=i(η) is the fitted value of yi with the observations for industry i

omitted from the estimation using a distance-decay of η. We can find closed-form solutions for the

parameters, except for the spatial autoregressive parameter ρ, by using the first-order conditions of

the likelihood functions of Eqs. (5) and (7). The spatial parameters of λ are the coefficients of the

spatially weighted independent variables. We treat the spatially weighted independent variables as

additional regressors. The substitution of the closed-form solutions into the likelihood functions

gives the concentrated likelihood functions with ρ as the only unknown variable. However, ρ̂ can

be obtained by maximizing the concentrated likelihood functions. Hence, all other parameters can

be found by using ρ̂. The details of the derivation of the asymptotic distribution of the estimated

parameters are presented in Appendix A.

Once we obtain the estimates of the parameters β, ρ, δi, and σ2v , we can recursively solve for an

estimate of αit, although we cannot separately identify δ0 and ui. By using the estimate of αit, we

can obtain the relative inefficiency measure following the studies of Schmidt and Sickles (1984) and

Cornwell et al. (1990). In particular, from Eq. (3), we know the estimate of αit is

α̂it = R′tδ̂i.

The estimates of the frontier intercept αt and the time-dependent relative inefficiency measure

uit can be derived as5:

α̂t = max
j

(α̂jt), (19)

ûit = α̂t − α̂it. (20)

5 Empirical applications: industry-level productivity of U.S.

We examine the industry-level productivity of the U.S. from 1947 to 2010 by using the classical

Cobb–Douglas production technique.

5.1 Data

The databases employed for the empirical application have been sourced from the U.S. accounts

of World KLEMS and World Input–Output Database 6. The usual difficulties of using datasets

from different sources include maintaining the consistency of data formation, such as industry

classification levels or units. Maintaining the conformability of industry classification and the

target period across the datasets is essential because the U.S. national accounting system, which

provides raw data, has shifted to the North American Industry Classification System (NAICS) in

5Hence, the relative efficiency score can be written as ÊFF it = e−ûit .
6The databases are open-sources on the following web pages: http://www.worldklems.net/, and http://www.

wiod.org/.
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Figure 3: Cluster analysis on intermediate input to industry output ratio

20037. The World KLEMS dataset covers data from 1947 to 2010 and uses NAICS. The WIOD is

also based on NAICS, and it covers data from 1995 to 2011. Both databases are mapped into the

31 industry classifications of the International Standard Industrial Classification (ISIC) for ”All

Economic Activities” (Rev. 3) for easy comparison8.

Our study aims to examine industry-level productivity growth in the context of interdependent

spatial linkages among industries. Hence, we narrow our focus to a relatively small sample to show

the strong similarities in their production processes. We wish to minimize the extent to which

the unobservable differences in the production technology are interpreted as either spillovers or

inefficiency. We acknowledge that this decision may alter to some extent the potential linkages

among the remaining sectors. However, we feel that the tradeoff is warranted. We select the

sample of sectors with hierarchical cluster analysis based on sector-specific average products of

inputs. Figure 3 illustrates a dendrogram of clusters based on Ward’s minimum variance method

(Ward, J. H., Jr., 1963). In the dendrogram, the seven industries on the left are less similar to the

other industries. Moreover, the dissimilarity level is high among the seven industries. Hence, we

exclude these items from the analyzed sample. The industry classifications used in this study are

listed in Table 29.

One of the advantages of the KLEMS data is that the variables are quality adjusted via the

7In addition, the national accounts systems of each country are based on different international classification, and
keeping concordance with each other is difficult.

8However, the two databases have slightly different industry definitions. That is, Textiles, Textile, Leather and
Footwear and Transport and Storage industries are finely defined in World Input–Output Database, which requires
us to aggregate the finer industries to meet the number of industries of data-sets.

9The complete industry classifications and the excluded industries can be found in Appendix C.
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Table 2: Industry classifications and codes

No. Industry ISIC Rev. 3

TOTAL MANUFACTURING
1 Textiles, Textile, Leather and Footwear 17t19
2 Wood and Products of Wood and Cork 20
3 Pulp, Paper: Paper: Printing and Publishing 21t22
4 Coke, Refined Petroleum and Nuclear Fuel 23
5 Rubber and Plastics 25
6 Other Non-Metallic Mineral 26
7 Machinery, Nec 29
8 Electrical and Optical Equipment 30t33
9 Transport Equipment 34t35

10 Manufacturing, Nec; Recycling 36t37
11 ELECTRICITY, GAS AND WATER SUPPLY E
12 CONSTRUCTION F

WHOLESALE AND RETAIL TRADE G
13 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 50
14 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 51
15 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 52
16 HOTELS AND RESTAURANTS H

TRANSPORT AND STORAGE AND COMMUNICATION I
17 Transport and Storage 60t63
18 Post and Telecommunications 64

REAL ESTATE, RENTING AND BUSINESS ACTIVITIES K
19 Real Estate Activities 70
20 PUBLIC ADMIN AND DEFENCE; COMPULSORY SOCIAL SECURITY L
21 EDUCATION M
22 HEALTH AND SOCIAL WORK N
23 OTHER COMMUNITY, SOCIAL AND PERSONAL SERVICES O

