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Abstract

In this study, we empirically assess the impact of capital regulations on capital adequacy
ratios, portfolio risk levels and cost efficiency for U.S. banks. Using a large panel data
of U.S. banks between 2001-2016, we first estimate the model using two-step generalized
method of moments (GMM) estimators. After obtaining residuals from the regressions,
we propose a method to construct the network based on clustering of these residuals.
The residuals capture the unobserved heterogeneity that goes beyond systematic factors
and banks’ business decisions that impact its level of capital, risk and cost efficiency and
thus represent unobserved network heterogeneity across banks. We then re-estimate the
model in a spatial error framework. The comparisons of Fixed Effects, GMM Fixed Effect
models with spatial fixed effects models provide clear evidence of the existence of unobserved
spatial effects in the interbank network. We find a stricter capital requirement causes banks
to reduce investments in risk-weighted assets, but at the same time, increase holdings of
non-performing loans, suggesting the unintended effects of higher capital requirements on
credit risks. We also find the amount of capital buffers has an important impact on banks’
management practices even when regulatory capital requirements are not binding.
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1 Introduction

Since the process of bank deregulation started in the 1970s, the supervision of banks has

relied mainly on the minimum capital requirement. The Basel Accord has emerged as an

attempt to create an international regulatory standard on how much capital banks should

maintain to protect against different types of risks. The recent financial crisis revealed that,

despite numerous refinements and revisions over the last two decades, the existing regulatory

frameworks are still inadequate for preventing banks from taking excessive risks. The recent

crisis also highlighted the importance of the interdependence and spillover effects within the

financial networks.

Therefore, to prevent future crises, economists and policymakers must understand the

dynamics of the intertwined banking systems and the underlying drivers of banks’ risk-taking

to better assess risks and adjust regulations. Theoretical predictions on whether more stringent

capital regulation curtails or promotes banks’ risk-taking behavior are ambiguous. It is ultimately

an empirical question how banks behave in the light of capital regulation. This paper seeks to

investigate the drivers of banks’ risk-taking in the U.S. and to test how banks respond to an

increase in capital requirements.

There is a large number of empirical studies testing whether increases in capital requirements

force banks to increase or decrease risks (Shrieves and Dahl (1992); Jacques and Nigro (1997);

Aggarwal and Jacques (2001); Rime (2001); Stolz, Heid, and Porath (2003); Lindquist (2004);

Barth, Caprio, and Levine (2004); Demirguc-Kunt and Detragiache (2011); Camara, Lepetit,

and Tarazi (2013) and etc). For example, Shrieves and Dahl (1992) and Jacques and Nigro

(1997) suggest that capital regulations have been effective in increasing capital ratios and

reducing asset risks for banks with relatively low capital levels. They also find that changes

in risk and capital levels are positively related, indicating that banks that have increased their

capital levels over time have also increased their risk appetite. However, other studies such as

Stolz et al. (2003) and Van Roy (2005) report a negative effect of capital on the levels of risk

taken by banks. Overall, both theoretical and empirical studies are not conclusive as to whether

more stringent capital requirements reduce banks’ risk-taking.
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A different strand of literature provides evidence that efficiency is also a relevant determinant

of bank risk. In particular, Hughes, Lang, Mester, Moon, et al. (1995) link risk-taking and

banking operational efficiency together and argue that higher loan quality is associated with

greater inefficiencies. S. Kwan and Eisenbeis (1997) link bank risk, capitalization and measured

inefficiencies in a simultaneous equation framework. Their study confirms the belief that

these three variables are jointly determined. Additional studies on capital, risk and efficiency

are conducted by Williams (2004), Yener Altunbas, Carbo, Gardener, and Molyneux (2007),

Fiordelisi, Marques-Ibanez, and Molyneux (2011), Deelchand and Padgett (2009) and Tan and

Floros (2013) 1. Taken together, these two strands of the empirical literature on banking

business practices imply that bank capital, risk and efficiency are all related.

The third strand of literature that we are looking into deals with applying spatial econometrics

to model banking linkages and the transmission of shocks in the financial system. Although

spatial dependence has been studied extensively in a wide range of social fields, such as regional

and urban economics, environmental sciences and geographical epidemiology, it is not yet very

popular in financial applications. Recently, there are some applications in empirical finance. For

instance, Fernandez (2011) tests for spatial dependency by formulating a spatial version of the

capital asset pricing model (S-CAPM). B. Craig and Von Peter (2014) find significant spillover

effects between German banks’ probabilities of distress and the financial profiles of connected

peers through a spatial probit model. Other studies such as Asgharian, Hess, and Liu (2013),

Arnold, Stahlberg, and Wied (2013) and Weng and Gong (2016) analyze spatial dependencies

in stock markets. However, the empirical literature appears to be silent on examining the effects

of financial regulation on risks while taking spatial dependence into account. Banks’ behaviors

are likely to be inherently spatial. Ignoring these spatial correlations would lead to model

misspecification, and consequently, biased parameter estimates.

In this paper, we combine these different strands of literature. Using a large sample of

U.S. banking data between 2001-2016, we empirically assess the impact of capital regulation on

capital adequacy ratios, portfolio risk levels and efficiency of banks in the United States under

spatial frameworks. The sampling period includes banks that report their balance sheet data

1See Table A.2 for a concise summary of the recent empirical studies on capital, risk and efficiency.
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according to both the original Basel I Accord and the Basel II revisions (effective from 2007 in

the U.S.), and up to the most available date on 2016-Q3. More precisely, our paper addresses

the following questions: to what extent are banks’ risk-taking behaviors and cost efficiency

sensitive to capital regulation? How do capital buffers affect a bank’s capital ratios, the level of

risk it is willing to take on, and its cost efficiency? How does the result change by taking into

account spatial interactions among observed banks?

This paper makes several contributions to the discussion on bank capital, risk, and efficiency

and has important policy implications. First, this analysis provides an empirical investigation

linking capital regulation on bank risk-taking, capital buffer and bank efficiency in a spatial

setting. The introduction of spatial dependence allows us to determine the importance of

network externalities after controlling for bank specific effects as well as macroeconomic factors.

Second, this paper proposes a new approach for creating a spatial weights matrix. The key

challenge in investigating spatial effects among banks is in defining the network, or in other

words, constructing the spatial weights matrix. Spatial weights matrix is normally constructed

in terms of the geographical distance between neighbors. In financial markets, however, it is

not necessarily the case given that most transactions are performed electronically. we propose a

method to construct a spatial weights matrix based on clustering of residuals from regressions.

The residuals aim to capture the unobserved heterogeneity that goes beyond systematic factors

and banks’ own idiosyncratic characteristics and can be interpreted as a representation of

unobserved network heterogeneity.

Third, this study employs a significantly larger and more recent data set than previous

studies that used data only up to 2010. In addition, since Basel III maintains many of the

defining features of the previous accords, this study will shed light on how a more risk-sensitive

capital regulation (i.e. Basel III) could influence banks’ behaviors in the U.S. after the financial

crisis.

