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Abstract

We extend the emerging literature on spatial frontier methods in a number of
respects. One contribution includes accounting for unobserved heterogeneity. This
involves developing a random effects spatial autoregressive stochastic frontier model
which we generalize to a common correlated effects specification to account for cor-
relation between the regressors and the unit specific effects. Another contribution
is the introduction of the concept of a spatial efficiency multiplier to show that
the efficiency frontiers from the structural and reduced forms of a spatial frontier
model differ. To demonstrate various features of the estimators we develop we carry
out a Monte Carlo simulation analysis and provide an empirical application. The
application is to a state level cost frontier for U.S. agriculture which is a popular
case in the efficiency literature and is thus well-suited to highlighting the features
of the estimators we propose.
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1 Introduction

Omitted variable bias in cross-sectional and panel data modeling due to a misspecification
of spillovers from a spatial lag of the dependent variable, which captures what is referred
to as spatial autoregressive (SAR) cross-sectional dependence, is well-established. This
omitted variable bias was a key motivation for the development of the SAR model in
seminal work by Cliff and Ord (1973; 1981). In a stochastic frontier framework, which is
characterized by a composed disturbance with idiosyncratic error and inefficiency compo-
nents, the above misspecification of spillovers leads to a further issue of biased estimates
of the efficiency scores. To account for this bias Glass et al. (2016) develop a maximum
likelihood (ML) estimator of a SAR stochastic frontier model with time-varying ineffi-
ciency. Their model, however, which involves employing distributional assumptions to
distinguish between the idiosyncratic error and inefficiency components of the composed
disturbance, does not account for unobserved heterogeneity. Since spatial frontier mod-
eling is an emerging literature we extend their basic SAR frontier model in a number of
ways. Our first extension is to account for unobserved heterogeneity by developing a ML
estimator of the SAR stochastic frontier model with random effects. Drawing on Mundlak
(1978) and, more recently, Pesaran (2006) we generalize this model to a common corre-
lated effects specification. This generalized specification relaxes the strong assumption
underlying the random effects model that the regressors are not correlated with the unit
specific effects.

In contrast to other frontier models, which measure either time-varying or time-
invariant inefficiency, our second extension is to include both of these inefficiency measures
in a single spatial composed error model. The composed error structure for our common
correlated effects SAR production frontier has four additive components. These four
components include an idiosyncratic error term (v;; ~ N(0,02)) and a correlated random
effects error term (p; = Ziy + ky; ki ~ N(0,02)), which are both assumed to be normally
distributed. The other two components are an inefficiency term that is time-invariant
(ni ~ N*(0,02)) and an inefficiency term that is time-varying (u; ~ N* (0,02)). For
reasons we expand on further in this section, we refer to n; and u;; as net time-invariant
and net time-varying inefficiencies (N11 and NV I, respectively) to indicate that they are
net of time-variance and time-invariance. Rigidities in slow to adjust factors such as fixed
assets and the internal organization of production would be sources of NII and concur-
rent with these rigidities managerial inefficiency would be a source of NV I. Managerial
inefficiency will vary over time as there is turnover in managerial staffing possessing dif-
ferent skill sets. We follow much of the frontier production literature by specifying the
parametric distribution of both inefficiency terms to be half-normally distributed (e.g.,
Aigner et al., 1977; Greene, 2005; Horrace and Parmeter, 2015). Our model, however, is

sufficiently general to accommodate other distributional assumptions for NI1I and NV I



from the frontier literature, e.g., the exponential (Meeusen and van den Broeck, 1977)
or gamma (Greene, 1990) distribution.! Additionally, the multiplicative form of our
SAR production frontier allows us to easily convert the estimates of N1I and NV I into
their efficiency counterparts, which we label as NIF and NVE. We can then calcu-
late a composite measure of efficiency, which we refer to as gross time-varying efficiency
(GVE = NIE * NVE).> We present in detail the set-up of our SAR frontier model with
common correlated effects in the next section.

The emerging spatial frontier literature primarily consists of a small number of studies
which adopt a different approach to the one we utilize in our study, typically focusing
on one-way effects spatial panel models where the efficiencies are based on the unit
specific effects. The first such study is Druska and Horrace (2004). By extending the
cross-sectional spatial error model in Kelejian and Prucha (1999) they develop a GMM
stochastic frontier model with fixed effects. Using the fixed effects they calculate time-
invariant efficiency by applying the Schmidt and Sickles (1984) efficiency estimator, which
assumes a composed disturbance comprising the idiosyncratic error and time-invariant
inefficiency. Glass et al. (2013) extended this literature by using the fixed effects from a
spatial panel model to calculate time-varying efficiency using the Cornwell et al. (1990)
time-varying extension of the Schmidt and Sickles estimator.

In contrast to spatial frontier models that compute efficiency using the unit specific
effects and thus assume that all the unobserved heterogeneity is inefficiency, the model
we present distinguishes not just between unobserved heterogeneity and time-varying
inefficiency, which is a common approach in the frontier literature (Greene, 2005; Chen
et al., 2014), but also between unobserved heterogeneity and time-invariant inefficiency,
which has only been proposed thus far in a non-spatial setting (e.g., Columbi et al., 2011;
2014; Filippini and Greene, 2016). The Columbi et al. papers present a one-step (i.e.,
full information ML) estimator of the non-spatial counterpart of our model, although
Filippini and Greene question the tractability of this estimator. ML estimation of a one-
way effects SAR model is typically carried out using a sequential approach by estimating
the SAR parameter first and then the remaining parameters second. We expand on this
further in the paper but for details on this for a one-way effects SAR model see, for
example, Elhorst (2009).

Compared to one-way effects SAR models our model set-up is more complex because

of the presence of the NV I and NII components, so in the spirit of the sequential

!See Parmeter and Kumbhakar (2014) for a detailed discussion of the different distributional assump-
tions for inefficiency in the frontier literature.

2In the corresponding non-spatial frontiers NV E and NIE are referred to as transient and persistent
efficiencies in Filippini and Greene (2016) and as short and long run efficiencies in Columbi et al. (2014).
Both of these studies refer to GV E as overall efficiency. Using each of the own NVE, NIE and
GV E estimates we compute three spatial efficiencies which we refer to as direct, indirect and total
efficiencies. Rather than use the labels from the corresponding non-spatial frontiers we use the net and
gross terminology to avoid the odd labelling of a spatial efficiency as a total overall efficiency.



approach to ML estimation of a one-way effects SAR model we propose an extended
ML estimator comprising three steps. In the first step we distinguish between the (two)
time-invariant and (two) time-varying components of the composed error by estimating a
SAR one-way common correlated effects model. The second step splits the time-varying
error component from the first step into the idiosyncratic error term (v;;) and the NV'[
error term (u};). The third step splits the time-invariant error component from the first
step into a correlated random effect (p;) and the NII error term (n;").

Our third extension involves introducing the concept of a spatial efficiency multiplier,
which we use to obtain partitioned efficiencies across space. We can relate the partitioned
efficiency spillovers to 1st order neighbors, 2nd order neighbors, etc. The partitioned
efficiency spillovers indicate the speed of decay of efficiency spillovers across space. We
also use the spatial efficiency multiplier to distinguish between the best practice efficiency
frontier from the structural form of a spatial frontier and the best practice efficiency
frontier from the reduced form of the model. Following Anselin (2003) in the spatial
literature, the structural form of our spatial frontier model includes the SAR variable as
a regressor that shifts the frontier technology, whereas the SAR variable does not feature
in the reduced form of the model. The upshot is that the structural form of our spatial
frontier model accounts for SAR dependence and yields an own efficiency measure that
is directly comparable to efficiency from a non-spatial stochastic frontier, which does not
include any efficiency spillovers across the system/network. The reduced form of our
spatial frontier model, on the other hand, yields a system/network measure of efficiency
for a productive unit that includes efficiency spillovers. During the course of this paper
we discuss these different efficiency solutions from the structural and reduced forms of a
spatial frontier and also their different interpretations.

Putting our spatial frontier model into a general context, we can view a firm’s un-
observed inefficiency as it appears in the structural form of our model as a placeholder
(normalized to have one-sided support) for productivity effects relating to technical ef-
ficiency (e.g., Aigner et al., 1977), cost efficiency (Olley and Pakes, 1996), intangible
capital (Corrado et al., 2009), unobserved organizational capital (Brynjolfsson and Hitt,
2003), or simply an unobservable factor (Levinsohn and Petrin, 2003). None of these
literatures, however, focus on the following spatial issues we address. In particular, we
interpret own unobserved efficiency from the structural form of our model as own produc-
tivity effects based on frontier production having accounted for SAR interaction. Using
the reduced form of our model we compute two asymmetric system/network measures of
efficiency for a firm comprising its own productivity /efficiency and the asymmetric pro-
ductivity /efficiency spillovers that a firm exports and imports to and from other firms.

The remainder of the paper is organized as follows. In section 2 we present our
SAR frontier with common correlated effects and develop the extended ML estimation

procedure for the model. Section 3 introduces the concept of a spatial efficiency multiplier



and discusses how to partition efficiencies across space. We also discuss the different
interpretations given to efficiency effects in the structural model and in its reduced form.
In the Monte Carlo experiments in section 4, we examine the impact of different types of
spatial frontier model misspecification on the finite sample performance of our estimates.
The empirical application in section 5 is a state level cost frontier for U.S. agriculture.
This is a popular case to study in the efficiency literature and is therefore well-suited to
highlight the features of our estimator. Section 6 concludes and suggests some areas for

future research.

2 SAR Stochastic Frontier Model with Common Cor-
related Effects

2.1 Structural Form of the Model

We now focus on formally introducing our model and how it improves on others in the
literature. First, we account for both time-invariant and time-varying inefficiency (N1
and NVI, respectively) in our new spatial frontier model. Second, we model unobserved
heterogeneity via random effects and then we generalize to a common correlated effects
specification to relax the strong assumption underpinning the standard random effects
model that the regressors are not correlated with the unit specific effects. In the context
of a general production, profit, revenue or cost frontier we present the common correlated
effects SAR stochastic frontier as it nests the random effects model.