Törnqvist index approach. In data production, the variables often reflect heterogeneity due to

quality differences in the components of the aggregated quantity indices. Coelli et al. (2005),

among other researchers, summarized several possible options to incorporate the variation in the

quality of goods and services10. Fortunately, the KLEMS dataset reflects the quality differences in

the variables. Labor force heterogeneity has been addressed by using the approach of Jorgenson

et al. (1987). Aggregate labor services are assumed to be a translog function of their individual

components, which are based on the market equilibrium conditions that equate the supply of each

type of factor input to the sum of demands for those inputs by all sectors. This assumption is

connected to the index–number approach of Diewert (1978). We collect the output measures (gross

output and value added) and input measures (capital and labor services; intermediate inputs)

formed with the Törnqvist index from the KLEMS database. The summary statistics of the real

variables and volume indices are listed in Table 3. Between-industry standard deviations are larger

10i) quality-augmented measures, ii) using some numerical weights to goods and services of different qualities, iii)
two-stage approach: obtain productivity or efficiency measure from unadjusted measures and regress them by using
various quality measures. iv) the model of Battese and Coelli (1995).
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Table 3: Summary Statistics

Variable Mean Std. Dev. Min Max Observations

Real Variables

GO
overall 3,662.64 3,732.45 56.28 23,976.29 N = 1, 472

between 2,865.96 712.41 11,156.59 n = 23
within 2,463.59 -4,802.55 16,482.34 T = 64

VA
overall 2,190.05 2,674.45 3.09 15,683.36 N = 1, 472

between 2,301.49 299.35 8,290.85 n = 23
within 1,443.16 -3,712.55 9,921.11 T = 64

CAP
overall 794.75 1,768.99 6.12 14,102.48 N = 1, 472

between 1,602.41 60.31 8,001.58 n = 23
within 819.51 -4,524.85 6,895.65 T = 64

LAB
overall 1,597.84 1,654.70 117.55 12,030.32 N = 1, 472

between 1,456.21 194.82 6,138.22 n = 23
within 841.60 -2,772.77 7,489.94 T = 64

II
overall 1,556.97 1,359.73 46.04 9,085.89 N = 1, 472

between 839.64 401.78 3,309.06 n = 23
within 1,083.54 -1,309.28 7,416.73 T = 64

Index Variables

GOQI

overall 57.51 31.85 1.16 152.14 N = 1, 472
between 16.17 30.01 109.50 n = 23

within 27.64 -1.98 142.85 T = 64

V AQI

overall 59.21 34.10 0.14 189.65 N = 1, 472
between 19.22 20.97 99.31 n = 23

within 28.45 -6.99 227.89 T = 64

CAPQI

overall 50.76 33.54 2.10 134.97 N = 1, 472
between 13.09 35.22 81.50 n = 23

within 31.00 -3.14 130.40 T = 64

LABQI

overall 87.54 42.09 15.95 282.09 N = 1, 472
between 35.31 53.24 213.66 n = 23

within 24.05 -56.07 155.97 T = 64

IIQI

overall 57.05 35.53 2.24 214.43 N = 1, 472
between 20.61 32.61 134.53 n = 23

within 29.26 -35.51 198.73 T = 64

than the within-industry standard deviations in all real variables except for intermediate inputs.

However, the within-industry standard deviations are larger than the between-industry standard

deviations in all index variables except for labor services. This finding implies that the quality-

adjusted measures have somewhat different distributional shapes relative to the quality-unadjusted

measures.

We use the input–output table to exploit the patterns of intermediate inputs flows and create

spatial weights matrices. Figure 5 shows the linkages between industries. We find that industries

with strong backward and forward linkages have large coefficients for MPM. By contrast, indus-

tries with weak backward and forward linkages, such as retail trade, excluding motor vehicles and

motorcycles, repair of household goods(Ind15), and real estate activities(Ind19) have small MPM

coefficients. Public admin and defense, compulsory social security, and health and social work have

highly weak linkages with other industries due to their almost complete lack of forward linkage.
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5.2 Empirical findings

We assume a quadratic functional form for αit following the work of Cornwell et al. (1990), i.e,

αit = θi1+θi2t+θi3t
2, to model sector-specific efficiency change and a time dummy and its interactive

time dummy to control for different innovations in different industries. Additionally, the quadratic

term of time in the efficiency term can help capture any nonlinearity in efficiency changes during

the relatively lengthy sample period. To control for possible endogeneity problem between the

input factor levels and productivity, we also use one-year lagged variables as instruments for the

factor inputs as well as various control function approaches. These had minimal impact on the

results and are available upon request.

5.2.1 Output elasticity and returns to scale

The estimation results are presented in Table 4. The dependent variable is the gross-output in-

dex11. The first two pairs of columns in Table 4 show the results for CSSW and CSSG without

spatial specifications. All coefficient estimates for factor inputs are statistically significant. The

coefficients can be interpreted as output elasticities in the models. The input with the largest

coefficient(elasticity) is labor, whereas the input with the smallest coefficient is capital. Returns to

scale are nearly 0.87 for both models. We can estimate the parameters for intercept, Time, and

Time2 in the CSSG model. The intercept term is negative but insignificantly different from zero.

Time is approximately 0.014, but Time2 has no effects. Thus, the growth rate of the economy is

1.4% on the average.

The succeeding four pairs of columns show the results under spatial specifications. The coef-

ficients estimates no longer represent output elasticities when spatial dependent terms are added.