The rest of the paper is organized as follows. Section II lays out the regulatory background

of this study. Section III explains the model. Section IV outlines the estimation methodology

and addresses several econometric issues. Section V describes the data. Section VI presents

and discusses the empirical findings and Section VII concludes.
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2 Regulatory Background

The purpose of the Basel Committee on Banking Supervision is two-fold. Its aims are to provide

greater supervision of the international banking sector, and to promote competition among

banks internationally by having them comply with the same regulatory standards (Jablecki et

al. (2009)). All three Basel Accords are informal treaties, and members of the Basel Committee

may not adapt their rules as national laws. For example, the U.S. only adopted Basel II

standards for its 20 largest banking organizations since 2007. Regardless, the accords have led

to greater universality in global capital requirements, even in countries that are not represented

on the formal Basel Committee.

Basel I, implemented in 1988, was designed to promote capital adequacy among banks

internationally by promoting an acceptable ratio of capital to total risk-weighted assets. Specifically,

Basel I required the ratio between regulatory capital and the sum of risk-weighted assets to be

greater than 8%. This has become an international standard, with well over 100 countries

adopting the Basel I framework. The first Basel Accord divided bank capital into two tiers to

guarantee that banks hold enough capital to handle economic downturns. Tier 1 capital, the

more important of the two, consists largely of shareholder’s equity. Tier 2 consists of items like

subordinated debt securities and reserves. The primary weakness of Basel I was that capital

requirements were only associated with credit risk, and did not include operational or market

risk. Additionally, risk weights assigned to assets are fixed within asset categories, creating

incentives for banks to engage in regulatory capital arbitrage. For example, all commercial

loans were assigned the same risk weight category (100% risk weight) regardless of the inherent

creditworthiness of the borrowers. This tended to reduce the average quality of bank loan

portfolios.

Basel II was initially published in June 2004 and was introduced to combat regulatory

arbitrage and improve bank risk management systems. The Basel II Accord was much more

complex and risk sensitive than Basel I and placed greater emphasis on banks’ own assessment of

risk. Basel II was structured in three pillars: pillar 1 defined the minimum capital requirements;

pillar 2 was related to the supervisory review process; pillar 3 established the disclosure requirements

4



on the financial condition and solvency of institutions. Basel II made several prominent changes

to Basel I, primarily in regard to how risk-weighted assets were to be calculated. In addition

to credit risk, Basel II extended the risk coverage to include a capital charge for market and

operational risk. The total risk-weighted assets (RWAT ) was then calculated as follows:

RWAT=RWAC+12.5(ORC+MRC)

where RWAC denotes the risk-weighted assets for credit risk. MRC is the market risk capital

charge and ORC is the operational risk capital charge.

Also, Basel II allowed banks to use internal risk models to determine the appropriate risk

weights of their own assets once approved by regulators. Additionally, Basel II calculated the

risk of assets held in trading accounts using a “Value at Risk” approach, which takes into

account estimates of potential losses based on historical data.

Basel III

Basel I Base II 2013 2014 2015 2016 2017 2018 2019

Common equity Tier 1 ratio 3.5% 4% 4.5% 4.5% 4.5% 4.5% 4.5%

Capital conservation buffer 0.625% 1.25% 1.875% 2.5%

Min Tier 1 Capital 4% 4% 4.5% 5.5% 6% 6% 6% 6% 6%

Min Total Capital 8% 8% 8% 8% 8% 8% 8% 8% 8%

Liquidity coverage ratio 60% 70% 80% 90% 100%

Source: Bank for International Settlements, http://www.bis.org/bcbs/basel3.htm

Table 2.1: Evolution of minimum capital requirements from Basel I to Basel III

In the aftermath of the financial crisis of 2007-2009, the Basel Committee revised its capital

adequacy guidelines, and this became Basel III (BCBS (2011)). The primary additions to Basel

II were higher capital ratios for both Tier 1 and Tier 2 capital, the introduction of liquidity

requirement and the incorporation of a leverage ratio to shield banks from miscalculations in

risk weightings and higher risk weightings of trading assets. As shown in Table 2.1, although

the minimum regulatory capital ratio remained at 8%, the components constituting the total

regulatory capital had to meet certain new criteria. A capital conservation buffer of 2.5% was

introduced to encourage banks to build-up capital buffers during normal times. Liquidity risk

also received much attention in Basel III. A Liquidity Coverage Ratio (LCR) and a Net Stable
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Funding Ratio (NSFR) were introduced and was implemented since 2015 and will be completed

by the end of 2018 (BCBS, 2013). Mid-way through the Basel III consultative process, the

U.S. enacted the Dodd-Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank

Act) in 2010. The Dodd-Frank Act is generally consistent with Basel III but further addressed

systemic risk by identifying a set of institutions as systemically important financial institutions

(SIFIs). The Dodd-Frank Act placed more stringent capital requirements for these SIFIs and

required them to undertake periodic stress tests (DFAST) to ensure these institutions are well

capitalized in aggregate stress scenarios.

Despite these changes, critics remain skeptical that the same issues that plagued Basel II

regarding incorrect risk-weights, as well as ease of circumvention are still prominent in Basel III.

It is believed that regulatory capital requirements should be sufficiently attuned to the riskiness

of bank assets. However, Vallascas and Hagendorff (2013) find a low risk sensitivity of capital

requirements which enable banks to build up capital buffers by under-reporting their portfolio

risk. Since the risk-weighting methodology remained essentially unchanged in Basel III, banks

will still have the incentive to game the system by obtaining securities that may prove disastrous

unexpectedly (Lall (2012)).

3 Hypotheses and Models

3.1 The Relationships among Capital, Risk, and Efficiency: Theoretical
Hypotheses

The prevalence of a minimum capital requirement is primarily based on the assumption that

banks are prone to engage in moral hazard behavior. The moral hazard hypothesis is the classical

problem of excessive risk-taking when another party is bearing part of the risk and cannot easily

charge for that risk. Due to asymmetric information and a fixed-rate deposit insurance scheme,

the theory of moral hazard predicts that banks with low levels of capital have incentives to

increase risk-taking in order to exploit the value of their deposit insurance (Kane (1995)). The

moral hazard problem is particularly relevant when banks have high leverage and large assets.

According to the too-big-to-fail argument, large banks, knowing that they are so systemically

important and interconnected that their failure would be disastrous to the economy, might count
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on a public bailout in case of financial distress. Thus, they have incentives to take excessive

risks and exploit the implicit government guarantee. In addition, the moral hazard hypothesis

predicts that inefficiency is positively related to risks because inefficient banks are more likely

to extract larger deposit insurance subsidies from the FDIC to offset part of their operating

inefficiencies (S. H. Kwan and Eisenbeis (1996)). This suggests the following hypothesis.

Hypothesis 1. There exists a negative relationship between capital/efficiency and risk, as banks

with higher leverage and lower efficiency have incentives to take higher risk to exploit existing

flat deposit insurance schemes.

With regard to the relationship between cost efficiency and risks, Berger and DeYoung (1997)

outline and test the “bad luck”, “bad management”, and “skimping” hypotheses using Granger

causality test. Under the bad luck hypothesis, external exogenous events lead to increases

in problem loans for the banks. The increases in risk incur additional costs and managerial

efforts. Thus cost efficiency is expected to fall after the increase in problem loans. Under the

bad management hypothesis, managers fail to control costs, which results in low cost efficiency,

and they also perform poorly at loan underwriting and monitoring. These underwriting and

monitoring problems eventually lead to high numbers of nonperforming loans as borrowers

fall behind in their loan repayments. Therefore, the bad management hypothesis implies that

lower cost efficiency leads to an increase in problem loans. On the other hand, the skimping

hypothesis implies a positive Granger-causation from measured efficiency to problem loans.