The general structural form of a common correlated effects SAR stochastic panel

production frontier model is:

N
Yir = a+ 1z, 0 + 5zlwijyjt + @i + Vi — N — Uy, (1)
J:

1=1,.. . N; t=1,..T,

where @; = Ty + ki, ki ~ N(0,02); ;i ~ N (0,02); vig ~ N (0,072); and uge ~ N (0,07).
Y is the observation for the dependent variable (i.e., output in the case of a production
frontier) for the ith unit at time period ¢, 2}, is the (1 x K) vector of observations for
the non-spatial regressors, 3 is a vector of regression parameters and « is the common
intercept. x;; will include variables which together with y;; represent the frontier tech-
nology and z; will also include any variables that shift the frontier. We will consider
log linear type functional forms such as the Cobb-Douglas or the translog in our Monte
Carlo experiments and empirical example so that the variables in Eq. 1 will enter as

logged values of the dependent and independent variables. Our general modeling frame-



work also encompasses other functional forms such as linear, quadratic or generalized
Leontief technologies. The interpretation we give to various efficiency measures, however,
will differ a bit depending on whether or not the model takes a multiplicative form in
levels (which we adopt) or an additive form in levels, which we do not utilize. These
different specifications will of course determine how the error terms enter the model and
thus determine how they are interpreted.

The composed error structure in Eq. 1 is ¢; +v;; —n; — u;;. The difference between our
common correlated effects and random effects SAR frontiers relates to the unit specific
common correlated effect, ; = Z}7y + k;, where 7} = 7 ST @,. Eq. 1is a generalization
of the random effects SAR frontier because by omitting Ziy from Eq. 1 unobserved
heterogeneity is accounted for by only the unit specific random effect, x;.

The (N x N) spatial weights matrix, Wy, represents the spatial arrangement of the
cross-sectional units and also the strength of the spatial interaction among the units.
W is specified a priori and is a matrix of non-negative constants w;;. Typically in the
spatial literature Wy is exogenous, which is also an underlying assumption of Eq. 1. In
line with this exogeneity a measure of geographical proximity is frequently used in the
spatial literature to specify Wy. The spatial lag of the dependent variable, Zﬁvzl WiiYjt,
shifts the frontier technology, where ¢ is the SAR scalar parameter. This SAR variable
is of course endogenous which we account for in our ML estimator.

To emphasize the contribution of the additional components that we include in our
model we relate Eq. 1 to simpler frontier models. For example, when 6 = 0 in Eq. 1
the resulting model is the common correlated effects non-spatial frontier in Filippini and
Greene (2016). By omitting Z}y from our model and setting § = 0 we obtain the non-
spatial random effects frontier in Colombi et al. (2011; 2014). Omitting T}y together with
k; and 7; and Eq. 1 collapses to the SAR frontier with time-varying inefficiency in Glass
et al. (2016), which omits time-invariant inefficiency and does not account for unobserved
heterogeneity. Encompassed within Eq. 1 is also the spatial Durbin specification. In this
case x will also include spatial lags of the exogenous independent variables which shift
the frontier technology. In line with the above simpler frontier models we assume that all
the = variables are exogenous, which is what Amsler et al. (2016) describe as the typical

approach to stochastic frontier modeling.?

3 A worthwhile area for further work would be to extend our approach to the case of endogenous x
variables (i.e., where an x variable is correlated with inefficiency or the disturbance). One approach to
address this issue would be limited information ML (LIML) estimation of a system of equations consisting
of the spatial stochastic frontier and a reduced form equation for each of the endogenous variables which
will include a suitable instrument. This LIML estimator will be simpler when the correlation is only
between noise from the spatial frontier and the error from each of the reduced form equations (see Kutlu,
2010, for the non-spatial case). When the error from each of the reduced form equations is correlated
with inefficiency, which may be in addition to (or instead of) the reduced form errors being correlated
with noise from the spatial frontier, the LIML estimator will be more complex. In this case one could
model the joint distribution of inefficiency and the reduced form errors by employing a copula. For more
details on this in a non-spatial setting see Amsler et al. (2016).



In addition to the above assumptions that relate specifically to our stochastic frontier
in Eq. 1 such as the distributional assumptions for NI1I and NV I, our model requires the
following general assumptions from the spatial econometrics literature (e.g., Kelejian and

Prucha, 2004), which are based on standard normalizations and regularity conditions.

Assumption 1 (A1l): Wy is non-stochastic and fixed over time with the elements on

the main diagonal set to zero.

Assumption 2 (A2): The matriz (Iy — 6Wy) is non-singular for all 6 € (1/rmin, 1/Tmax),
where ryin and roay are the most negative and most positive real characteristic roots
Of WN.

Assumption 3 (A3): N and T are large.

Assumption 4 (A4): The row and column sums of Wy before normalization, WN, are
uniformly bounded in absolute value as N — oo, and for all § the row and column

-1
sums of <[ N — (WVN) are uniformly bounded in absolute value as N — oo.

Assumption 5 (A5): The (NT x 2K) regressor matriz Z = [X,X| has full column
rank of 2K and the elements of Z are non-stochastic and are uniformly bounded
in absolute value in N and T. Also, limy_.o (1/NT)Z'Q"'Z exists and is non-

singular, where Q) is the variance-covariance matriz.

Setting all the elements on the main diagonal of Wy equal to zero in Al is a normal-
ization rule which ensures that no unit can be viewed as its own neighbor. A2 ensures
that the reduced form of Eq. 1 exists and if Wy is asymmetric it may have complex roots
so in this case rp;, is the most negative pure real characteristic root. For all the specifica-
tions of Wy that we employ in the application section of the paper the normalizations of
WN yield rpna.x = 1. A3 defines the asymptotic setting of our estimator that allows us to
consistently estimate the slope parameters, the variances, the common correlated effects
coefficients and the unit specific efficiencies. If only unbiased estimates of unit specific
efficiencies and effects are required then 7" does not need to be large. See Battese and
Coelli (1988) and Schmidt and Sickles (1984) for a more detailed discussion of this issue.
A4 ensures that the spatial process of the dependent variable has a fading memory to
limit this spatial process to a manageable degree (Kelejian and Prucha, 2001). A5 rules

out perfect collinearity.

*In the estimation 7 is treated as vector of auxiliary regressors, hence the (NT x 2K) dimension of
the regressor matrix.



2.2 Maximum Likelihood Estimation and Net and Gross Effi-

ciencies

The ML estimation procedure we set out can also be the basis for the development
of similar ML procedures for other spatial stochastic frontier models with random or
common correlated effects such as a higher order SAR frontier or a dynamic SAR frontier.”
Since in the estimation we treat T as a vector of auxiliary regressors we can rewrite Eq.
1 as:
N

yir = a + x5, 0 + 5;wijyjt + Ty + Ky v — M — Wi, (2)
where the time-invariant component of the composed error is £; = k; — 7; and the time-
varying component is £;; = vy — Uj;.

Estimating the regression parameters of Eq. 2 involves first estimating the SAR
parameter and second estimating the parameters for the other regressors. In the spirit
of this sequential approach we add two further steps to this estimation procedure, which
relate to the estimation of NV I and NII. To explain the steps involved in our estimation
procedure we find it useful to rewrite the frontier model in Eq. 2 as the one-way effects
SAR panel model:

N
yie = o + 2,0+ Tiy + 62wijyjt +e) + e, (3)
]:

where we use the following reparameterizations of the intercept and the negatively skewed
time-invariant and time-varying errors, €; and €;: a°® = & — e, — [Ue,,; € = Ki — i + e,
and €5, = vy — Uy + [le,,, Where p.,, = E(uy) and u., = E(n;), and we note that 7 and

o

g5, satisfy the zero-mean condition. In order for our estimation procedure to split the

time-invariant and time-varying error components into their constituent parts, we also
2 _ 2., 2 _
e = 0o, and A\ = 0,/0,, and

o2, =02 +0s and Ay, = 0y /0y. Therefore, 02 = 02,/ (14 X2.); 02 = 02, A2/ (1+ A2,);

uv K Nk’ '\NK

or =02,/ (1+A); and 02 =02, A2,/ (14 A2,).

uv -’ uv

find it useful to reparameterize the variance terms as: o

Next let the superscript * denote the transformations of y;, x;, Z;, Z;VZI w;;yj¢ and

thus ¢, into the quasi-differenced forms:

yh =y — (1 —0) T;yiu (4)

With higher order SAR models a decision must be made about the nature of the higher order
dimension. This involves choosing between including two or more SAR variables that are constructed
using different specifications of W, which is the most common form of a higher order SAR model, or
including higher order polynomials in the different specifications of W (Elhorst et al., 2012). With regard
to the dynamic SAR frontier, we have in mind a model with lagged dependent and SAR variables rather
than a specification where the dynamics relate to inefficiency (e.g., Tsionas, 2006).



1T
rh =1y — (1 -0) T;%‘m (5)

T =7;,—(1—0)z, (6)

*

(ﬁw) = S — (1= 0) 12w @)

t 1j=
! ! N '
it =Yu — T — Iy —0 lez‘jyjt ; (8)
]:

where 6 denotes the weight attached to the cross-sectional component of the data and
0<6*=0c2, (Ta?m +02,) <15

Step 1 first specifies the log-likelihood function for Eq. 3 in terms of the parameters
o%, 3, v and ¢:

NT
LL = 5 log (2m0?) + T'log |[In — W | —

1 N T . o _*/ N 17
gor a2 |V~ TuB = EY =0 Lwiyi ) | (9)
1= j=

where the term T'log|Iy — 0Wy| represents the contribution to the log-likelihood from
the Jacobian of the transformation from €}, to y;, and where this transformation accounts
for the endogeneity of the SAR variable (Anselin, 1988, pp. 63; Elhorst, 2009).