The output elasticity of a factor input for a given time t involves pre-multiplication of the inverse

matrix, (IN − ρW )−1, on the coefficient estimates β. Hence, the output elasticities for SAR and

SDM take the following forms:

11The estimation results using the value-added as a dependent variable are given in Appendix B.
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Table 4: CSS vs SARCSS vs SDMCSS

Non-spatial SAR SDM

CSSW CSSG CSSW CSSG CSSW CSSG

Coef. std.err Coef. std.err Coef. std.err Coef. std.err Coef. std.err Coef. std.err

log(K) 0.144 0.024 0.146 0.022 0.102 0.022 0.107 0.021 0.089 0.024 0.096 0.023
log(L) 0.454 0.025 0.446 0.024 0.389 0.024 0.388 0.023 0.407 0.025 0.405 0.024
log(I) 0.270 0.014 0.278 0.014 0.255 0.014 0.261 0.013 0.260 0.014 0.267 0.013

Intercept - - -0.369 0.125 - - -0.067 0.131 - - -0.052 0.142
Time - - 0.014 0.002 - - 0.001 0.003 - - 0.001 0.003
Time2 - - 0.000 0.000 - - 0.000 0.000 - - 0.000 0.000

σ2v 0.005 0.000 0.005 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000

Spatial Parameters
W · log(Y )(ρ) - - - - 0.384 0.031 0.374 0.024 0.492 0.049 0.492 0.044
W · log(K)(λ1) - - - - - - - - 0.053 0.054 0.047 0.035
W · log(L)(λ2) - - - - - - - - -0.131 0.040 -0.131 0.053
W · log(I)(λ3) - - - - - - - - -0.092 0.044 -0.097 0.040

η - - - - 1.496 1.505 1.259 1.158

Elasticities
θK 0.144 0.024 0.146 0.022 0.168 0.037 0.171 0.023 0.281 0.090 0.279 0.046
θL 0.454 0.025 0.446 0.024 0.635 0.044 0.623 0.040 0.545 0.089 0.539 0.089
θI 0.270 0.014 0.278 0.014 0.415 0.030 0.418 0.024 0.331 0.070 0.337 0.069

R2 0.675 0.681 0.719 0.722 0.713 0.717
AdjustedR2 0.658 0.664 0.704 0.707 0.697 0.701
loglikelihood - - 1963.634 1929.299 1971.500 1937.191

RTS 0.867 0.870 1.219 1.211 1.158 1.155

(SAR)
∂yt
∂Xk,t

= (IN − ρW )−1(βkIN ), (21)

(SDM)
∂yt
∂Xk,t

= (IN − ρW )−1(βkIN + λkW ). (22)

The results are based on a time invariant spatial weights matrix. Given that the output

elasticities are given via the (N ×N) matrix, the averages are taken along the diagonals to obtain

the mean direct effects and along the column (or row) sums to obtain the mean indirect effects

as proposed by LeSage and Pace (2009). The sum of the mean direct and indirect effects can

then be defined as the average total effect of each factor input on output. The total effects can

be interpreted as average total output elasticities of the factor inputs. Hence, the total effects are

calculated along with the regression results. The corresponding distribution of total effects should

be obtained separately because the significance of β estimates does not guarantee the significance

of output elasticities of SAR and SDM, as given by Eqs. (21) and (22), and also because they are

functions of the estimates of ρ and λ. As such, we follow the algorithms suggested by LeSage and

Pace (2009). This algorithm involves drawing parameter estimates D times based on their estimated

covariance structure and computing the mean and standard deviation of the direct, indirect, and

total effects.

All estimates of parameters and elasticities for SAR and SDM are statistically significant at

the 1% level except for intercept. The spatial scale parameter η is estimated to be in the range of

1.158 to 1.505. The coefficient of the spatially lagged dependent variable, ρ, is estimated to be in
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Table 5: Direct, Indirect, and Total Elasticity

Direct Indirect Total

Elasticity asy. t-stat Elasticity asy. t-stat Elasticity asy. t-stat

SARCSSW
Capital 0.104*** 4.617 0.064*** 4.113 0.168*** 4.594
Labor 0.393*** 16.570 0.242*** 7.597 0.635*** 14.278
Intermediate 0.257*** 18.244 0.158*** 7.238 0.415*** 13.874

SARCSSG
Capital 0.108*** 6.168 0.063*** 9.142 0.171*** 7.319
Labor 0.393*** 16.980 0.230*** 9.242 0.623*** 15.686
Intermediate 0.264*** 20.269 0.154*** 9.404 0.418*** 17.501

SDMCSSW
Capital 0.095*** 3.975 0.187** 2.102 0.281*** 3.143
Labor 0.409*** 15.820 0.136 1.563 0.545*** 6.110
Intermediate 0.262*** 18.698 0.069 1.011 0.331*** 4.724

SDMCSSG
Capital 0.100*** 4.433 0.179*** 3.649 0.279*** 6.097
Labor 0.408*** 17.095 0.131 1.503 0.539*** 6.038
Intermediate 0.269*** 19.883 0.068 1.034 0.337*** 4.899

Note: *, **, *** denote that we reject the null hypotheses of constant returns to scale
at the 5%, 1%, and 0.1% levels, respectively.

the range of 0.374 to 0.492. For the coefficients of spatially weighted independent variables, λ1 is

estimated to be positive, whereas λ2 and λ3 are negative.