Under the skimping hypothesis, banks skimp on the resources devoted to underwriting and

monitoring loans, reducing operating costs and increasing cost efficiency in the short run. But

in the long run, nonperforming loans increase as poorly monitored borrowers fall behind in loan

repayments.

Milne and Whalley (2001) develop a continuous-time dynamic option pricing model that

explains the incentives of banks to hold their capital buffers above the regulatory required

minimum. The capital buffer theory states that adjustments in capital and risk depend on

banks’ capital buffers. It predicts that, after an increase in the regulatory capital requirement

(the same impact as a direct reduction in the capital buffer), capital and risk are initially

negatively related as long as capital buffers are low, and after a period of adjustment when

7



banks have rebuilt their capital buffers to some extent, capital and risk become positively

related. This leads to the following hypothesis.

Hypothesis 2. The coordination of capital and risk adjustments depends on the amount of

capital buffer that a bank holds. Well capitalized banks adjust their buffer capital and risk

positively while banks with a low capital buffer try to rebuild an appropriate capital buffer by

raising capital and simultaneously lowering risk.

3.2 Empirical Model

Taken all together, these studies and the models on which they are based imply that bank

capital, risk and efficiency are simultaneously determined and can be expressed in general terms

as follows:
RISKi,t =f(Capi,t, Effi,t, Xit)

Capi,t =f(Riski,t, Effi,t, Xit)

Effi,t =f(Capi,t, Riski,t, Xit)

(1)

where Xit are bank-specific variables.

Following Shrieves and Dahl (1992) we use a partial adjustment model to examine the

relationship between changes in capital and changes in risk. Shrieves and Dahl (1992) point out

that capital and risk decisions are made simultaneously and are interrelated. In the model,

observed changes in bank capital ratios and risk levels are decomposed into two parts: a

discretionary adjustment and an exogenously determined random shock such that:

∆CAPi,t = ∆dCAPi,t + εi,t

∆RISKi,t = ∆dCAPi,t + µi,t

(2)

where ∆CAPi,t and ∆RISKi,t are observed changes in capital and risk respectively, for bank i in

period t. ∆dCAPi,t and ∆dRISKi,t represent the discretionary adjustments in capital and risk.

εi,t and µi,t are the exogenous random shocks. Banks aim to achieve optimal capital and risk

levels, but banks may not be able to achieve their desired levels instantaneously. Hence, banks

can only adjust capital and risk levels partially towards the target levels. The discretionary

adjustment in capital and risk is thus modeled in the partial adjustment framework:

∆dCAPi,t = α(CAP ∗i,t − CAPi,t−1)

∆dRISKi,t = β(RISK∗i,t −RISKi,t−1)
(3)
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where α and β are speed of adjustment; CAP ∗i,t and RISK∗i,t are optimal level of capital and

risk and CAPi,t−1 and RISKi,t−1 are the actual levels of capital and risk in the previous period.

Substituting Equations (3) into Equation (2) and accounting for the simultaneity of capital

and risk decisions, the changes in capital and risk can be written as:

∆CAPi,t = α(CAP ∗i,t − CAPi,t−1) + γ∆RISKi,t + εi,t

∆RISKi,t = β(RISK∗i,t −RISKi,t−1) + φ∆CAPi,t + µi,t.
(4)

Equation (4) shows the observed changes in capital and risk are a function of the target capital

and risk levels, the lagged capital and risk levels, and any random shocks. Examples of exogenous

shocks to the bank that could influence capital or risk levels include changes in regulatory capital

standards or macroeconomic conditions.

3.2.1 Network model

Shocks affect banks’ decisions are likely to spillover to other banks, creating systemic effect.

Following Denbee, Julliard, Li, and Yuan (2017), we model the network effect on banks’ capital

and risk holding decisions as a shock propagation mechanism where banks’ decisions depend

upon how the individual bank’s shock propagates to its direct and indirect neighbors.

We decompose banks’ decisions into a function of observables and an error term that

captures the spatial spillover generated by the network:

Yit = αi︸︷︷︸
fixed effect

+
M∑
m=1

βmXit︸ ︷︷ ︸
effect of observable
bank characteristics

+
P∑
p=1

γpMacrot︸ ︷︷ ︸
impact of systematic

risk factors

+uit (5)

uit = λ
N∑
j=1

wijujt︸ ︷︷ ︸
shock propagation

+εit (6)

where Yit are banks’ capital and risk holding decisions, λ is a spatial autoregressive parameter,

and wij are the network weights. The network component uit is thus modelled as a residual

term.2 The vector of shocks to all banks at time t can be rewritten in matrix form as:

ut = (IN − λW )−1εt ≡M(λ,W )εt

2There may also be a more general spatial autoregressive structure that the network effect is modeled in the
dependent or independent variables. But this study focuses on spillovers in how shocks of one bank propagate
to other banks which is best represented by the spatial error model.
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and expanding the inverse matrix as a power series yields:

M(λ,W ) = I + λW + λ2W 2 + λ3W 3 + ... (7)

=
∞∑
k=0

λkW k (8)

where λ can also be interpreted as network multiplier effect. We need |λ| < 1 for stability. The

matrix M(λ,W ) measures all direct and indirect effect of a shock to bank i on bank j.

The network impulse-response function of banks’ capital and risk holdings, to a one standard

deviation shock σi to a given bank i is given by:

IRFi(λ, σi) ≡
∂Yt
∂εi,t

= 1′M(λ,W )iσi.

The average network multiplier resulting from a unit shock equally spread across the n banks

can be expressed as:

1′M(λ,W )1
1

n
=

1

1− λ
.

A positive λ indicates an amplification effect that a shock to any bank would be amplified by

the banking network system. On the other hand, a negative λ indicates a dampening effect on

shock transmission.

3.2.2 Measures of capital and risk

Given the regulatory capital requirements associated with Basel I, II and III, capital ratios are

measured in three ways: Tier 1 risk-based ratio, total risk-based ratio and Tier 1 leverage ratio.

Tier 1 risk-based capital ratio is the proportion of core capital to risk-weighted assets where

core capital basically consists of common stock and disclosed reserves or retained earnings. Tier

2 capital includes revaluation reserves, hybrid capital instruments and subordinated term debt,

general loan-loss reserves, and undisclosed reserves. Total risk-based ratio is the percentage of

Tier 1 and Tier 2 capital of risk-weighted assets. Tier 1 leverage ratio is the ratio of Tier 1

capital to total assets. The higher the ratio is, the higher the capital adequacy.