The parameters are estimated in step 1 in the following way. We obtain the estimate

of ¢ using the concentrated log-likelihood function:

NT
LLc =w— Tlog [(ef — 6e3) (ef — de3)] + T'log | Iy — sWy], (10)

where w is a constant that does not depend on ¢, and ej and e} denote the OLS
residuals from regressing y* and (I ® Wy)y* on Z* = [X * X *] Here the residuals
and observations for the variables are denoted in terms of stacked cross-sections for ¢ =
1,..,T; Iy denotes the (T x T) identity matrix; and ® denotes the Kronecker product.
Before maximizing Eq. 10 we follow Pace and Barry (1997) for linear spatial models by
calculating log |Iy — Wy | for a vector of values of § over the interval (1/ry,, 1). As they
suggest, we calculate log|Iy — dWy| for values of § based on 0.001 increments over the

above feasible range for §. Using ¢ to collectively denote the § and v parameter vectors

6If 9 = 0 Eq. 3 collapses to the one-way fixed effects SAR model.



and given the estimate of 9, the estimator for ¢ is:

~

S=by— by = (272°) " Z7ly" =6 (Ir @ W) y*), (11)

where by and b; are the OLS estimates from regressing y* and (It ® Wy)y* on Z*.

Following LeSage and Pace (2009) we obtain the standard errors using a mixed
analytical-numerical Hessian, where all the second order derivatives are computed an-
alytically, with the exception of ?LL/96%, which is evaluated numerically. Evaluating
the second order derivatives of the log-likelihood function analytically rather than nu-
merically is less sensitive to badly scaled data, and numerical rather than analytical
evaluation of 9?LL/0§* avoids computational difficulties associated with the evaluation
of a large spatial multiplier matrix, (Iy — 5WN)_1

Given (3, v, § and o2, the concentrated log-likelihood function we use to compute 6
is:

LLo(6) =~ log [e(0)e(6)] + 5 log 6", (12)

where

N *
e(0)it = yip — vyB — Ty — 9 (Zwijyjt> : (13)

j=1
Step 2 estimates \,, using &}, from step 1. This is done by maximizing the concen-
trated log-likelihood function in Eq. 14:

—~

N T 2\ 1 N T
LLc(Aw) = —NTInG,, +>.> In [1 — P < s uv)] SN ER, 14)

i=1t=1 uv 201“, i=1t=1

where @ is the standard normal cumulative distribution function and

N

*7 2
N
Tuy = NTZZ [ylt —xB—xy =6 (sz’jyjt> ] J =2 /m (1+A%,)]
j=1

i=1t=

(15)

Maximizing LLc(\y,) yields the ML estimate /):m, By substituting /):m, into Eq. 15 we

obtain the ML estimate 52,. The consistent estimator of the constant term is then scaled
by the value of i.,, (XW, 812w T

We follow Battese and Coelli (1988), who in the spirit of Jondrow et al. (1982), predict

u;; conditional on €;;, where we refer to u; as net time-varying inefficiency, NV I;;.

"For stochastic production, revenue and profit frontiers a productive unit is assumed to maximize the

objective variable so for these technologies the constant is scaled down by fi.,, (:\\w, 3%) Conversely,

for a stochastic cost frontier the constant is scaled up by fi.,, (X,,w, 812“}).

10



~ 0y0y Dit EitAuv
where @;; = @ (4 /0w, it = ¢ (Eithuww/Ouv), P is as previously defined and ¢ is the
probability density function for the standard normal distribution.

Step 3 uses the same approach to compute 7); as we use in step 2 to calculate u;,
where we refer to 7; as net time-invariant inefficiency, N1I;. Accordingly, in step 3 the
corresponding ML estimator to that in step 2 (see Eq. 14) is used to estimate )\,,, using
gy from step 1. For a stochastic production, revenue or profit frontier the intercept is
scaled down further by i, (Xnm 3,2m>, while for a stochastic cost frontier the intercept is
scaled up further by this term. We then use the Battese and Coelli (1988) estimator to
predict 7; = E(n:]e;).

If Eq. 2 is in log form, the multiplicative form of our common correlated effects SAR

frontier is:

5

N

v = exp (a) * xﬁ * X % (Zwijyﬁ) x exp (—n;) * exp(—uy) x exp (viy + K;),  (17)
j=1

where we use bold notation to highlight the level form of the data and everything else
is as previously defined for Eq. 2. Productive units may of course lie below the concave
production, profit or revenue frontier or above the convex cost frontier because they are
inefficient. Lower NV I;; (N11;) will push net time-varying efficiency, NV E;; (net time-
invariant efficiency, NIE;), which is bounded in the interval [0, 1], closer to the upper
bound. To estimate efficiency we adopt the widely used Battese and Coelli (1988) estima-
tor, which involves using the multiplicative form of a stochastic frontier and computing
a unit’s efficiency by taking the exponential of the unit’s distance below (above) the
concave (convex) frontier. For a convex frontier this distance is measured by inefficiency
and for a concave frontier it is measured by the negative of inefficiency. From the multi-
plicative form of our concave spatial frontier in Eq. 17 we recognize that the estimates
of the net time-varying and net time-invariant efficiencies are NV E;; = exp (—u;;) and
NIE; = exp (—7;). Using the estimates of NV E;; and NIE; and again with recourse to
the multiplicative form of our model, we compute the estimate of combined efficiency,
GVE; = exp|— (0 + uy)] = NIE; x NV E;, which we refer to as gross time-varying

efficiency.

11



3 The Spatial Efficiency Multiplier and the Reduced
Form of a SAR Frontier

We relate the general spatial literature (e.g., LeSage and Pace, 2009) to all the produc-
tivity oriented functional forms of our model including flexible functional forms (e.g., the
translog function) as a marginal effect is a function not just of the relevant slope para-

meter but also the SAR parameter.®

For our model we obtain the marginal effects by
following the general spatial literature which involves computing the direct, indirect and
total marginal effects. If Eq. 2 is in log form then these marginal effects are elasticity
measures. In the case of flexible functional forms with mean adjusted data the first or-
der marginal effects are elasticities at the sample mean because at the sample mean the
interaction and squared terms are zero.

For a SAR stochastic frontier a direct elasticity is interpreted in the same way as the
corresponding elasticity from a non-spatial frontier, although a direct elasticity takes into
account feedback effects. This feedback is the effect of a change in an independent variable
for a particular unit which as a result of the spatial multiplier, (Iy — 6WN)_1, partially
rebounds back to the same unit’s dependent variable via the effect on the dependent
variables of its 1st and higher order neighbors. The rebound is only partial because of
the fading memory across space (Assumption 4 above). An indirect elasticity from a SAR
stochastic frontier can be calculated in two ways yielding the same numerical value. This
leads to two interpretations of an indirect elasticity: (i) average change in the dependent
variables of all other units following a change in an independent variable for one particular
unit; or (ii) average change in the dependent variable for a particular unit following a
change in an independent variable for all the other units. A total elasticity from a SAR
stochastic frontier is the sum of the relevant direct and indirect elasticities. To compute
the direct, indirect and total elasticities we differentiate the following reduced form of
Eq. 2:

yt:(IN—cSWN)_l (42 B+Ty+r+v—n—uy), (18)

where now the model is in terms of vectors or matrices of stacked cross-sections, ¢ is an
(N x 1) vector of ones and everything else is as previously defined. We use Monte Carlo
simulation of the distributions of the direct, indirect and total elasticities to compute
the standard errors which is a widely used approach in the spatial literature. This ap-
proach involves drawing 1,000 parameter combinations of (g, B .7, 32> from the variance-
covariance matrix, where each parameter has a random component drawn from N (0, 1).

Using the reduced form of their basic SAR stochastic frontier that, among other things,

81n the case of the spatial Durbin specification of Eq. 2 a marginal effect will also be a function of
the relevant coefficient on the spatial lag of the exogenous regressor.
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does not account for unobserved heterogeneity, Glass et al. (2016) develop an approach
to compute direct, asymmetric indirect and asymmetric total efficiencies relative to the
best performing unit in the sample in each period using the Schmidt and Sickles (1984)
(SS from hereon) estimator. Relative direct efficiency is interpreted in a similar way to
own efficiencies from a non-spatial frontier or a structural spatial frontier such as Eq. 2.
Relative direct efficiency, however, also takes into account efficiency feedback. An exam-
ple of such feedback is the effect of a change in an independent variable for a particular
unit which affects the dependent variables and the efficiencies of the unit’s 1st and higher
order neighbors, and then through the spatial multiplier matrix this effect partially re-
verberates back to the dependent variable and the efficiency of the unit which initiated
the change. Asymmetric relative indirect efficiencies are relative efficiency spillovers that
a unit exports (imports) to (from) all the other units in the sample. Since combining the
relative direct efficiency and a relative indirect efficiency yields a relative total efficiency,
the asymmetric relative indirect efficiencies lead to asymmetric relative total efficiencies.

Calculating relative direct, asymmetric relative indirect and asymmetric relative total
efficiencies using the aforementioned SS estimator is very informative as it constructs
appropriate direct, indirect and total efficiency frontiers. This is important because the
relative total efficiency frontiers will differ from the efficiency frontier from the structural
form of the SAR frontier in Eq. 2. This is because the frontier from this structural
form is the efficiency benchmark for each unit’s own efficiency. In contrast, the relative
total efficiency frontiers are benchmarks for a unit’s efficiency across a network/system.
We know that own efficiency from the structural form of the SAR frontier in Eq. 2 and
relative direct efficiency from the reduced form of the SAR frontier in Eq. 18 are all
measures of substantive economic performance. We do not know, however, whether the
relative asymmetric indirect efficiencies from the reduced form of a SAR frontier represent
substantive economic performance spillovers. To illustrate, all units in a sample can have
high relative indirect efficiencies but economic performance spillovers can be negligible
because the absolute indirect efficiencies are all small. To establish whether relative
indirect efficiencies relate to substantive economic performance spillovers we propose using
relative indirect efficiencies alongside absolute indirect efficiencies.

We now turn to the method to compute absolute efficiencies. This is a rather complex
exercise as Eq. 2 has time-varying and time-invariant inefficiency components. From the
reduced form of the SAR frontier in Eq. 18 we recognize that (Iy — dWy) ' = NIIL
and (Iy —0Wy) "uy = NVILTP where NITI?t and NV IT? denote (N x 1) vectors of
absolute total NI and absolute total NV I. The subscript M denotes that the absolute
inefficiency spillovers used in the calculation of these absolute total inefficiency vectors
are the inefficiency spillovers which the ¢¢h unit implicitly imports from all the jth units
for ¢ # j. Drawing on the multiplicative form of our model in Eq. 17 the efficiencies that
correspond directly to the inefficiencies NI and NVITe are (Iy — 6Wy) ' exp (—n) =
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NIETe and (Iy — 0Wy) " exp (—u;) = NVET? where NIET? and NV ET? denote
(N x 1) vectors of absolute total N/E and absolute total NV E.