The output elasticities of each factor inputs are calculated as θK , θL, and θI , which are the total

effects of the factor inputs. Meanwhile, the coefficient estimates in the first three rows represent the

direct effects. In comparing the results of SARCSS and SDMCSS with the results of non-spatial

CSS, we found that all output elasticities are estimated larger under spatial specifications. In

particular, SARCSS estimates the largest elasticities out of the three specifications. In comparing

SARCSS with SDMCSS, we also found that the output elasticity of capital is larger. However, the

output elasticities of labor and intermediate inputs are estimated to be smaller with SDM. This

discrepancy leads to relatively small returns to scale in SDMCSS. We can compare the goodness-

of-fit of SARCSS and SDMCSS by using the likelihood ratio test, given that SAR is nested in

SDM. The LR test statistics are 15.732 and 15.784 for within-estimation and GLS-estimation,

respectively. Thus, adding the spatially weighted independent variables results in a statistically

significant improvement in model fit.

One advantage of spatial analysis is that we can estimate separately the direct and indirect

effects of regressors on a dependent variable. Table 5 shows the direct, indirect, and total output

elasticities of each factor input. Most effects are statistically significant, except for the indirect

effects of intermediate inputs under SDM. The sum of the direct effects is between 0.76 and 0.78,

which implies possible decreasing scale economies. However, the returns to scale are increased to

1.2 when the indirect effects are considered. The indirect effects are estimated to be approximately

37% of the total effects when only a spatially lagged dependent variable is included in the model.

If we consider spatially lagged terms for dependent and independent variables, then the portions

of the indirect effects will vary. Interestingly, the indirect effects of capital service have increased

to 67%, whereas the indirect effects of labor and intermediate inputs have decreased to 25% and
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21%, respectively.

Glass et al. (2015) defined internal, external, and total returns to scale with the direct, indirect,

and total effects from a spatial production function of European countries to determine if the

returns to scale measures show constant returns to scale. In our analysis, the internal and external

returns to scale by themselves do not show evidence of constant returns to scale. However, they

are large enough to make the total returns to scale to become increasing returns to scale (SAR) or

constant returns to scale (SDM), as shown in Table 6.

Table 6: Internal, External, and Total Returns to Scale

Model Internal RTS asy. t-stat External RTS asy. t-stat Total RTS asy. t-stat

SARCSSW 0.754*** −7.576 0.464*** −11.239 1.219*** 3.396
SARCSSG 0.765*** −7.919 0.446*** −16.804 1.211*** 4.822
SDMCSSW 0.766*** −6.706 0.392*** −4.796 1.158 1.260
SDMCSSG 0.777*** −6.858 0.378*** −6.431 1.155 1.577

Note: *, **, *** denote that we reject the null hypotheses of constant returns to scale
at the 5%, 1%, and 0.1% levels, respectively.

5.2.2 Efficiency analysis

The average efficiency scores of each industry are shown in Table 7. The total average efficiency

scores are approximately 0.70 for gross output productivity. The efficiency ranking only varies

marginally even if the coefficient estimates in Table4 and the efficiency scores differ across the

models. The construction sector (Ind12) is found to be the most efficient, whereas the electrical

and optical equipment sector (Ind8) is the least efficient industry on the average for all models. This

result is inconsistent with expectations because the electrical and optical equipment industry is one

of the driving forces of economic growth in the total manufacturing sectors of many countries. To

check if the relative efficiency scores are reasonable, we compare these scores with the TFP measure

in the KLEMS database, which is computed on the basis of the growth accounting approach. TFP

is also computed industry-by-industry by using the quality-adjusted Törnqvist index variables.

Hence, the measure actually does not consider interactions among industries. In the last two

columns of Table 7, we present the period average of industry in terms of TFPs. We observe that

construction has the largest average TFP, and electrical and optical equipment has the smallest,

which is consistent with our results12.

Jorgenson et al. (2012) highlighted the performance of industries from the perspective of in-

novation, which is regarded the engine for long-run economic growth. They note the important

role of IT-producing industries, including software and hardware manufacturing industries, and

IT-service-producing industries. In particular, they found that these industries have substantial

12Note that TFPs are calculated using TFP growth rates obtained from the growth accounting approach, which set
the TFP level of the reference year to be 1. The growth accounting approach applies the methodology to a dataset
from each industry independently. Hence, the comparison of TFP levels across industries is not provided. Because
the approach sets the TFP level of the reference year(2005) as one, we may have the period average TFP that is
greater than one depending on the fluctuations in TFP levels.
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Table 7: Efficiency Scores

non-spatial CSS SAR SDM KLEMS

Within GLS Within GLS Within GLS Growth Accounting

Eff. Score Rank Eff. Score Rank Eff. Score Rank Eff. Score Rank Eff. Score Rank Eff. Score Rank Avg. TFP Rank