The literature suggests a number of alternatives for measuring bank risk. The most popular

measures of bank risk are the ratio of risk-weighted assets to total assets (RWA) and the ratio

of non-performing loans to total loans (NPL). The ratio of risk-weighted assets is the regulatory
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measure of bank portfolio risk, and was used by Shrieves and Dahl (1992), Jacques and Nigro

(1997), Rime (2001), Aggarwal and Jacques (2001), Stolz et al. (2003) and many others. The

standardized approach to calculating risk-weighted assets involves multiplying the amount of

an asset or exposure by the standardized risk weight associated with that type of asset or

exposure. Typically, a high proportion of RWA indicates a higher share of riskier assets. Since

its inception, risk weighting methodology has been criticized because it can be manipulated (for

example, via securitization), NPL is thus used as a complementary risk measure as it might

contain information on risk differences between banks not caught by RWA. Non-performing loans

is measured by loans past due 90 days or more and non-accrual loans and reflect the ex-post

outcome of lending decisions. Higher values of the NPL ratio indicate that banks ex-ante took

higher lending risk and, as a result, have accumulated ex-post higher bad loans.

3.2.3 Variables affecting changes in capital, risk and efficiency

The target capital ratio and risk level are not observable and typically depend on some set

of observable bank-specific variables. We do so as well in our analysis. Loan loss provisions

(LLP) as a percentage of assets are included as a proxy for asset quality. A higher level of loan

loss provisions indicates an expectation of more trouble in the banks’ portfolios and a resulting

greater need for capital, and thus might capture ex-ante credit risk or expected losses. The

loan-to-deposit ratio (LTD) is a commonly used measure for assessing a bank’s liquidity. If the

ratio is too high, it means that the bank may not have enough liquidity to cover any unforeseen

fund requirements, and conversely, if the ratio is too low, the bank may not be earning as much

as it otherwise earns. Size will likely impact a bank’s capital ratios, efficiency and level of

portfolio risk, because larger banks are inclined to have larger investment opportunity sets and

are granted easier access to capital markets. For these reasons, they have been found to hold

less capital ratios than their smaller counterparts (Aggarwal and Jacques (2001)). We include

the natural log of total assets as the proxy for bank size. Bank profitability is expected to

have a positive effect on bank capital if the bank prefers to increase capital through retained

earnings. An indicator of profitability is measured by return on assets (ROA) and return on

equity (ROE ).
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Macroeconomic shocks such as a recession and falling housing prices can also affect capital

ratios and portfolios of banks. In order to capture the effect of common macroeconomic shocks

that may have affected capital, efficiency and risk during the period of study, the annual growth

rate of real U.S. GDP and Case-Shiller Home Price Index are included as controls. Crisis is a

dummy variable that takes the value of 1 if the year is 2007, 2008 or 2009.

The regulatory pressure variable describes the behavior of banks close to or below the

regulatory minimum capital requirements. Capital buffer theory predicts that an institution

approaching the regulatory minimum capital ratio may have incentives to boost capital and

reduce risk to avoid the regulatory cost triggered by a violation of the capital requirement. We

compute the capital buffer as the difference between the total risk-weighted capital ratio and the

regulatory minimum of 8%. Consistent with previous work, we use a dummy variable REG to

signify the degree of regulatory pressure that a bank is under. Since most banks hold a positive

capital buffer, we use the 10th percentile of the capital buffer over all observations as the cutoff

point. The dummy REG is set equal to 1 if the bank’s capital buffer is less than the cutoff value

and zero otherwise. To test the predictions outlined above, we interact the dummy REG with

variables of interest. For example, in order to capture differences in the speeds of adjustment of

low and high buffer banks, we interact REG with the lagged dependent variables Capt−1 and

Riskt−1. In addition, to assess differences in short term adjustments of capital and risk that

depend on the degree of capitalization, we interact the dummy REG with ∆Risk and ∆Cap

in the capital and risk equations respectively. A summary of variable description is presented

in Table C.2 in the Appendix.

Given the discussion above, Equation (1) can be written as:

∆RISKi,t =α0 + α1∆Capi,t + α2Effi,t + α3RISKi,t−1 + α4Xi,t + α5∆Macrot

+ α6REGi,t ×∆Capi,t + α7REGi,t ×Riski,t−1 + vi,t

∆Capi,t =γ0 + γ1∆Riski,t + γ2Effi,t + γ3Capi,t−1 + γ4Xi,t + γ5∆Macrot

+ γ6REGi,t ×∆Riski,t + γ7REGi,t × Capi,t−1 + ui,t

Effi,t =σ0 + σ1∆Riski,t + σ2∆Capi,t + σ3Xi,t + σ4∆Macrot + wi,t

(9)
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3.2.4 Measures of cost efficiency

Consistent with conventional bank efficiency studies, we use stochastic frontier analysis (SFA)

to estimate efficiency for each bank. Stochastic frontier analysis, proposed by Aigner, Lovell,

and Schmidt (1977) and Meeusen and Van den Broeck (1977), is often referred to as a composed

error model where one part represents statistical noise with symmetric distribution and the other

part, representing inefficiency. See Appendix A for a more detailed description of stochastic

frontier models. The cost efficiency is the most widely used efficiency criterion in the literature,

and measures the distance of a banks cost relative to the cost of the best practice bank when

both banks produce the same output under the same conditions. A bank’s production function

uses labor and physical capital to attract deposits. The deposits are used to fund loans and

other earning assets. Inputs and outputs are specified according to the intermediation model

Sealey and Lindley (1977).

Following Yener Altunbas et al. (2007), we specify a cost frontier model with two-output

three-input, and a translog specification of the cost function:

lnTC = β0 + γt+ 0.5γt2

+
3∑

h=1

(αh + θht) lnwh +
2∑
j=1

(βj + cht) ln yj

+ 0.5(
2∑
j=1

2∑
k=1

βjk ln yj ln yk +
3∑

h=1

3∑
m=1

λhm lnwh lnwm)

+

2∑
i=1

3∑
m=1

ρim ln yi lnwm − u+ v (10)

where TC represents the total cost, y are outputs, w are input prices, and t is a time trend to

account for technological change, using both linear and quadratic terms. Inputs are borrowed

funds, labor, and capital. Outputs are securities and loans. The inclusion of a quadratic

time trend and a time interaction with outputs and input prices enables the measurement of

time-dependent effects in costs, such as the pure technical change and non-neutral technological

shifts of the cost frontier. The term v is a random error that incorporates both measurement

error and luck. The term u is a firm effect representing the bank’s technical inefficiency level.

It measures the distance of an individual bank to the efficient cost frontier. A description of

input and output variables are shown in Table C.1 in the Appendix.
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4 Estimation

4.1 Endogenity

The system of Equation (9) suffers from endogeneity of variables. This endogeneity will make

OLS estimators inconsistent. The Instrumental Variable (IV) - Generalized Method of Moments

(GMM) estimator is suited to deal with endogeneity issues by means of appropriate instruments.

Arellano and Bond (1991) suggest a GMM estimator that uses lagged levels of endogenous

variables as instruments for equations in first differences. Later Blundell and Bond (1998) find

that the lagged levels may become poor instruments for first differenced variables, especially if

the variables are highly persistent. Their modification of the estimator includes lagged levels

as well as lagged differences. Therefore, we use the 2-step efficient GMM procedure and the

instruments (in lags and difference form) as suggested by Blundell and Bond (1998). These

GMM types of instruments for endogenous capital and risk variables are also used in Stolz

et al. (2003), Fiordelisi et al. (2011) and De-Ramon, Francis, and Harris (2016). To avoid the

proliferation of the instrument set, we follow Roodman (2009)’s advice to collapse the instrument

matrix so that there are not unique instruments for each time period as in Arellano and Bond

(1991) and the number of lags is up to two.