Since we have established from the multiplicative form of our model that GVE =
NIE « NVE = exp[— (7 + u;)] is the (N x 1) vector of own GV E, the (N x 1) vector
of absolute total GV E that corresponds directly to this own GV E vector is GV ELft =
(Iy — 0Wx) "exp[— (74 w)]. GVEL can be written in the following form and similar

expressions can be used to represent NIE1f" and NV ETet.

GV Eq GVElDl" + - 4+ GVE{]T\L,d GVE}\;[‘?&
(Iy = W)™ : = 5 + o+ : = : )
GV EN . GVEJ[anl + o4 GVE]{[)% t GVEJI\;[%V t

(19)

where GV E[)" on the main diagonal is the direct GV E of a unit, GV E]" is the indirect
GV E spillover to the ith unit from the jth unit for i # j and GV E{? = Zjvzl GVEin"d
is the sum of the absolute indirect GV E' spillovers to the ith unit from all the jth units
for i # j.

The column sums of the components in Eq. 19 is the (1 x V) absolute total GV E
vector that we denote GVEXY" = (GVELY, GVELY,...,GVELY). The subscript X
denotes that the absolute indirect GV E spillovers used in the calculation of GV E%°"
are the GV E spillovers that the ¢th unit implicitly exports to the jth unit for ¢ # j.
GV Ed = Zf\il GV E[" is the sum of these absolute indirect GV E spillovers to the jth
unit from all the ith units for i # j. In terms of interpretation GV E1¢t and GV E%°
measure a unit’s absolute GV E across a system/network.

In the spatial Monte Carlo simulations that we introduce in the next section Wy is
symmetric, which as we highlight in that section is the typical approach in the spatial
econometrics literature. In empirical applications, however, Wy is often asymmetric. If
Wy is asymmetric (Iy — dWy) ™" will be asymmetric resulting in GV E[" # GV E! in
Eq. 19 indicating that there are asymmetric absolute indirect GV E spillovers to and from
a unit. Since direct, indirect and total NIE, NV E and GV E from the reduced form in
Eq. 18 all contain some form of efficiency spillover they represent different performance
metrics to own NIE, NVE and GV E from the structural form of the model in Eq. 2.
An own NIE, NVE and GV E frontier is not therefore the appropriate benchmark for
the corresponding direct, indirect and total NTE, NV E and GV E from the reduced form
of our model.

Own NIE, NVE and GV E from a non-spatial frontier or the structural form of

a SAR frontier are of course all bounded in the interval [0,1]. The lower bound of
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absolute direct, indirect and total NIE, NVE and GV E from the reduced form of a
SAR frontier will also be 0. Other than that absolute direct, indirect and total NIFE,
NVE and GV E are unbounded.’ Absolute direct, indirect and total NIE, NV E and
GV E, however, can easily be interpreted because they are percentages as they are scaled
own NIE, NVE and GV E. The magnitude of the scaling relates to the magnitude of
the efficiency spillover that partially/entirely makes up the absolute direct, indirect and
total NIFE, NVE and GV E. If the magnitude of the efficiency spillover is sufficiently
large, absolute direct/indirect/total NIE, NV E or GV E will be greater than 1. In this
case the efficiency spillover has pushed the unit beyond the best practice frontier for own
efficiency from the structural form of the SAR frontier.

As a result of the fading memory property of (Iy — dWy) " efficiency spillovers to
and from a unit die out across space. To examine the speed of the decay of efficiency
spillovers across space we recognize that (Iy — 6Wy) " exp (—=n), (Iy — 6Wx) ™" exp (—uy)
and (Iy — 6Wy) " exp [~ (17 + u;)] are the spatial absolute efficiency multipliers for NTETet,
NVEL and GV EL?t, respectively. Expansion of GV E1¢t across space involves the fol-
lowing infinite series expansion of (Iy — § WN)_I, where the spatial expansions of GV E£°t,
NIEIPt, NIET NVETo" and NV EL° have the same form.

(In — 6Wn) lexp[— (0 +w)] = (In + Wy + 8*Wir + 8 Wi + ...) exp [~ (i + w)] -
(20)
Using Eq. 20 we partition GVE]”, GVE}* and GV E}/" into own GV E (pertaining to
Iy) and GV E feedback and spillovers which come to the ith unit from 1st order neighbors
(pertaining to dWy), 2nd order neighbors (pertaining to 6% ) and so on and so forth
up to pre-specified higher order neighbors determined by the upper limit that is placed

on the order of Wy.

4 Monte Carlo Simulations

We next turn to a Monte Carlo simulation analysis of the random effects and common cor-
related effects SAR frontier estimators that we propose. Our simulation analysis focuses
on the sensitivity of the statistical performance to: (i) if and how unobserved heterogene-
ity is modeled; and (ii) whether and how SAR dependence is accounted for. To this end
we use three experimental designs. The data generating process (DGP) for design 1 is the
random effects non-spatial frontier and the DGP for design 2 is the random effects SAR
frontier when W is based on Rook contiguity.! The DGP for design 3 is the common

9For details on using the aforementioned SS method to transform absolute direct, indirect and total
efficiencies into relative efficiencies that are bounded in the interval [0, 1] see Glass et al. (2016).
0Rook contiguity defines a pair of units as neighbors if they share a common edge.
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correlated effects SAR frontier, where once again W is based on Rook contiguity. For
the DGPs for designs 2 and 3 the Rook contiguous spatial weights are row-normalized.
We discuss normalization of W in more detail in the application section but note at
this juncture that a row-normalized contiguous W is often used in empirical work (e.g.,
Fredriksson and Millimet, 2002; Autant-Bernard and LeSage, 2011) and is consistently
used in Monte Carlo experiments in the spatial econometrics literature (e.g., Baltagi et
al., 2003; 2007).

The key objectives of the three experimental designs are as follows. Design 1 analyzes
the statistical performance of our random effects SAR frontier under a non-spatial frontier
DGP to explore the implications of failing to omit the SAR variable. Design 2 analyzes
how the extent of the misspecification of W impacts on the statistical performance of
our random effects SAR frontier. This involves departing from the row-normalized Rook
contiguous W in the DGP and considering the effect of incorrectly assuming that the row-
normalized W is based on Queen or Bishop contiguity.!! In addition, under a random
effects SAR frontier DGP that includes NV I and NII, design 2 analyzes the impact
of a SAR frontier that does not model unobserved heterogeneity that is not interpreted
as inefficiency and which also omits the NII error component. Design 3 assesses the
statistical performance of various estimators under a common correlated effects SAR
frontier DGP. This allows us to examine the impact of incorrectly omitting the SAR
variable while accounting for unobserved heterogeneity. It also allows us to evaluate the
impact of omitting common correlated effects and NI from a SAR frontier model with
time-varying inefficiency but no time-invariant heterogeneity.

We list the DGP and estimator combinations in table 1 and in line with this list
the simulation results are for models 1 — 12. For all three distinct DGPs the spatial
arrangement of the units is based on a perfect square board of dimension v/ N > 3, which
ensures a common form of connectivity between the units across the sample sizes and is
in keeping with Monte Carlo set-ups used in the spatial econometrics literature (see, for
example, Yu and Lee, 2010, and Tao and Yu, 2012). The sample sizes we consider are all
comparable to those used in Monte Carlo experiments in the stochastic frontier literature
(see, for example, Chen et al., 2014). Further details of our Monte Carlo set-up are
provided in the Supplementary document that accompanies the paper.'? Our extensive
Monte Carlo simulation results can also be viewed in the Supplementary document as
space limitations prevent us from displaying them here so in the remainder of this section
we summarize these results.

When the model is correctly specified (models 1, 4 and 11) the simulation results for

11 Bishop contiguity defines a pair of units as neighbors if they share a common vertex. Queen contiguity
incorporates both the Rook and Bishop definitions of contiguity and defines a pair of units as neighbors
if their boundaries share at least one common point (i.e., the units have a common edge or vertex).

12The enclosed Supplementary document does not form part of the submitted paper. In due course
the Supplementary document will be made available online.
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the $ and § estimates are quite good, as we would expect, in terms of bias and mean
squared error (MSE). The statistical performance of the 3 estimator, however, for the nine
misspecified models is quite varied. For the misspecified models 5 and 6 the simulation
results for § are in line with our expectations. We find that the statistical performance
of the ¢ estimator is much better when the misspecification of W is less marked as W
in model 5 is based on Bishop contiguity which represents a bigger departure from the
Rook contiguity under the design 2 DGP than the Queen contiguous W in model 6. This
is because Queen contiguity incorporates Rook contiguity while Bishop contiguity does
not. For model 5 the § estimate exhibits substantial negative bias for all combinations
of N and T', whereas for model 6 the ¢ estimate performs better for all sample sizes and
particularly for the larger sample sizes as the bias is relatively small compared to the
small samples.

We also analyze the effect of three additional sources of misspecification on the per-
formance of the ¢ estimator. These include modeling SAR dependence when it is not
present (model 2); failing to account for unobserved heterogeneity by omitting, first,
random effects and, second, common correlated effects (models 7 and 12, respectively);
and ignoring correlation between = and the unit specific effects (model 10). The results
for model 2 indicate that our random effects SAR frontier estimate of § properly infers
that there is no SAR dependence in the data. When we fail to account for unobserved
heterogeneity via random effects or common correlated effects there is a downward bias
in the estimate of 0 (models 7 and 12). We also find that the estimate of ¢ for model
10 is quite similar to the prediction from model 11, where the latter model reflects the
design 3 DGP when there is correlation between x and the unit specific effects.

Turning to the Monte Carlo simulation results for the estimates of E(uy|e;) and
E(nilei), we find that the bias and MSE are smaller for larger values of 7" and N. The
performance of the estimate of E(u;|e;;) is noticeably worse for two of the twelve models
(models 7 and 12), both of which omit 7;. Thus compared to other forms of model
misspecification we consider, we find that failing to account for unobserved heterogeneity
by omitting random effects or common correlated effects will accentuate the bias of the
estimate of E(uy|e;). We find this is particularly the case when common correlated
effects are erroneously omitted (model 12). Interestingly and in contrast to the other
misspecified models, the bias for the estimates of E(u;|e;;) is negative for models 7 and
12.