Ind01 0.664 14 0.664 15 0.755 11 0.748 11 0.736 11 0.731 11 0.491 21
Ind02 0.789 8 0.793 7 0.801 7 0.803 7 0.787 7 0.790 7 1.098 7
Ind03 0.855 4 0.858 4 0.870 4 0.871 3 0.853 4 0.856 4 1.234 3
Ind04 0.596 19 0.597 19 0.637 18 0.635 18 0.628 18 0.626 18 0.342 22
Ind05 0.636 17 0.638 17 0.639 17 0.640 17 0.638 16 0.639 16 0.778 14
Ind06 0.692 12 0.693 12 0.736 12 0.734 12 0.730 12 0.728 12 0.781 13
Ind07 0.693 11 0.697 11 0.715 13 0.717 13 0.705 13 0.707 13 1.046 8
Ind08 0.293 23 0.294 23 0.293 23 0.294 23 0.290 23 0.291 23 0.211 23
Ind09 0.662 15 0.665 14 0.681 15 0.682 15 0.672 15 0.673 15 0.812 12
Ind10 0.583 20 0.585 20 0.598 20 0.598 20 0.592 20 0.592 20 0.545 19
Ind11 0.842 5 0.843 5 0.881 2 0.878 2 0.876 3 0.873 3 1.357 2
Ind12 0.973 1 0.973 1 0.974 1 0.974 1 0.972 1 0.973 1 1.503 1
Ind13 0.651 16 0.651 16 0.646 16 0.647 16 0.636 17 0.637 17 0.629 17
Ind14 0.501 21 0.503 21 0.488 22 0.490 22 0.485 22 0.487 22 0.532 20
Ind15 0.619 18 0.621 18 0.609 19 0.611 19 0.602 19 0.605 19 0.63 16
Ind16 0.792 6 0.792 8 0.781 9 0.782 9 0.786 8 0.786 9 1.126 6
Ind17 0.675 13 0.674 13 0.691 14 0.690 14 0.691 14 0.690 14 0.714 15
Ind18 0.496 22 0.499 22 0.491 21 0.494 21 0.486 21 0.489 21 0.591 18
Ind19 0.783 9 0.787 9 0.765 10 0.768 10 0.775 10 0.777 10 0.892 11
Ind20 0.759 10 0.763 10 0.814 6 0.813 6 0.810 6 0.809 6 0.951 10
Ind21 0.791 7 0.794 6 0.781 8 0.784 8 0.785 9 0.787 8 1.002 9
Ind22 0.864 3 0.868 3 0.839 5 0.843 5 0.845 5 0.848 5 1.205 5
Ind23 0.884 2 0.883 2 0.871 3 0.870 4 0.878 2 0.877 2 1.223 4

Average 0.700 0.702 0.711 0.712 0.707 0.707 0.856

contribution to economic growth during the investment boom of 1995 to 2000. The sampling period

of 1947 to 2010 is long enough to see changes in the relative importance of different industries in the

growth process. Thus, we examine the most and least efficient industries further by scrutinizing

the variation of the relevant productivity and efficiency measures in Figure 6. We compare the

TFP values, which are computed with the growth accounting approach and the efficiency scores

estimated by the spatial stochastic frontier approach. We also create a relative measure of TFP

defined as the relative size to the largest TFP of each year. The left panels of Figure 6 illustrate

the evolution of the productivity measure of electrical and optical equipment (Ind8), construction

(Ind12), and the industry average. The right panels present the growth rate of productivity or

efficiency. Panels (a) and (b) are drawn from KLEMS data, whereas Panels (c) and (d) are gen-

erated from TFP for comparison. The solid red line of Panel (a) represents the maximum TFP

of each year. The red line is almost identical to the solid blue line, which is a TFP series of the

construction sector. Even if we observe that the TFP of the construction industry falls after the

late 1960s, it is the most efficient in terms of TFP. By contrast, the productivity of the electrical

and optical equipment industry soars sharply after the mid-1990s when the so-called IT investment

boom has started. By normalizing the TFP measure relative to the most productive industry, we

can obtain Panels (c) and (d), which can be compared with the relative efficiency scores from the

spatial stochastic frontier approach. In comparing Panels (c) and (e), the relative efficiency behaves

somewhat similarly to the relatively smooth lines by using the spatial stochastic frontier approach.

The variations in efficiency changes are averaged in the regression-based approach. The fluctuations

in efficiency are not captured. However, the comparison with the TFP measure from the growth

accounting approach, which does not explicitly consider randomness, provides a benchmark that

allows us to confirm if our methodology not only provides an explicit role for spatial supply chain
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Figure 6: Efficiency and Efficiency Growth
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(c) Relative TFP
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(d) Relative TFP Growth
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(e) Relative Efficiency Score
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(f) Relative Efficiency Growth

linkages but also provides summary measures of productivity growth that are consistent with those

generated using established approaches of statistical agencies in the U.S. and in the other developed

and developing countries.

We then examine how the industry-average efficiencies evolve over time (Figure 7). Two local
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Figure 7: Efficiency Scores (Industry Average)
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Figure 8: Weighted average of efficiency scores

peaks are observed, and the behavior of the average efficiency scores moves similarly as those in the

spatial and non-spatial settings. In particular, the global peak of the efficiency scores is observed in

2004. However, we discern that the size and significance of the small peaks in the 1950s depend on

the models, i.e., the adoption of spatial specification and value-added productivity measure shifts

the peak to the right relative to their counterparts. We interpret that the U.S. industry-average

relative efficiency has converged to almost full efficiency in 2004 in terms of value-added and gross-

output measures. However, the average relative efficiency score plummeted after the global peak.

The relative efficiencies of all industries, except the electrical and optical equipment sector, fell

after 2004. The implication of this finding is in line with the importance of IT-producing and

IT-using industries, as stressed by Jorgenson et al. (2012), who defined the contribution of each

industry to productivity as the productivity growth rate of each industry weighted by the ratio

of the industry’s output to aggregate output. Despite the high productivity growth of electrical

and optical equipment, the industry cannot drive the productivity growth of the total economy, as

its output ratio is only approximately 4% of the total economy. Instead of the simple arithmetic

average of efficiency scores, we draw the weighted average (Figure 8), thereby following the weighting

scheme used by Jorgenson et al. (2012). The solid line of Figure 8 shows the weighted average.