To verify that the instruments are statistically valid, we use Hansen’s J-test (for GMM

estimator) and Sargan’s test (for 2SLS estimator) of overidentifying restrictions. The null

hypothesis is that the instruments are valid instruments, i.e., uncorrelated with the error term,

and that the excluded instruments are correctly excluded from the estimated equation. A

failure to reject the null should be expected in the GMM regression. To evaluate the strength of

instruments, we look at Cragg-Donald Wald F statistic and compare it to Stock and Yogo (2002)

critical values for testing weakness of instruments. To reject the null of weak instruments, the

Cragg-Donald F statistic must exceed the tabulated critical values.

4.2 Spatial Correlation

In order to estimate the network model described in Section 3.2.1, we need to map the observed

adjustment in capital and risk as well as efficiency levels into two components - the common
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factors and the unobserved network ones. To do this, we employ a fixed effect spatial error

model (SEM). The model takes the form:

yit = X ′itβ + eit

eit = ei + φt + uit

where ei denotes the vector of individual effects, φt is a time period effect to capture common

shocks and uit is the remainder disturbances independent of ei. The term uit follows the first

order autoregressive error dependence model:

uit = λ
N∑
j=1

wijujt + εit

ε ∼ N
(
0, σ2IN

)
where W is the matrix of known spatial weights and λ is the spatial autoregressive coefficient.

Or, in matrix notation
Y = Xβ + u,

u = λWu + ε

As with autocorrelation in time series, a failure to account for spatial error correlation when

λ 6= 0 would cause a misspecification of the error co-variance structure and thus compromise

interval estimates and tests of the importance of various regulatory interventions.

Therefore, we further decompose the error term in Equation (9) to capture the spatial

dependence generated by the network:

∆RISKi,t =α0 + α1∆Capi,t + α2Effi,t + α3RISKi,t−1 + α4Xi,t + α5∆Macrot

+ α6REGi,t ×∆Capi,t + α7REGi,t ×Riski,t−1 + vi,t

∆Capi,t =γ0 + γ1∆Riski,t + γ2Effi,t + γ3Capi,t−1 + γ4Xi,t + γ5∆Macrot

+ γ6REGi,t ×∆Riski,t + γ7REGi,t × Capi,t−1 + ui,t

Effi,t =σ0 + σ1∆Riski,t + σ2∆Capi,t + σ3Xi,t + σ4∆Macrot + wi,t

uit(or vit and wit) = λ
N∑
j=1

wijujt + εit

(11)

This error term in the system of equations describes the process of bank i, which is the residual

of individual bank i’s risk-taking behavior/capital adjustment/level of efficiency in the network
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that is not due to bank-specific characteristics or systematic factors. The weights matrix, wij ,

is assumed to be constant over time. If there is no spatial correlation between the errors for

connected banks i and j, the spatial error parameter λ will be 0, and the model reduces to the

standard non-spatial model where the individual observations are independent of one another.

If λ 6= 0, then we have a pattern of spatial dependence between the errors for connected banks.

This could reflect other kinds of misspecifications in the systematic component of the model, in

particular, omitted variables that are spatially clustered. Typically we expect to see a positive

spatial correlation, implying the clustering of similar units, i.e., the errors for observation i tend

to vary systematically in size with the errors for its nearby observations j. The above discussion

suggests the following hypothesis.

Hypothesis 3. There exists unobserved spatial dependence among banks such that any shocks

on bank i will have an impact on bank j and the size of impact depends on the (economic)

distance between them (i.e. λ > 0).

As outlined in the Appendix B, we can estimate the parameters of the fixed effect spatial

error model using a quasi-maximum likelihood (QML) approach.

Prior to fitting a spatial regression model to the data, we can test for the presence of spatial

dependence using Moran’s test to the residuals from an OLS regression. In general, Moran’s

statistic is given by:

M =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2

where N is the number of spatial units indexed by i and j, X is the variable of interest, X̄ is

the mean of X, and wij is the (i, j)-element of the spatial weights matrix.

4.2.1 Spatial weights matrix and financial network

The choice of the spatial weights matrix is of crucial importance to estimate the spatial model.

Commonly employed methods to assign weights include contiguity, k-nearest neighbor, distance

decay, and non-spatial definitions. In the Euclidean distance case, distance is measured in terms

of the inverse, or proximity, so that the weight attached to a distant bank is smaller than one

that is near. In the common boundary and nearest neighbor cases, each element wij is a binary
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indicator of whether banks i and j share a common market boundary or are nearest neighbors,

respectively. Different from commonly estimated spatial models, we do not consider physical

distance in constructing the weighting matrix in this study because the interlinkages in the

banking sector normally go beyond the geographical boundaries. In particular, geographical

proximity may facilitate financial integration, but it is not a necessary condition for such

an integration to hold, given that most transactions are performed electronically nowadays.

Therefore, the challenge is how to construct a structure of the “economic distance” between

banks and define the channel for cross-sectional spillovers.

In this section, we describe several approaches to identify banking networks. In the banking

literature, several ways are considered to construct networks building on the economic concept

of intermediation. For example, some authors use bilateral exposure positions based on balance

sheet data (e.g. asset, liabilities, deposit and loans) to construct the interbank networks (see

B. Craig and Von Peter (2014), B. R. Craig, Koetter, and Kruger (2014) and Upper and Worms

(2004)). Furfine (2003) and Bech and Atalay (2010) use interbank payment flows to quantify

the bilateral federal funds exposures in the U.S. federal funds market. Figure 1 below illustrates

the evolution in the international financial networks, showing the trend of increasing scale and

interconnectivity.

In addition to bilateral exposures, Fernandez (2011) use correlation between key financial

indicators in the CAPM framework to construct weighting matrices. The metric distance

between bank i and j is specified as:

dij =
√

2(1− ρij)

where ρ is Spearman’s correlation coefficient between a specific financial indicator (e.g. market-to-book

ratio and market cap relative to bank size) associated with bank i and j.

We construct the network based on clustering of residuals. The key idea is to first estimate

Equation (9) using two-step GMM regression and obtain the residuals ûit from the regressions.

The residuals capture the unobserved heterogeneity that goes beyond systematic factors and

banks’ own idiosyncratic characteristics and thus might be a representation of unobserved

network heterogeneity across banks. Based on the residuals ûit, we construct data-driven
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Figure 1: The Global Financial Network in 1985 and 2005

The nodes are scaled in proportion to total external financial stocks, and line thickness between nodes is
proportional to bilateral external financial stocks relative to GDP.
Source: Figure taken from Haldane (2009).

correlation networks through different clustering methods. Here we consider k-nearest-neighbor

and hierarchical clustering methods. These different clusters might be a way to represent the

latent markets that the bank operates. For instance, Figure 2 below represents one of the outputs

of the framework in terms of network visualization and it is a visualization of the estimated

network based on assets, capital buffer and liabilities. Figure 3 is a network visualization of the

top 10 banks in the U.S. by asset size in 2007 and 2015. Node size is proportional to total asset

size of the bank.
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Figure 2: Estimated interbank network based on assets, capital buffer and liabilities

Note: Weight is a function of assets, capital buffer and liabilities.
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Figure 3: Network visualization of the top 10 banks in the U.S. by asset size in 2007 and 2015.
Node size is proportional to total asset size of the bank.