5 Application to State Agriculture in the U.S.

We next present an empirical illustration of our new random effects and common corre-
lated effects estimators. The general structural form of the SAR production, profit and

revenue frontiers in Eq. 1 modeled technical inefficiency as a factor that moved the firm
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or producing unit, which is a state here, inside its frontier. Our application involves a
cost frontier in which technical inefficiency causes observed costs to be greater than their
efficient levels. Thus the inefficiency terms (with positive support) are added to instead of
subtracted from the cost function to represent the excess costs of inefficient production.

We estimate random effects and common correlated effects SAR and spatial Durbin
frontiers using agricultural data for the contiguous states in the U.S. The spatial Durbin
frontier belongs to the general class of SAR models as it is the SAR model augmented
with spatial lags of the exogenous variables as additional regressors that shift the frontier
technology. We also estimate non-spatial cost frontiers with random effects and common
correlated effects. SARF, SDF and NSF are used to denote the SAR, spatial Durbin and
non-spatial frontiers and a subscript R or C is used to distinguish between the random
effects and common correlated effects specifications.

We adopt the flexible translog cost technology and because the SDF¢ nests the
SARF¢, NSF¢, SDFgr, SARFr and NSFR we present these six model specifications using
only the following SDF ¢, where all variables here are logged.

N N
cit = &+ 7y + TL (yit, pis, 1) + ZwijTL (Yje> e t) + (5;:1@%‘0]'15‘1‘

Jj=1

p'gi + 0'Di + g,iwijyj + 9 glwijpj + Ri + v + i + Wit (21)
j= j=

Here T'L (y;, pit, t) represents the translog cost technology and is a quadratic function in
Yit, Pit and t. ¢; is normalized total cost for the ith state at time ¢, y;; is a vector of
outputs, p; is a vector of normalized input prices, t is a time trend, « is the common
intercept and 7; is a time period effect.!® Returns to scale are variable over the sample
so the cost efficiency measures differ due to the different scales of agricultural operations
across the U.S. states. The error structure, e;; + £; = k; + v + 1; + u;, differs from that
for Eq. 2 because Eq. 21 is a stochastic cost frontier.

Z;yzl w;jcje is the spatial lag of the dependent variable, J is the SAR parameter,
Zé\f:l w;; TL (Y, pje, t) is the spatial lag of T'L (v, pit,t) and Wy is a matrix of non-
negative constant spatial weights w;;. When Wy is row-normalized, as is the case here,
Wyt and Wyt? must be omitted for reasons of perfect collinearity because Wyt = t
and Wxt? = t2. No variables shift the cost frontier technology in the NSF models and
Zj.vzl w;jcje shifts the cost frontier technology in the SARF models. In the SDF models
Z;.Vzl w;;TL (yjt, pje, t) and Zjvzl w;c;e shift the cost frontier technology. The vectors

13We follow the spatial decomposition of aggregate total factor productivity (TFP) growth for Euro-
pean countries by Glass et al. (2013) and capture the effects of time in Eq. 21 in two ways. We specify
a non-linear time trend to capture the trend of technical change over the study period by including ¢, ¢
and interactions with ¢. We also include time period dummy variables to capture common departures
from the non-linear trend in a particular year due to, for example, common macroeconomic shocks.
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of means y; and p; are included in the NSF and SARF specifications to account for
correlation between the unit specific effects and the first order outputs and first order
normalized input prices. This is for parsimony and because from a behavioral perspective
one can argue that a productive unit only considers the values of the first order variables
in its decision making and not the values of the higher order variables and interactions
between the first order variables. To be consistent with this approach and because often
the spatial lags of the exogenous regressors are found to be important determinants
in applications of the spatial Durbin model, in the SDF specifications we also include
Z;.v:l w;;7; and Zjvzl w;;pj. In the NSF and SARF models Zjvzl wi; TL (yj¢, pji, t) does
not appear so the terms Zjvzl w;;y; and Zjvzl w;;p; drop out. The vectors of parameters

associated with the aforementioned means are o, ¢/, (' and ).

5.1 Data and Spatial Weights Matrices

The data is publicly available from the U.S. Department of Agriculture’s (USDA) pro-
ductivity database and often used in the productivity literature (e.g., Karagiannis and
Mergos, 2000; Morrison Paul et al., 2004; Morrison Paul and Nehring, 2005).!* In partic-
ular, the data set is a balanced panel for the 48 contiguous states in the U.S. for the period
1960 — 2004.'5 Balanced panel data is the case in the majority of spatial panel studies
because the asymptotic properties of spatial estimators for unbalanced panels become
problematic unless the reason why data are missing is known (Elhorst, 2009). From a
methodological perspective unbalanced spatial panels have been considered by assuming
that observations are missing at random (MAR) (Pfaffermayr, 2013) or are missing for
the edge units in a spatial structure (Kelejian and Prucha, 2010). These assumptions
about the nature of missing spatial data, however, will not be valid in many empirical
settings. The MAR, assumption for instance is justified when the observed values of the
dependent and independent variables can be used to predict the unobserved data to bal-
ance the panel. In a productivity setting this assumption will not be valid if, as can be
the case, data tends to be missing for the less productive units in the sample.

The three outputs are measured in 000s of 1996 U.S. dollars and are the implicit
quantities of livestock and products (y;), crops (y2) and farm related output (y3).!¢ Input
prices are indices for capital services (p;), labor services (p2), total intermediate inputs
(p3) and land service flows (p4).!” The total cost relative (c) is the sum of the four factor
input expenditure relatives, where the data for p; — p; and c¢ are relative to the value

for Alabama in 1996 and p; is the normalizing factor for ¢ and p, — ps.'® Descriptive

"For a comprehensive discussion of the construction of the data we use see USDA (2014).

15The study period ends in 2004 due to the discontinuation of key data sources.

Y6Farm related output refers to goods and services from non-agricultural activities (e.g., processing
and packaging of agricultural products) and secondary activities (e.g., machine services for hire).

17Total intermediate inputs include, for example, energy and agricultural chemicals.

18The dataset is constructed on the basis that each state is one large farm. We do not therefore include
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statistics for the level variables are in table 2. In order to interpret the first order direct,
indirect and total marginal effects as elasticities at the sample mean the logged variables

are mean adjusted.

Table 2: Descriptive statistics for the level variables

Variable Mean St. Dev. Min Max
Total cost relative (relative to the value c 3,105,805.49  3,498,059.11 23,561.12  24,027,241.07
for Alabama in 1996)
Implicit quantity of livestock and products yi 1,677,446.55 1,588,017.95 9,100.68 8,497,604.24
output (000s of 1996 U.S. dollars)
Implicit quantity of crop output (000s of Y2 1,940,240.71  2,292,047.29 21,671.75 19, 386,468.33
1996 U.S. dollars)
Implicit quantity of farm related output y3 202, 458.76 268, 807.66 798.60 2,660, 367.45
(000s of 1996 U.S. dollars)
Capital services input price index P1 0.64 0.37 0.13 1.24
excluding land (Alabama in 1996 is 1)
Labor services input price index P2 0.44 0.33 0.05 2.11
(Alabama in 1996 is 1)
Total intermediate inputs price index P3 0.89 0.38 0.22 2.02
(Alabama in 1996 is 1)
Land service flows input price index Pa 0.61 0.58 0.01 3.63

(Alabama in 1996 is 1)

As in Eq. 17 bold notation is used to denote level variables

All the specifications of W we employ are either based on Rook contiguous states
(denoted W) or the inverse distances between a state centroid and the centroids of
its nearest 3 — 7 neighboring states (denoted Wiyear — Winear). By using specifications
of W that are based on geographical proximity we are following the majority of the
spatial literature and as a result the spatial weights are exogenous, which is an underlying
assumption of our random effects and common correlated effects SAR frontiers. Replacing
the exogenous W in our models with an endogenous W based on economic factors would
involve replacing our first step estimator with an extension of the SAR ML based approach
that Qu and Lee (2015) propose. Although their estimator accounts for an endogenous
W it is for cross-sectional data and would therefore need to be extended to our panel
data setting, which we do not undertake in this paper.

Since all our specifications of W have an assumed cut-off (3 — 7 nearest neighbors)
or a natural cut-off (Rook contiguous neighbors) they are referred to as sparse as they
contain many zeros. By using sparse formulations of W, which often feature in the spatial
literature (e.g., Fredriksson and Millimet, 2002; Autant-Bernard and LeSage, 2011), par-

titioning of a spatial efficiency multiplier across space can be demonstrated much more

average farm size in a state as a variable that shifts the cost frontier technology to account for farm scale
effects. This is because these scale effects are accounted for by ¢ and y. Also, for reasons of collinearity
we do not include additional covariates that shift the cost frontier technology to account for input quality
(e.g., farmer education and weather covariates to account for the quality of the labor and land inputs,
respectively). This is because the input prices will reflect the quality of the inputs, among other things.
Moreover, the input quantities used to calculate ¢ are quality adjusted using hedonic methods. For more
details on this quality adjustment see USDA (2014).
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19 This is because, for example, partitioned

clearly than would otherwise be the case.
asymmetric indirect efficiency spillovers to (from) a state can be easily interpreted as
being from (to) 1st order neighbors, 2nd order neighbors, etc. In contrast, when W is
dense because it has only a few or no zeros such as a W based on inverse distances
between each pair of state centroids, the partitioned spatial efficiency multiplier has a
rather opaque interpretation. The reason is because with a W that has a cut-off (e.g.,
WiNear — WiNear) @ unit’s 1st order, 2nd order, etc. neighborhood sets do not contain
the same units, whereas with a W based on the inverse distances between each pair of
units in the sample a unit’s 1st order, 2nd order, etc. neighborhood sets all contain the
same units.