The weighted average efficiency score is larger than the simple average (dotted line). However, the

differences decrease over time, and the two averages are essentially the same after efficiency begins

to decline.

We also check the empirical density of the estimated efficiency scores. Figures 9a and 9b

compare the kernel density plots of the efficiency scores. The kernel density estimates in Figure 9a,

which are drawn from the estimates of uit, appear to coincide with the typically assumed one-

sided inefficiency distribution, such as Half-normal, Truncated normal, Exponential, or Gamma

distributions. Meanwhile, the kernel densities of period-average efficiency scores for each industry

in Figure 9b are symmetric and have dispersed shapes.
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Figure 9: Kernel density of efficiency scores
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(b) Period-averaged efficiency scores

6 Conclusions

In this study, we examine how to measure industry-level productivity with cross-sectional depen-

dence. We propose a method for choosing the appropriate weights matrix when no explicit distance

concept is available. In particular, we construct a unified measure to characterize the linkage be-

tween two industries, in which the linkage includes direct and indirect demand-side and supply-side

effects. An economic distance measure that is analogous to geographic distance is defined by the

relative size of our linkage measure to the measure of the most closely linked industry. We also

specify a spatial production model by expanding a traditional Cobb–Douglas production function

with two basic spatial specifications, namely, SAR and SDM. We estimate the model by using the

CSS-type frontier production approach, which allows us to parsimoniously estimate time-varying

efficiency levels.

The spatial approach allows us to measure indirect effects that inevitably occur due to spatial

interdependency. As a result, we found that the total estimated output elasticities of factor inputs

are larger than those from a non-spatial specification. The indirect effects are approximated as

25% and 21% of the total elasticities for SARCSS and SDMCSS, respectively. We can therefore

conclude that the U.S. economy has increasing returns to scale in the last six decades when only

the spatially weighted dependent variable is included in the model. However, the returns to scale

is not significantly increasing if we additionally assume that the factor inputs have cross-sectional

dependence.

Although the coefficient estimates vary across the model specifications, the relative efficiency

scores can be estimated comparably. For instance, in comparison with the TFP measure from the

growth accounting approach, our regression-based approach has smoother efficiency estimates in

terms of level and growth. Moreover, we observe that the electrical and optical equipment sector
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is the least efficient industry on the average in over 60 years, even if its TFP growth is more rapid

than those of the other industries. Meanwhile, the construction sector is the most efficient industry

on the average in terms of productivity level, but it has slightly lower growth than that of the

industry average.
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A A derivation of estimation procedure

Quasi-Maximum Likelihood Estimator for ρ

Let ψ = (β, γ, ρ, σ2v)
′. The log-likelihood function of Eq.(5) is:

logL(ψ, δi; y) = −NT
2
log(2πσ2v) + T log|IN − ρW |

− 1

2σ2v

N∑
i=1

T∑
t=1

yit − ρ N∑
j=1

wijyjt −X ′itβ − Z ′iγ −R′tδi

2

, (23)

The first order condition of maximizing Eq. (23) with respect to δi is

∂logL

∂δi
=

1

σ2v

N∑
i=1

T∑
t=1

Rt

yit − ρ N∑
j=1

wijyjt −X ′itβ − Z ′iγ −R′tδi

 = 0. (24)

By solving for (24), we can obtain

δ̂i = (RtR
′
t)
−1Rt

yit − ρ N∑
j=1

wijyjt −X ′itβ − Z ′iγ

 . (25)

Substituting (25) into the log-likelihood function, (23), we obtain the concentrated likelihood func-

tion

logL(y;β, ρ, σ2v) = −NT
2
log(2πσ2v) + T log|IN − ρW | −

1

2σ2v
Ṽ ′Ṽ , (26)

where Ṽ = MQy − ρMQ(WN ⊗ IT )y −MQXβ, and MQ = INT −Q(Q′−1Q13.

Within Estimator

Assuming T ≥ L, the projections onto the column space of Q and the null space of Q are denoted

by PQ = Q(Q′−1Q′ and MQ = INT −PQ, respectively14. Let’s suppose the true value of ρ is known,

say ρ∗. By pre-multiplying MQ on (6), we have the within-transformed model

MQy = ρ∗MQ(WN ⊗ IT )y +MQXβ + Ṽ . (27)

And the estimates of β(ρ∗) and of σ2v(ρ
∗) are derived by

β̂W (ρ∗) = (X ′MQX)−1X ′MQ(y − ρ∗(WN ⊗ IT )y), (28)

σ̂2v(ρ
∗) =

1

N(T − L)−K
e(ρ∗)′∗), (29)

13Note that the variables in Z do not vary over time. Hence γ cannot be identified because MQZ = 0.
14Q need to be a full column rank matrix for estimation of the individual δi.
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respectively, where e(ρ∗) = y − ρ∗(WN ⊗ IT )y −Xβ̂W (ρ∗). By substituting the closed form solu-

tions for the parameters β(ρ∗) and σ2v(ρ
∗) to Eq. (26), we can concentrate out β and σ2v , and the

concentrated log-likelihood function with single parameter ρ is of the form:

logL(y; ρ) = C − NT

2
log
[
e(ρ)′e(ρ)

]
+ T log|IN − ρW |, (30)

where C is a constant term that is not a function of ρ. By maximizing the concentrated log-

likelihood function Eq.(30) with respect to ρ, we can obtain the optimal solution for ρ. Even if

there is no closed-form solution for ρ, we can find a numerical solution because the equation is

concave in ρ. Finally, the estimators for β and σ2 can be calculated by plugging ρ∗ = ρ̂ in Eq. (28)

and Eq. (29).