Note: Wachovia was acquired by Wells Fargo in 2008. MBNA America Bank (renamed to FIA Card Services)
was acquired by BOA in 2014. National City Bank was closed in 2009.
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K-nearest-neighbor classifier is one of the most commonly used cluster methods that is

normally based on the Euclidean distance between observations. Alternatively, we can implement

a hierarchical clustering approach. we implement Ward’s hierarchical clustering procedure and

an example of the clustering output is displayed as a dendrogram below:

Figure 4: Dendrogram plots of the cluster of residuals

Now let’s define the weights matrix. Let W be the k-dimensional square matrix representing

a network composed of k banks. Each entry wij represents the possible connection between bank

i and j. The spatial weights matrix is then defined as:

Wij =

{
1, if j ∈ Gi
0, otherwise

where Gi denotes the group of i. An example of the binary weights matrix is as follows:

W =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


where the diagonal contains only null elements (each bank is not its own neighbor) and the

network is symmetric. According to Elhorst (2003), W is row-normalized such that the elements

of each row sum to unity. Therefore, the spatial weights matrix W is a row-normalized binary

contiguity matrix, with elements wij = 1, if two spatial units are in the same group and zero

otherwise.

The spatial weights matrix, W should satisfy certain regularity conditions:
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Assumption A1: The diagonal elements of W are set to zero, since no spatial unit can be

viewed as its own neighbor.

Assumption A2: The matrices (IN − λW )−1 are non-singular, where IN represents the

identity matrix of order N .

Assumption A3(a): The row and column sums of the matrices W, and (IN − λW )−1

before W is row-normalized should be uniformly bounded in absolute value as N goes to infinity

(Kelejian and Prucha (1998)), or

Assumption A3(b): The row and column sums of W before W is row-normalized should

not diverge to infinity at a rate equal to or faster than the rate of the sample size N(L.-F. Lee

(2004)).

4.2.2 Estimation and testing when the weights matrix is misspecified

Proper specification of the weighting matrix in the spatial error model is rather a daunting

task for the econometricians. The specification of the spatial weights matrix W requires a prior

knowledge of the spatial correlation between units and W needs to be exogenous to the model.

Hence, the right choice of a spatial weights matrix is crucial to identify the correct model. To

address this issue, in this section we include a discussion on the estimation and testing when

the weights matrix is misspecified and propose a method to test for the misspecification of the

weight matrix and ways of refinement.

Work by Qu and Lee (2015) and Liu and Prucha (2016) focuses on issues related to our

objectives. Qu and Lee (2015) tackle the issue of an endogenous spatial weights matrix by

exploring the model structure of spatial weights in a cross-sectional setting. They overcome the

endogeneity problem using control function methods and propose three estimation methods:

two-stage instrumental variable (2SIV) method, quasi-maximum likelihood estimation (QMLE)

approach and generalized method of moments (GMM).

Liu and Prucha (2016) introduce a robust testing procedure by generalizing the widely used

Moran (1950) I test for dependence in spatial networks. The problem in using the Moran I

and available LM tests for spatial models are that one is often unsure about how to specify the
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weight matrix employed by the test and hence needs to adopt a sequential testing procedure

based on different specifications of the weight matrix. Motivated by this problem Liu and

Prucha (2016) propose a single test statistic by incorporating information from multiple weight

matrices. In this sense, the test statistic combines a set of Moran I tests into a single test. By

its construction the generalized Moran I test could be useful for detecting network generated

dependence in a wide range of situations. This includes situations where the weights matrix

representing the network is misspecified and/or endogenous.

We propose an alternative approach to test for misspecification of the weighting matrix by

using a two step method based on the use of general factor-type structures introduced in Kneip,

Sickles, and Song (2012) and Bai (2009).

Consider the following spatial error model:

Yit = Xitβ + uit, (12)

uit = λ
N∑
j=1

wijujt + ε∗it, (13)

ε∗it = ηit + vit (14)

where ηit = ωi+$t and where ωi is a t × t sparse matrix of terms that pick up any possible

misspecified spatial correlations not addressed by the specification of the weighting matrix W .

The assumption about the “measurement error” in W is crucial. Suppose the true W is a

banded matrix. Then, by definition, any algorithm determining the cluster structure of the

data will fail to a certain extent. It will determine, say K clusters – i.e., K diagonal blocks

– where the true W that is not block-diagonal. In our model above we thus wish to first test

for the presence of spatial effects left-over after the estimation of the system with ωi = 0 and

then respecify the covariance structure to address any left over spatial correlations that may

still exist due to the original misspecification using the standard approaches we have outlined

above. The extent to which a simple clustering estimator fails – in case that the true W is not

block-diagonal – depends on standard issues for clusters as well as to what extent the decay

within blocks is misspecified by the assumed W in comparison with the true weighting matrix.

A question is how to compare inadequate estimators in such a test that will depend on the

“distance” (the measurement error) between the true and the identified W . There may be

points which are outside of any cluster but correlated with others (undertreatment) and others
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that are inside the identified W which are truly independent (overtreatment). The outcome will

depend on the variance-covariance of the over- and under-treated observations with the rest of

the units. To do this, we again turn to the Kneip et al. (2012) estimator.

Kneip et al. (2012) (KSS) estimator can be utilized in the model setting we are considering

by framing the misspecified weighting matrix in the error term above as:

Yit = Xitβ + λ
N∑
j=1

wijujt + ηit + vit. (15)

The effects ηit are assumed to be affected by a set of underlying factors and are formulated by

linear combinations of some basis functions:

ηit =
L∑
r=1

δirgr(t) (16)

For identifiability, it is assumed that
∑n

i ηit = 0, t = 1, . . . , T . The intercept αt can be

eliminated by transforming the model to the centered form,

yit − ȳt = (Xit − X̄t)
′L
r=1δirgr(t) + vit − v̄t (17)

where ȳt = 1
n

∑
i yit, X̄t = 1

n

∑
iXit and v̄i = 1

nvit. Denote ỹit = yit − ȳt and X̃it = Xit − X̄t,

we return to the model setting

ỹit = X̃ ′itβ +
L∑
r=1

δirgr(t) + ṽit (18)

We can see that the individual effects ηit are assumed to be determined by a number of

underlying factors, which are represented by a set of basis functions (g1(t), . . . , gL(t)). Denote

L ≡ span{g1, . . . , gL} to be the space of the underlying factors. A problem is that the set of

basis functions is not unique, and thus a normalization is needed for the estimation problem to

be well defined. KSS used the following normalization.

(a) 1
n

∑n
i=1 δ

2
i1 ≥ 1

n

∑n
i=1 δ

2
i2 ≥ · · · ≥ 1

n

∑n
i=1 δ

2
iL ≥ 0

(b) 1
n

∑n
i=1 δir = 0 and 1

n

∑n
i=1 δirδis = 0 for all r, s ∈ 1, . . . , L, r 6= s.