In total we use eleven normalized specifications of WW. Six of these specifications are
denoted Whow and Wiew — Whew = where the superscript denotes that the matrix is
row-normalized. Using a row-normalized specification of W preserves the scaling of the
data across space because for a particular state the SAR variable will be a weighted av-
erage of the dependent variable for the states in its neighborhood set. When an inverse
distance based W is row-normalized spillovers are inversely related to the relative dis-
tances between the units. On one hand this is reasonable because distance can be viewed
as a relative measure which will vary from state-to-state depending on how remote a
state is from other states. As a result, the same absolute distance from a comparatively
remote state will be relatively shorter than from a state in a much more accessible lo-
cation. This is intuitive because, everything else being equal, agents in a comparatively
remote state will be more accustomed to traveling and transporting goods further within
the U.S. On the other hand it could be argued that a relative measure of distance is
unreasonable because the information on absolute distances between states is lost by
row-normalizing. To address this issue the five remaining specifications of W, which are
denoted W29 ~— WEU  are normalized by the largest eigenvalue of W. This nor-
malization does not change the proportional relationship between the spatial weights so

spillovers are inversely related to the absolute distances between the states.

5.2 Estimated Models

Following the spatial analysis in Pfaffermayr (2009) model selection is based on the
Akaike information criterion (AIC). Additionally we inform model selection using the
Schwarz/Bayesian information criterion (SIC). Of the 23 random effects frontiers (NSFg,
and eleven SARFR and eleven SDFy models pertaining to Wiew Wioew =~ jyliow “and
Wie W9 ), the AIC and SIC both point to the W42 SDFg. Of the further 23

19Sparse specifications of W are commonplace because of the entirely reasonable prior view that a
unit’s neighborhood set is a small subset of the other units in the sample. A unit is assumed to be
explicitly linked to the units in its neighborhood set and via the spatial multiplier matrix a unit is
implicitly linked to other units’ neighborhood sets.
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common correlated effects frontiers (NSF¢, and eleven SARF¢ and eleven SDF¢ models
pertaining to Wjow, Wihew —Whew and Wil —WhHe ), the AIC and SIC both pre-

Near Near Near

fer the WHo% SDF¢. Between the W% SDFg and W% SDF¢ the AIC and SIC both
favor the WX% SDF¢. This is further supported by a likelihood ratio (LR) test of the
Whow SDFg against the WA SDF¢. The test rejects the null that all the coefficients
on the mean variables in the W% SDF are zero at the 0.1% level and thus highlights
the importance of accounting for correlation between the exogenous regressors and the
unit specific effects in this application. From the fitted W94 SDF( in table 3 we can
see that a number of these mean variables are significant (7, ¥2 and Zjvzl w;;73). The
estimation results for the W£°% SDF( also emphasize the importance of the local spatial
variables as a number of these variables are also significant (e.g., those pertaining to Wy,
Wpy and Wpy). In table 4 we present the corresponding fitted NSF¢ and W% SARF¢
and in tables 5 and 6 we present the marginal effects from the WX SDF¢ and Wkov

SARF¢.?

The spillover elasticities from the WA SARF: and WA SDF( are the indirect
marginal effects which are a function of, among other things, § (LeSage and Pace, 2009).
0 itself, however, has a meaningful interpretation as it represents the degree of SAR
dependence. From the WA SDF and Wk°% SARF( it is evident from tables 3 and 4
that the estimates of 0 are significant at the 0.1% level and are of the order of 0.390 and
0.315, respectively, which in both cases represents substantial positive SAR, dependence.
At the 5% level the estimate of § from the WA SDF( is significantly larger than that
from the Wk°% SARF.

From tables 4 — 6 we can see that each of the own/direct first order time trend para-
meters from the NSF¢, W% SARF¢ and W% SDF( are significant at the 0.1% level.
As we would expect, each of these time trend parameters is negative which for the sample
average state indicates cost diminution due to technical progress. From the same tables
we can see that all the own/direct output and input price elasticities at the sample mean
from the NSF¢, Wh% SARF¢ and WH% SDF( are positive and therefore satisfy the
monotonicity property of the translog cost function. The own/direct output elasticities
at the sample mean from the NSFq, WA SARF¢ and WA SDF( also suggest dis-
economies of scale of the order of 0.63, 0.74 and 0.88, respectively, which suggests that
economies of scale are understated when either SAR dependence is overlooked or local
spatial dependence together with SAR dependence is not accounted for. Finding that
the cost technology for the U.S. agricultural sector is characterized by diseconomies of

scale is in line with historical evidence (e.g., Ray, 1982), which together with our findings

20The estimated parameters and standard errors for the time period dummies from the NSF¢, Wé?g#;
SARF¢ and Wk SDF are available on request. A large number of the time period dummies from
these models are significant thereby justifying their inclusion to capture significant departures from the
non-linear time trend.
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Table 5: Marginal effects from the preferred common correlated effects spatial Durbin
stochastic cost frontier model

wkow SDF¢
Marginal Eff.  t-stat Marginal Eff.  t-stat
Y1 Direct 0.407%** 5.10 y1p2  Direct -0.042%** -4.33
Indirect  1.107*%** 4.63 Indirect -0.049 -1.55
Total 1.514%** 5.21 Total -0.091** -2.60
Y2 Direct 0.727%*%* 6.31 y1ps  Direct 0.045* 2.22
Indirect 0.174 0.61 Indirect -0.099 -1.63
Total 0.901** 2.71 Total -0.054 -0.83
Y3 Direct 0.006 0.10 y1pa  Direct 0.009 1.24
Indirect 0.131 0.78 Indirect -0.037 -1.66
Total 0.137 0.70 Total -0.028 -1.09
p2 Direct 0.190%** 27.22 yap2  Direct 0.018 1.54
Indirect  0.018 0.85 Indirect  0.144%** 4.20
Total 0.208*** 8.96 Total 0.162%** 4.05
p3 Direct 0.440%** 15.80 | y2ps  Direct 0.043 1.51
Indirect  0.232%** 3.43 Indirect -0.026 -0.40
Total 0.673%** 9.71 Total 0.017 0.23
pa Direct 0.052%** 4.81 yapa  Direct 0.057*** 6.29
Indirect  0.117*%%* 5.87 Indirect  0.060* 2.31
Total 0.169*** 9.01 Total 0.117%%* 3.95
y? Direct 0.051%%* 6.77 ysp1  Direct 0.023* 1.98
Indirect  0.115%** 5.17 Indirect -0.083* -2.14
Total 0.166*** 6.51 Total -0.060 -1.34
yg Direct 0.015%* 2.19 y3p3  Direct -0.042 -1.78
Indirect  0.091%** 3.94 Indirect 0.120 1.89
Total 0.106*** 4.07 Total 0.078 1.06
va Direct -0.027%%* -4.26 y3pa  Direct -0.048%** -5.14
Indirect -0.039* -1.96 Indirect  0.012 0.40
Total -0.066** -2.80 Total -0.036 -1.02
p3 Direct 0.003 0.21 t Direct -0.011%%* -10.23
Indirect  -0.230%** -5.55 Indirect  -0.006%** -9.71
Total -0.227%** -4.97 Total -0.018*** -10.98
P2 Direct 0.230%** 410 | 2 Direct 9.27x107° 1.42
Indirect -0.096 -0.69 Indirect 5.25x107° 1.42
Total 0.134 0.92 Total 1.45x10~4 1.42
p3 Direct -0.025%** -4.69 yit Direct -0.001 -1.39
Indirect  -0.086*** -5.52 Indirect 0.003* 2.36
Total -0.111%%* -6.52 Total 0.003 1.81
p2ps  Direct 0.010 0.24 yot Direct -0.003*** -4.21
Indirect  0.283** 2.63 Indirect -0.007*** -3.87
Total 0.293* 2.39 Total -0.010%** -4.78
papa  Direct 0.041%%* 3.67 yst Direct 0.004*** 6.09
Indirect  -0.052 -1.75 Indirect  0.008%** 3.75
Total -0.011 -0.30 Total 0.012%*** 5.05
p3pa  Direct -0.096%** -4.31 | pat Direct 3.71x10~4 0.30
Indirect -0.035 -0.61 Indirect  0.012%** 4.58
Total -0.131%* -2.14 Total 0.013%** 3.95
y1y2  Direct -0.112%%%* -8.91 pst Direct 0.013%** 4.70
Indirect -0.276%** -6.87 Indirect 0.005 0.65
Total -0.388*** -8.41 Total 0.018* 2.46
y1y3  Direct 3.46x10—4 0.04 pat Direct 6.10x10~—° 0.08
Indirect  -0.048 -1.72 Indirect 3.75x10~% 0.26
Total -0.048 -1.45 Total 4.36x1074 0.26
yoys  Direct 0.048%*** 4.87
Indirect  0.104*** 3.41
Total 0.152%** 4.54

Notes

SDF( denotes the common correlated effects spatial Durbin stochastic
frontier model

kR RRX denote statistical significance at the 5%, 1% and 0.1%
levels, respectively
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Table 6: Marginal effects from a common correlated effects spatial