The asymptotic variance-covariance matrix of parameters (β, ρ, σ2) is given by:

Asy.V ar(β, ρ, σ2v)

=


1
σ2
v
X̃
′
X̃ 1

σ2
v
X̃
′
(W ∗ ⊗ IT )X̃β 0

− T · tr(W ∗W ∗ +W ∗
′
W ∗) + 1

σ2
v
β
′
X̃
′
(W ∗

′
W ∗ ⊗ IT )X̃β T

σ2
v
tr(W ∗)

− − NT
2σ4

v


−1

, (31)

where X̃ = MQX and W ∗ = W (IN − ρW )−1.

Generalized least squares estimator

Alternatively, we can estimate Eq. (6) by generalized least squares(GLS). Denote the variance-

covariance matrix of the composite error ε = QU + V as cov(ε) = Ω.

The GLS estimator is the SAR estimator applied to the following transformed equation:

σvΩ
−1/2y = ρσvΩ

−1/2(WN ⊗ IT )y + σvΩ
−1/2Xβ + σvΩ

−1/2Zγ

+ σvΩ
−1/2Rδ0 + σvΩ

−1/2ε, (32)

where ε = QU + V , Ω = cov(ε) = σ2vINT +Q(IN ⊗∆)Q′. The estimation procedure of Eq. (32) is

same as the procedure for within-estimation. Let η = (β, γ, δ0). Assuming we know the true value

of ρ = ρ∗, the GLS estimators of η(ρ∗) are

η̂G(ρ∗) = [(X,Z,R)′−1(X,Z,R)]−1(X,Z,R)′−1(y − ρ∗(WN ⊗ IT )y)

= [(X,Z,R)′−1(X,Z,R)]−1(X,Z,R)′−1y

− ρ∗[(X,Z,R)′−1(X,Z,R)]−1(X,Z,R)′−1(WN ⊗ IT )y. (33)

Hence, the GLS estimators of η can be represented as a difference of OLS estimators of regressing ỹ

on (X̃, Z̃, R̃) and regressing ˜(WN ⊗ IT )y on (X̃, Z̃, R̃) premultiplied by the spatial autoregressive

30



coefficient ρ∗, where tilde represents GLS transformation. Ω can be estimated by:

Ω̂(ρ∗) = σ̂2vINT +Q(IN ⊗ ∆̂(ρ∗))Q′. (34)

Following Cornwell et al. (1990), ∆ can be estimated as

∆̂(ρ∗) =
1

N

N∑
i=1

[
(R′−1R′eie

′
iR(R′−1 − σ̂2v(R′−1

]
, (35)

where ei = MRy − ρ∗MR(WN ⊗ IT )y −MRXβ̂W (ρ∗)
∣∣∣
i
, which represents the IV residuals for indi-

vidual i, and MR = R(R′−1R′ is the projection onto the column space of R.

Consider the likelihood function of Eq. (32). Since σvΩ
−1/2ε has mean zero and variance σ2v ,

the likelihood function is written in the form of

logL(η, ρ; y) = −NT
2
log(2πσ2v) + T log|IN − ρW | −

1

2
ε′−1ε, (36)

where ε = y− ρ(WN ⊗ IT )y−Xβ−Zγ−Rδ0. Substitution of Eq. (33) and Eq. (34) into Eq. (36)

gives a concentrated likelihood function as follows:

logL(ρ; y) = C − NT

2
log
[
e(ρ)′e(ρ)

]
+ T log|IN − ρW |, (37)

where e(ρ) = σ̂vΩ̂(ρ)−1/2y−ρσ̂vΩ̂(ρ)−1/2(WN⊗IT )y−σ̂vΩ̂(ρ)−1/2Xβ̂−σ̂vΩ̂(ρ)−1/2Zγ̂−σ̂v ˆΩ(ρ)
−1/2

Rδ̂0,

and C is a constant term that is not a function of ρ. Finally, as is the case of within estimator, we

can obtain the estimators for η and Ω using the estimate of ρ from Eq. (37).

Implementation

For the implementation, we combine the procedure suggested by Elhorst (2014) and a typical two-

stage approach of FGLS. In this section we discuss the implementation of within estimator and then

turn to the implementation of the GLS estimator. The implementation consists of the following

steps.

[Within Estimator]

From Eq. (28), it is easy to show that β̂W = b0 − ρ∗b1, where b0 and b1 are the OLS estimators of

regressing MQy and MQ(WN ⊗ IT )y on MQX, respectively. Similarly, the estimated residuals from

Eq. (27), e(ρ∗), can be expressed as e(ρ∗) = e0 − ρ∗e1, where e0 and e1 are the associated OLS

residuals to b0 and b1, respectively. Hence the first step is obtaining b0, b1, e0, and e1. Second, we
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maximize Eq. (30) with respect to ρ after replacing e(ρ) = e0 − ρe1, i.e.,

max
ρ
logL(y|ρ) = C − NT

2
log
[
(e0 − ρe1)′(e0 − ρe1)

]
+ T log|IN − ρW |. (38)

Third, by replacing ρ∗ = ρ̂ in Eq. (28) and (29) gives the within estimator, β̂W , and the estimated

variance, σ̂2. Finally, the asymptotic variance-covariance matrix of parameters (β̂W , ρ̂, σ̂v) can be

calculated by Eq. (31).