(c) 1
T

∑T
t=1 gr(t)

2 = 1 and 1
T

∑T
t=1 gr(t)gs(t) = 0 for all r, s ∈ 1, . . . , L, r 6= s.

Provided that n > L, T > L, conditions (a) - (c) do not impose any restrictions, and they

introduce a suitable normalization, which ensures identifiability of the components up to sign
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changes (instead of δit, gr , one may use −δir, −gr). Note that (a) - (c) lead to orthogonal

vectors gr as well as empirically uncorrelated coefficients δi. Bai (2003) uses expectations in

(a) and (b), which leads to another standardization and different basis functions, which are

determined from the eigenvectors of the (conditional) covariance matrix. Additionally, the KSS

method utilizes cross-validation to determine the dimension of the underlying factor space, and

then applies spline theory to obtain the estimates of basis functions.

The two-step version of the weighting matrix estimator proceeds as follows. First estimate

the original model with the possibly misspecified weighting matrix, assuming that the misspecified

portion of the weighing matrix is orthogonal to the spatial weights and the other regressors.

Next, construct the residuals from this regression and utilize them in estimating the factor

structure of the η′its. We can then decompose the estimated factors into cross-section and time

effects (ηit = ωi+$t) and use the estimated ω′is to test for the presence of misspecified spatial

effects. If the testing results (possibly using the generalized new Moran test of Liu and Prucha,

2016) suggest that spatial errors are still present we can use the estimated ω′is to further refine

our models of the weighting matrix using the methods we have deployed above.

4.3 Correction for Selection Bias

An additional issue when estimating Equation (11) arises when observations are missing in the

spatial model. This can occur for several different reasons but in the banking study, it occurs

due to the fact that banks are either merged, or they are dissolved. Often the reasons for the

banks no longer having autonomy or leaving the industry are not due to criteria that are easily

modeled by the econometricians. As discussed in Almanidis, Qian, and Sickles (2014), one

approach to deal with this issue is to express the data for a bank on a pro-forma basis that goes

back in time to account for mergers, that is, all past balance sheet and income observations of

non-surviving banks are added to the surviving banks. This approach is adopted by the Federal

Reserve in estimating risk measurement models, such as the Charge-off at Risk Model (Frye

and Pelz (2008)). This option is preferable when a large bank acquires a much smaller bank.

An alternative is to use a balanced panel by deleting banks that attrite from the sample. This

is the traditional approach that is applied by many existing studies in the banking literature.
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However, there is a potential for substantial selection bias arising from the correlation of the

error terms in the selection and capital/risk/efficiency equations. In order to utilize the available

spatial econometrics toolbox that applies to balanced panel only and account for selection bias,

we apply a Heckman (1979) type 2-step correction.

The first step of the Heckman type estimation is dealt with by using a probit regression of

all banks in the full sample, with the stay/exit dummy as a function of a set of bank-specific

and market characteristics variables:

Pr(S = 1|Z) = Φ(Zγ)

where S = 1 if the bank stays in the market and S = 0 otherwise, Z is a vector of explanatory

variables, γ is a vector of unknown parameters, and Φ is the cumulative distribution function

of the standard normal distribution. From these estimates, the non-selection hazard-what

Heckman (1979) referred to as the inverse Mills ratio, mi for each observation i is computed as

mi =
φ(Z ′γ̂)

Φ(Z ′γ̂)

where φ denotes the standard normal density function. The inverse-mills ratio (invmills) or

mit, is then added to the regression specified by (1) on a subsample of balanced panels excluding

banks that exit the market. This is the second step of the procedure and a significant coefficient

of invmills indicates the existence of sample selection bias.

5 Data

All bank-level data is constructed from the Consolidated Report of Condition and Income

(referred to as the quarterly Call Reports) provided by the Federal Deposit Insurance Corporation

(FDIC). The sample includes all banks in the Call Report covering the period from 2001:Q1 to

2016:Q3. Complete data of period 2001-2010 is available from the website of the Federal Reserve

Bank of Chicago3 and data after 2011 is available from the FFIEC Central Data Repository’s

Public Data Distribution site (PDD)4. we also collected data on U.S. Gross Domestic Product

(GDP) and Case-Shiller Home Price Index from Federal Reserve Bank of St. Louis. we filter

3https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
4https://cdr.ffiec.gov/public/PWS/DownloadBulkData.aspx
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the sample as follows. First, we drop missing data for key variables in the model. The variables

computed from the Call Reports frequently have a few extreme outliers, most likely due to

reporting errors or small denominators, so we drop the lowest and highest 1% of the observations

for key variables. we also dropped banks with negative and zero total assets, deposits and loans.

Finally, we eliminate very small banks (total assets less than 25 million) and banks observed in

only one year, which could introduce bias. we end up with an unbalanced panel data on 8055

distinct banks, yielding 330,970 bank-quarter observations over the whole sample period. To do

spatial analysis using spatial econometrics toolbox that applies to the balanced panel only, we

keep banks who existed for all periods, leading to a balanced panel data of 889 banks, yielding

55,118 bank-quarter observations over the whole sample period.

Table 5.1 presents a descriptive summary of key variables in the full sample (panel A) and

compares the sample mean for 3 periods: pre-crisis, crisis and post-crisis (panel B). All variables

are averaged by banks from 2001-2016. Figure 5 shows the time series plots of bank risks, capital

ratios, assets, profits, liquidity, and average capital and interest costs for the average bank over

2001-2016.

In general, the majority of banks in the sample have been well capitalized throughout

the sample period. The average bank has exceeded the minimum required capital ratio by a

comfortable margin. In my sample, the mean capital buffer above capital requirements is 8.43

%. The average Tier 1 capital ratio is 15.26% and the average risk-based capital ratio is 16.43%

during 2001-2016. The findings show that banks tend to hold considerable buffer capital.

Comparing average bank portfolios during the pre-crisis, crisis and post-crisis period, it is

evident that an average bank was hit hard by the financial turmoil. The average ROE/ROA

dropped from its highest level (7%/0.7%) in 2005 to its lowest (2%/0.2%) in 2009. The time

trend of capital ratios show a steady movement until a drop in 2008 and then picked up after

2010. The time series plots of two measures of bank risks show a similar trend. Liquidity here is

measured by cash ratio and LTD. The average LTD ratio increased steadily until the financial

crisis hit and reached the peak of almost 100% in 2009, then fell precipitously until 2012 and

have been rising again. The high LTD during crisis period suggests insufficient liquidity to cover

any unforeseen risks. This sharp drop in LTD since 2010 could be attributed to the tightened
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credit management by banks after the financial crisis, the contraction in lending demand due

to the sluggishness of the economy, and the measures undertaken by the government to curb

excessive lending.