chastic cost frontier model

autoregressive sto-

wkow SARF(
Marginal Eff.  t-stat Marginal Eff.  t-stat
Y1 Direct 0.430%** 5.97 yip2  Direct -0.033*** -3.36
Indirect  0.182%** 5.26 Indirect  -0.014** -3.23
Total 0.612%** 5.84 Total -0.048*** -3.35
Y2 Direct 0.911%%* 7.94 y1ps  Direct 0.021 1.00
Indirect  0.385%** 7.95 Indirect  0.009 0.99
Total 1.296%** 8.24 Total 0.030 1.00
Y3 Direct 0.018 0.26 y1pa  Direct 0.016* 2.28
Indirect  0.008 0.26 Indirect  0.007* 2.23
Total 0.026 0.26 Total 0.022* 2.28
p2 Direct 0.205*** 28.00 yap2  Direct -3.18x10~ 4 -0.03
Indirect  0.087*** 11.63 Indirect -1.12x10~% -0.02
Total 0.291%%** 22.37 Total -4.30x10~4 -0.02
p3 Direct 0.475%%* 17.58 | y2p3  Direct 0.074%* 2.58
Indirect  0.201%** 11.94 Indirect  0.031%* 2.49
Total 0.676*** 17.57 Total 0.105* 2.57
pa Direct 0.050%** 5.79 yapa  Direct 0.047*%* 5.04
Indirect  0.021%** 5.00 Indirect  0.020%** 4.91
Total 0.071%%* 5.61 Total 0.066*** 5.07
y? Direct 0.034%** 4.32 ysp1  Direct 0.027* 2.23
Indirect  0.014*** 4.15 Indirect 0.011%* 2.20
Total 0.048%*** 4.31 Total 0.038* 2.23
yg Direct 0.012 1.63 y3p3  Direct -0.057* -2.48
Indirect  0.005 1.59 Indirect -0.024* -2.41
Total 0.017 1.62 Total -0.082* -2.47
v Direct -0.033%** -5.22 | yspsa Direct -0.051%** -5.53
Indirect -0.014%** -4.99 Indirect  -0.021%** -5.09
Total -0.047*** -5.23 Total -0.072%** -5.47
p3 Direct 0.033* 2.26 t Direct -0.010%** -13.92
Indirect  0.014* 2.22 Indirect  -0.004%** -9.45
Total 0.047* 2.25 Total -0.014%** -13.04
P2 Direct 0.315%** 5.56 | t2 Direct -3.07x107° -0.71
Indirect  0.133%** 5.23 Indirect -1.30x10~° -0.71
Total 0.448%*** 5.56 Total -4.37x1073 -0.71
p3 Direct -0.031%** -5.81 | w1t Direct -0.001 -1.62
Indirect -0.013*** -5.68 Indirect -3.39x10~% -1.59
Total -0.044*** -5.88 Total -0.001 -1.62
pap3s  Direct -0.034 -0.75 yat Direct -0.001 -1.29
Indirect -0.014 -0.77 Indirect -3.75x10—% -1.28
Total -0.048 -0.76 Total -0.001 -1.29
paps  Direct 0.054*** 4.72 yst Direct 0.003*** 4.88
Indirect  0.023%** 4.39 Indirect  0.001%** 4.91
Total 0.078*** 4.67 Total 0.005%*** 4.96
p3pa  Direct -0.137%%* -6.34 | pat Direct -4.05x10~ % -0.31
Indirect  -0.058*** -5.55 Indirect -1.79x10~4 -0.33
Total -0.194%*** -6.20 Total -0.001 -0.32
y1y2  Direct -0.101%** -7.86 pst Direct 0.016%** 5.97
Indirect  -0.043*** -6.80 Indirect  0.007*** 5.40
Total -0.144%*** -7.74 Total 0.023%*** 5.90
y1ys  Direct 0.026** 2.81 pat Direct -0.002** -2.98
Indirect  0.011%* 2.73 Indirect -0.001** -2.83
Total 0.037** 2.80 Total -0.003** -2.95
yoys  Direct 0.033** 3.00
Indirect  0.014** 2.95
Total 0.047** 3.00
Notes

SARF denotes the common correlated effects spatial autoregressive
stochastic frontier model
*REREE denote statistical significance at the 5%, 1% and 0.1%
levels, respectively
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suggests that operating beyond minimum efficient scale is a persistent feature of the U.S.
agricultural sector. Wald tests reveal that the own/direct returns to scale from the NSF¢
and Wkou SARF are significantly different from 1 at the 5% level or lower. Interestingly,
however, for the direct returns to scale from the W% SDF¢ we cannot reject the null
of constant direct returns. The difference between the direct returns to scale Wald test
results for the WA SARF¢ and Wk°% SDF( highlights the importance of including in
our preferred WA SDF( specification spatial lags of the exogenous variables and the
means of the spatial lags of the first order outputs and input prices.

Additionally, differences in the magnitudes of the own/direct technical progress and
returns to scale from the NSF¢, Wk SARF¢ and W% SDF( can lead to differences in
the predictions of own/direct TFP growth. To see this consider TFP growth as calculated
in Egs. 11 and 12 in Sickles (1985). Although the NSF¢ and WX SARF¢ both suggest
that the sample average rate of own/direct TFP growth is 0.7%, the W% SDF¢ points
to a much higher rate of 1.0%.

Looking at the marginal effects of the first order outputs and input prices in more
detail. The NSF¢, Wkoe SARFq and Wko% SDF( yield own/direct elasticities for farm
related output, ys, which are not significant and significant own/direct elasticities for
the core outputs (livestock and products, y;, and crops, y2). We classify y3 as non-core
because it refers to goods and services from non-agricultural activities (e.g., processing
and packaging of agricultural products) and secondary activities (e.g., machine services
for hire). Of the indirect first order output and input price elasticities only the y;, p3 and
p4 elasticities are significant. For y, and p, the significant direct elasticity from the W/
SDF ¢ dominates the corresponding insignificant indirect elasticity. Consequently, all the
total first order output and input price elasticities from the Wk°» SDF( are significant

with the exception of the total y3 elasticity.

5.3 Cost Efficiency Results

In our discussion of the efficiency results we emphasize how the reduced forms of our
random effects and common correlated effects spatial frontiers yield a rich set of direct,
asymmetric indirect and asymmetric total efficiency estimates. These direct, asymmetric
indirect and asymmetric total efficiencies are partially/entirely made up of efficiency
spillovers. In contrast, own efficiencies from the non-spatial frontier and the structural
random effects and common correlated effects spatial frontiers omit these spillovers. As
a result, the own efficiency benchmarks from the non-spatial frontier and the structural
random effects and common correlated effects spatial frontiers differ from the direct,

indirect and total efficiency benchmarks from the reduced form spatial frontiers.
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5.3.1 Own Net Time-Invariant, Own Net Time-Varying and Own Gross
Time-Varying Cost Efficiencies

In table 7 we present the average own NIFE, NV E and GV E scores for the sample
from the structural form of our preferred W£°% SDF¢ and also from the NSFq and
the structural W% SARFc. We also report in table 7 average own NIE, NVE and
GV FE scores and the corresponding efficiency rankings for selected states. The states are
selected on the basis of their average own GV F ranking from the structural W% SDF
and comprise: the three states with the highest average own GV E ranking (1. North
Dakota, 2. Rhode Island and 3. New Jersey); four states with a mid-ranking average
own GV E (23. California, 24. South Dakota, 25. Kansas and 26. Minnesota); and the
three states with the lowest average own GV E ranking (46. Vermont, 47. Delaware and
48. Alabama). Here we only summarize the sample average efficiencies due to space
limitations. For the discussion of the average own efficiencies for individual states see the
Supplementary document that accompanies the paper.

The sample average own NIE (NV E) scores in table 7 from the NSFq, Wko4 SARF
and Wko» SDF¢ are 0.87 (0.95), 0.85 (0.67) and 0.96 (0.67), respectively. This indicates
that controlling for SAR dependence and, in the case of the WX°% SDF( controlling
also for local spatial dependence, leads to a substantial change in the magnitude of the
gap between the sample average own NIFE and the corresponding NV E. The presence
of non-negligible average own NV for the sample from the Wk°% SARFq and Wkoy
SDF( is entirely reasonable. Overlooking SAR dependence in the NSF( specification,
however, leads to a small sample average own NV score, which is counterintuitive. In
addition, as the substantial rigidities in agricultural assets and the internal organization
of agricultural production that we associate with non-negligible own NI are unlikely
to persist for the duration of our 45-year sample, as we would expect, the Wk°» SDF
yields a small sample average NITI score. From the Wk SARF¢, however, the average
NII for the sample is much more marked than from the W£°% SDFq. The presence
though of average NII for the sample from the W% SARF¢ and WA SDF¢, even
though in the latter case the estimate is small, provides support for using spatial frontier
specifications in this application with both NV I and NII components.

To test for the presence of the error components we conduct the test in Gourieroux
et al. (1982) of the null 5% = 0 against o5 > 0 for H € {x,v,n,u}. The asymptotic
distribution of the test statistic is a mixture of chi-squared distributions, $x§ + 3x}. For
the NSF¢, Wkou SARFq and Wk SDF¢ we reject the null at the 1% level for , v and
u. For the NSF¢ and WA SARF( we also reject the null at the 1% level for 7 but for
the Whov SDF we fail to reject the absence of 7). Interestingly, this highlights the effect
of the specification of the spatial frontier on the statistical evidence of the presence of

n. In the case of the Wk SDF( it does not follow that because the absence of n has
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Table 7: Average own net time-invariant, net time-varying and gross time-varying cost
efficiency scores and rankings

Panel A: NSF¢

State Av NIE Av NIE Av NVE Av NVE Av GVE Av GVE
Score Rank Score Rank Score Rank
Alabama 0.89 22 0.95 4 0.85 20
California 0.83 37 0.95 31 0.78 36
Delaware 0.94 1 0.95 13 0.90 1
Kansas 0.81 40 0.95 27 0.77 40
Minnesota 0.79 46 0.95 19 0.75 46
New Jersey 0.94 2 0.95 5 0.89 2
North Dakota 0.83 34 0.95 32 0.79 34
Rhode Island 0.91 13 0.94 46 0.86 15
South Dakota 0.85 31 0.95 16 0.80 31
Vermont 0.92 10 0.95 8 0.87 10
Sample 0.87 0.95 0.82
Panel B: WF°% SARF(
State Av NIE Av NIE Av NVE Av NVE Av GVE Av GVE
Score Rank Score Rank Score Rank
Alabama 0.89 14 0.47 47 0.42 45
California 0.73 45 0.67 21 0.49 38
Delaware 0.93 5 0.47 48 0.44 43
Kansas 0.91 10 0.67 24 0.61 16
Minnesota 0.85 30 0.65 26 0.55 27
New Jersey 0.93 4 0.81 6 0.75 1
North Dakota 0.77 42 0.88 1 0.67 8
Rhode Island 0.85 26 0.84 2 0.72 3
South Dakota 0.85 28 0.66 25 0.56 23
Vermont 0.79 39 0.48 46 0.38 48
Sample 0.85 0.67 0.56
Panel C: ngjft SDF¢
State Av NIE Av NIE Av NVE Av NVE Av GVE Av GVE
Score Rank Score Rank Score Rank
Alabama 0.96 27 0.47 47 0.46 48
California 0.96 26 0.67 21 0.65 23
Delaware 0.97 2 0.47 48 0.46 47
Kansas 0.96 37 0.67 24 0.64 25
Minnesota 0.96 30 0.65 26 0.63 26
New Jersey 0.97 3 0.81 5 0.79 3
North Dakota 0.96 36 0.87 1 0.84 1
Rhode Island 0.95 43 0.84 2 0.80 2
South Dakota 0.97 20 0.66 25 0.64 24
Vermont 0.97 19 0.48 46 0.46 46
Sample 0.96 0.67 0.64
Notes

NSF¢ denotes the common correlated effects non-spatial stochastic frontier model

SARF¢ denotes the common correlated effects spatial autoregressive stochastic frontier model
SDF¢ denotes the common correlated effects spatial Durbin stochastic frontier model

NIE, NVE and GVE denote net time-invariant, net time-varying and gross time-varying cost
efficiencies
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not been rejected that 7 = 0. This is indicated for the WX°» SDF¢ by using a sample
average NIF of less than 1 in the calculation of the sample average GV E.