[GLS Estimator]

Unlike the within estimator case, we are unable to find the separate OLS estimators of regressing

σvΩ
−1/2y and σvΩ

−1/2(WN ⊗ IT )y on σvΩ
−1/2(X,Z,R) in advance of having ρ̂, even if Eq. (33) is

expressed as a subtraction of two terms. This is because the feasible Ω is obtainable only after we

have a value for ρ. Instead of following the steps of within estimator, we can obtain ρ̂ by simply

maximizing the concentrated log-likelihood function (37). Once we have ρ̂, Eq. (35), Eq. (34),

Eq. (33) give ∆(ρ̂), Ωρ̂, and ηG(ρ̂) in order.
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B Estimation results with Value-added dependent variable

Table B.1: CSS vs SARCSS vs SDMCSS: Value-added

Non-spatial SAR SDM

CSSW CSSG CSSW CSSG CSSW CSSG

Coef. std.err Coef. std.err Coef. std.err Coef. std.err Coef. std.err Coef. std.err

log(K) 0.159 0.057 0.199 0.052 0.110 0.056 0.155 0.052 0.064 0.061 0.121 0.055
log(L) 0.388 0.057 0.400 0.053 0.302 0.056 0.325 0.053 0.210 0.061 0.245 0.057

Intercept - - -0.661 0.259 - - -0.383 0.265 - - -0.119 0.299
Time - - 0.023 0.005 - - 0.011 0.005 - - 0.001 0.007
Time2 - - 0.000 0.000 - - 0.000 0.000 - - 0.000 0.000
sigma2v 0.029 0.000 0.029 0.000 0.028 0.001 0.028 0.001 0.027 0.001 0.027 0.001

Spatial Parameters
W · log(Y )(ρ) - - - - 0.386 0.051 0.364 0.043 0.204 0.068 0.208 0.066
W · log(K)(λ1) - - - - - - - - 0.250 0.119 0.196 0.070
W · log(L)(λ2) - - - - - - - - 0.538 0.123 0.496 0.119

η - - - - 1.670 1.276 1.170 1.700

Elasticities
θK 0.159 0.057 0.199 0.052 0.182 0.093 0.241 0.043 0.399 0.136 0.398 0.036
θL 0.388 0.057 0.400 0.053 0.493 0.099 0.517 0.084 0.942 0.131 0.931 0.126

R2 0.189 0.218 0.253 0.274 0.295 0.310
AdjustedR2 0.148 0.176 0.215 0.236 0.258 0.272
loglikelihood - - 576.111 542.115 587.847 554.150

Returnstoscale 0.547 0.599 0.675 0.758 1.341 1.329

Table B.2: Direct, Indirect, and Total Elasticity: Value-added

Direct Indirect Total

Coef. asy. t-stat Coef. asy. t-stat Coef. asy. t-stat

SARCSSW
Capital 0.113** 1.984 0.069** 1.813 0.182** 1.963
Labor 0.305*** 5.378 0.188*** 3.510 0.493*** 4.978

SARCSSG
Capital 0.156*** 4.325 0.085*** 8.183 0.241*** 5.583
Labor 0.331*** 6.308 0.186*** 4.371 0.517*** 6.141

SDMCSSW
Capital 0.070 1.199 0.329*** 2.383 0.399*** 2.938
Labor 0.215*** 3.408 0.727*** 5.457 0.942*** 7.182

SDMCSSG
Capital 0.125** 2.321 0.273*** 4.411 0.398*** 10.931
Labor 0.251*** 4.388 0.680*** 5.303 0.931*** 7.412

Note *p<.05, **p<.01, ***p<.001
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C Industry classifications and ISIC Rev.3 codes

Table C.1: Industry classifications and codes

No. Industry ISIC Rev. 3

1 Agriculture, Hunting, Forestry and Fishing AtB
2 MINING AND QUARRYING C

TOTAL MANUFACTURING
3 Food, Beverages and Tobacco 15t16
4 Textiles, Textile, Leather and Footwear 17t19
5 Wood and Products of Wood and Cork 20
6 Pulp, Paper, Paper , Printing and Publishing 21t22
7 Coke, Refined Petroleum and Nuclear Fuel 23
8 Chemicals and Chemical Products 24
9 Rubber and Plastics 25

10 Other Non-Metallic Mineral 26
11 Basic Metals and Fabricated Metal 27t28
12 Machinery, Nec 29
13 Electrical and Optical Equipment 30t33
14 Transport Equipment 34t35
15 Manufacturing, Nec; Recycling 36t37
16 ELECTRICITY, GAS AND WATER SUPPLY E
17 CONSTRUCTION F

WHOLESALE AND RETAIL TRADE G
18 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel 50
19 Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles 51
20 Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods 52
21 HOTELS AND RESTAURANTS H

TRANSPORT AND STORAGE AND COMMUNICATION I
22 Transport and Storage 60t63
23 Post and Telecommunications 64
24 FINANCIAL INTERMEDIATION J

REAL ESTATE, RENTING AND BUSINESS ACTIVITIES K
25 Real Estate Activities 70
26 Renting of M&Eq and Other Business Activities 71t74
27 PUBLIC ADMIN AND DEFENCE; COMPULSORY SOCIAL SECURITY L
28 EDUCATION M
29 HEALTH AND SOCIAL WORK N
30 OTHER COMMUNITY, SOCIAL AND PERSONAL SERVICES O
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