Own GV E is revealing because it provides a complete picture of performance as it is
own NV E and NIFE combined. The sample average own GV E scores from the NSF¢,
Whow SARF¢ and WHo" SDF¢ are 0.82, 0.56 and 0.64, respectively. The difference
between this score from the NSF¢ and the corresponding scores from the W% SARF(
and Wko» SDF¢ again emphasize the importance of not overlooking spatial dependence
in this application. Further differences and similarities between the own efficiencies from
the Whow SARFq, Who% SDF¢ and NSF¢ are evident from the kernel densities in figure
1.

5.3.2 Direct, Indirect and Total Cost Efficiencies

The direct NIE, NVE and GV FE scores from the reduced forms of our spatial frontiers
are the own NIE, NV E and GV E scores from the structural forms of the models plus
efficiency feedback. Efficiency feedback is the component of a unit’s direct efficiency that
passes through neighboring units and partially rebounds back to the unit via the mechan-
ics of the spatial efficiency multiplier. The indirect NI/E, NV E and GV E scores from
the reduced forms of our spatial frontiers are efficiency spillovers that a unit implicitly
exports (imports) to (from) the other units in the sample. Summing the direct and in-
direct NIFE, NV E and GV E scores yields total NIE, NVE and GV E estimates. Here
we only summarize our direct, indirect and total NIE, NV E and GV E results from the
reduced forms of the WX SARF and W% SDF due to space limitations. For a more
detailed coverage of these results see the Supplementary document that accompanies the
paper, wherein we present the average direct, indirect, and total NIE, NVE and GV E
scores and the corresponding efficiency rankings for the same selected states as in table
7.

Since we find that the sample average absolute direct NIE score from the reduced
form WHou SDF( is 1.00 and from the above discussion in 5.3.1 the sample average
own NIE score from the structural WA SDF¢ is 0.96, we can conclude for the sample
average state that the efficiency feedback component of direct NIFE from this model is
4%. Although this efficiency feedback component is not big its presence is sufficient to
push the sample average state onto the own best practice frontier from the structural
Whow SDF .

The average absolute indirect NIE, NV E and GV E scores for individual states
from the reduced forms of our spatial frontiers are asymmetric. This indicates that the
efficiency spillovers which a state exports and imports to and from all the other states
differ. The asymmetric absolute indirect NIE, NV E and GV E scores for individual

states, however, by construction yield symmetric sample average absolute indirect N1 FE,
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NVE and GV E measures. From the reduced form of the W% SDFq (Wko SARF()
the symmetric sample average absolute indirect NIE, NV E and GV E scores are 0.57
(0.37), 0.39 (0.29) and 0.38 (0.24), respectively. For the sample average state this clearly
demonstrates that these reduced form models yield non-negligible absolute indirect NTFE,
NV E and GV FE spillovers.

It follows from the average absolute indirect N/E, NV E and GV E scores that the
average absolute total NIE, NV E and GV E measures for the sample are symmetric
and for individual states they are asymmetric. The absolute total NIE, NVE and GV E
scores for the sample average state from the reduced form Wko» SDFq (WH% SARF()
are 1.58 (1.24), 1.09 (0.97) and 1.05 (0.82), respectively. As a number of these efficiencies
are greater than 1 this shows that non-negligible indirect NI E, NV E and GV E spillovers
can locate a unit well beyond the corresponding own efficiency best practice frontier. It is
therefore clear that because own and total efficiencies are very different efficiency metrics,
the own NIE, NV E and GV F frontiers are not the appropriate benchmarks for absolute
total NIE, NVE and GV E.

5.3.3 Partitioned Direct, Indirect and Total Cost Efficiencies Across Space

We now partition the absolute direct, indirect and total NIE, NV E and GV E scores
into own efficiencies (pertaining to 1W°) and efficiencies that relate to 1st—4th order
neighbors (pertaining to W' — W4). Since GV E provides a more complete picture of a
state’s economic performance we focus here on the partitioned absolute direct, indirect
and total GV E scores from the reduced form W% SDFc. Here we only summarize
our partitioned absolute GV E results due to space constraints. For a full presentation
of these results for the sample average state and selected individual states and further
discussion see the Supplementary document that accompanies this paper.

Absolute direct W° NIE, NVE and GV E scores omit the efficiency feedback com-
ponent and are therefore own efficiencies from the structural spatial frontier. Absolute
direct W' — W* NIE, NVE and GV E scores are partitioned efficiency feedback com-
ponents which have rebounded back to a state from its 1st—4th order neighbors. By
construction absolute direct W' NIE, NV E and GV E scores are zero because efficiency
feedback is a 2nd or higher order neighbor phenomenon. We find that the sample average
absolute direct W! — W* NIE, NVE and GV E scores are small or even zero, which
indicates that nearly all of the sample average unpartitioned absolute direct NTE, NV E
and GV E scores are due to W (i.e., own) efficiencies.

The absolute indirect W! — W* NIE, NVE and GV E scores measure the efficiency
spillovers that a state implicitly exports (imports) to (from) its 1st—4th order neighbors.
By construction absolute indirect W° NIE, NVE and GV E scores are zero because

indirect efficiency spillovers are a 1st or higher order neighbor phenomenon. From the
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reduced forms of the W9 SARF¢ and W% SDF( the picture is much the same for the
partitioned absolute indirect and total NIE, NV E and GV E scores as we noted above
for the corresponding unpartitioned efficiencies in the discussion in 5.3.2. This is because
partitioned absolute indirect and total NIE, NV E and GV E scores for individual states
are asymmetric and the corresponding sample average efficiencies are symmetric. For both
the Wkow SARF¢ and W% SDF¢ we find that the large unpartitioned absolute indirect
NIE, NVE and GV E spillovers are primarily due to substantial absolute indirect T/*
NIE, NVE and GV FE spillovers. This is because the partitioned absolute indirect NI FE,
NV E and GV E spillovers die out across space quite quickly. To illustrate, of the sample
average unpartitioned absolute indirect GV E spillover of 0.38 from the WZ°% SDF¢, 0.25
is a partitioned indirect W' GV E spillover, whereas the indirect W* GV E spillover is
just 0.01.

6 Concluding Remarks and Further Work

Our paper extends the emerging literature on spatial stochastic frontier methods in three
respects. Our first extension is to account for various forms of unobserved heterogeneity.
We do so by developing a ML estimator of a random effects SAR stochastic frontier
model, which we generalize to a common correlated effects specification to relax the strong
underlying assumption of the standard random effects treatment that the regressors are
uncorrelated with the unit specific effects. Our second extension is to incorporate two
stochastic frontier inefficiency measures into a single SAR frontier. Having computed
the time-invariant and time-varying efficiency estimates, we show how they can be used
to compute a composite time-varying measure of efficiency. Our third extension is to
introduce the concept of a spatial efficiency multiplier, which can be used to partition
a unit’s direct, asymmetric indirect and asymmetric total efficiencies across space. This
involves partitioning asymmetric indirect efficiency spillovers into efficiency spillovers that
a unit implicitly exports (imports) to (from) other units at different points in space (i.e.,
efficiency spillovers to/from 1st order neighbors, 2nd order neighbors and so on and so
forth up to the pre-specified higher order neighborhood set).

Using the spatial efficiency multiplier we also show that the own efficiency best practice
frontier from the structural spatial frontier model is not the appropriate benchmark for
the direct, asymmetric indirect and asymmetric total efficiencies from the reduced form
model. This is because the direct, asymmetric indirect and asymmetric total efficiencies
are partially/entirely made up of efficiency spillovers, whereas the own efficiency metric
omits these spillovers.

To demonstrate various features of our random effects and common correlated effects
SAR frontier estimators we first carried out a series of Monte Carlo experiments which

considered the impact of different types of spatial frontier model misspecification on the
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finite sample statistical performance of an estimator. Second, we demonstrated our two
estimators in an empirical application to a state level cost frontier for U.S. agriculture.
This is a popular case in the efficiency literature and is therefore well-suited to high-
lighting the features of our estimators. Further interesting cases where the asymmetric
efficiency spillovers that we propose are highly relevant are clusters of hi-tech firms e.g.,
Silicon Valley. The locations of such firms are often clustered together so they can take
full advantage of knowledge and technological diffusion. For a cluster of hi-tech firms
asymmetric efficiency spillovers can be used to identify which firms are net generators of
efficiency spillovers and which are net recipients.

With regard to potential extensions of our analysis, despite a few recent studies on
spatial frontier methods this body of literature remains underdeveloped. One important
area for further work that emerges from our paper is the development of an alternative
estimator for the SAR fixed effects stochastic frontier model, where distributional as-
sumptions are made to distinguish between inefficiency and the idiosyncratic error. Our
extended estimation procedure relies on the error components being independently dis-
tributed but this will not be the case for the one-way fixed effects SAR model in the
first step of our estimation routine due to correlation between the fixed effects and the
time-varying errors. This therefore rules out a similar extended estimation procedure for
a SAR fixed effects stochastic frontier to the one we develop here.

The likely starting point for the development of an alternative estimator for the SAR
fixed effects stochastic frontier model is the recent estimator that Chen et al. (2014)
propose. Their estimator is for the fixed effects stochastic frontier in the absence of SAR
dependence and is with recourse to the closed skew normal distribution. That said, in
contrast to our random effects and common correlated effects SAR stochastic frontiers,
which include time-varying and time-invariant inefficiencies in a single model, extending
the Chen et al. approach as it stands to model SAR dependence would involve modeling

only time-varying inefficiency.
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