Panel A: Descriptive statistics of key variables for the full sample period

Mean Std. Dev. Min Max

Stochastic frontier arguments

Cost of physical capital 0.20 0.21 0.02 1.97
Cost of labor 35.05 18.46 8.33 102.43
Cost of borrowed funds 0.01 0.01 0.00 0.04
Total securities ($million) 51.19 74.95 0.41 770
Total loans($million) 160.17 212.36 7.61 1,726
Total Cost($million) 6.30 8.94 0.25 167

Regression arguments

Assets($million) 239.4 301.6 9.6 3,540
Equity($million) 24.6 32.5 0.7 577
Deposit($million) 196.0 240.2 7.5 2,666
Net income ($million) 1.3 2.9 -261.6 109

Return on assets (%) 0.54 0.64 -27.48 9.16
Return on equity (%) 5.32 6.56 -304.34 83.21
Risk weighted assets (%) 68.05 11.80 36.43 95.78
NPL ratio (%) 2.73 2.73 0.00 51.27
Loan loss provision (%) 0.24 0.54 -20.92 44.54
Tier1 capital ratio (%) 15.30 5.38 7.23 43.09
Risk-based capital ratio (%) 16.43 5.37 9.91 43.48
Tier1 leverage ratio (%) 10.02 2.46 6.08 20.64
Capital buffer (%) 8.43 5.37 1.91 35.48

Panel B: Sample mean of key variables during pre-crisis, crisis and post-crisis period

Pre-crisis Crisis Post-crisis
2001q1-2007q2 2007q3-2009q4 2010q1-2016q3

Stochastic frontier arguments

Cost of physical capital 0.201 0.192 0.192
Cost of labor 30.365 35.505 40.053
Cost of borrowed funds 0.014 0.016 0.004
Total securities ($million) 42.819 46.613 62.849
Total loans($million) 128.651 171.229 189.787
Total Cost($million) 5.747 7.702 6.205

Regression arguments

Assets($million) 192.100 244.572 289.565
Equity($million) 18.815 24.544 31.085
Net income ($million) 1.342 0.899 1.451
Deposit($million) 155.824 196.543 240.498
Return on assets (%) 0.652 0.404 0.477
Return on equity (%) 6.720 3.989 4.440
Risk weighted assets (%) 68.244 71.086 66.302
NPL ratio (%) 2.216 3.328 2.994
Loan loss provision (%) 0.193 0.356 0.246
Loan-deposit ratio (%) 78.125 81.887 74.809
Tier1 capital ratio (%) 14.882 14.573 16.125
Risk-based capital ratio (%) 16.015 15.674 17.276
Tier1 leverage ratio (%) 9.752 9.955 10.354
Capital buffer (%) 8.015 7.674 9.276

Table 5.1: Summary statistics of the portfolios of U.S. banks
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Figure 5: Time series plots of key variables for the pooled sample over 2001-2016
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6 Results

We conduct two main analyses to study the effect of capital regulation on bank capital, risk,

and efficiency. In the first analysis, we use a full sample of the unbalanced panel by employing

two-step GMM fixed effects estimation and the results are analyzed in Section 6.2. In the

second analysis, we exacted the residuals from the GMM FE regressions in the first analysis

and use those to construct the weighting matrices using a balanced panel. we re-estimate

the simultaneous equations using spatial FE, FE, and GMM FE respectively. The results are

analyzed in Section 6.3. Capital ratios here are measured by Tier 1 risk-based ratio. we also did

additional tests that used two other measures of capital ratios, and none of these cause material

changes to the results reported in the tables.

6.1 Estimation of Cost Efficiency

We estimate cost efficiency specifications in Equation (10) using Battese and Coelli (1992)’s

method. Parameter estimates are reported in Table D.1 in the Appendix. Estimates of the

firm-specific inefficiencies, E[ui|εi], were computed using the Jondrow et al. method. Table D.1

shows average cost inefficiency at U.S. banks to be around 0.508 and mean cost efficiency to

be 0.619. That is, given its particular output level and mix, on average, the minimum cost is

about 61.9% of the actual cost. Alternatively, if a bank were to use its inputs as efficiently as

possible, it could reduce its production cost by roughly 50.8%.

Table 6.1 presents the level of cost efficiency for the entire sample and for different ownership

and size classes during 2001-2016. Cooperative banks have higher costs efficiency than commercial

and savings banks. The results are in line with Altunbas, Carbo Valverde, and Molyneux

(2003)’s findings, who showed that cooperative banks have higher cost efficiency as compared

to the commercial banks. Also, smaller banks are more cost efficient than are the larger banks

during all periods.
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Commercial Cooperative Savings Large Small Full
Banks Banks Banks Banks Banks Sample

2001 0.667 0.740 0.642 0.581 0.668 0.667
2002 0.661 0.734 0.636 0.575 0.662 0.661
2003 0.653 0.729 0.625 0.558 0.655 0.653
2004 0.646 0.718 0.616 0.549 0.648 0.645
2005 0.638 0.712 0.607 0.539 0.640 0.638
2006 0.630 0.703 0.598 0.527 0.633 0.630
2007 0.624 0.684 0.588 0.513 0.626 0.623
2008 0.620 0.680 0.584 0.504 0.623 0.619
2009 0.615 0.671 0.576 0.492 0.619 0.614
2010 0.608 0.665 0.567 0.479 0.612 0.606
2011 0.600 0.651 0.556 0.465 0.604 0.599
2012 0.597 0.650 0.547 0.469 0.601 0.595
2013 0.588 0.648 0.542 0.469 0.592 0.587
2014 0.578 0.646 0.529 0.459 0.583 0.576
2015 0.569 0.642 0.515 0.451 0.574 0.567
2016 0.564 0.639 0.508 0.455 0.569 0.561

Notes: Large banks are banks with assets greater than 1 billion and
small banks are banks with assets less than 1 billion.

Table 6.1: Cost efficiency scores by size and type of banks over years

6.2 GMM Results for the Full Sample

6.2.1 Relationships between changes in capital, risk and efficiency

Table D.2 shows the GMM fixed effect estimates of risk, capital, and efficiency equation for

the full sample using two different measures of risk. Fixed effects are used to account for the

possible bank-specific effects and provide consistent estimates. The Hansen statistics are also

presented. The non- significance of the Hansen J-statistics indicates that the null hypothesis of

valid instruments cannot be rejected for each model, confirming the validity of the instruments

used.

The empirical results show that there is a strong positive two-way relationship between

changes in NPL and changes in capital. This means banks’ NPL holdings increase when capital

increases and vice versa. This finding is consistent with Shrieves and Dahl (1992), suggesting

the unintended effects of higher capital requirements on credit risk. However, when risk is

measured by risk-weighted assets, the relationships become negative, contrary to the findings

by Shrieves and Dahl (1992) but consistent with Jacques and Nigro (1997). This together

suggests that when capital ratio increases, banks reduce ex-ante investments in risk-weighted
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assets but, at the same time, can have ex-post higher non-performing loans. The different

signs on NPL and RWA raise concern whether risk-weighted assets are a credible measure

of risk. It might be the case that banks “optimize” their capital by under-reporting RWA

in an attempt to minimize regulatory burdens. Banks have two ways to boost their capital

adequacy ratios: (i) by increasing the amount of regulatory capital held or (ii) by decreasing

risk-weighted assets. Therefore, if banks capital adequacy ratios fall, banks can immediately

reduce risk-weighted assets to increase the capital ratio to meet the regulatory requirement.

However, non-performing loans will still stay on the balance sheets and increase over time due

to compounded unpaid interests. The high non-performing loans can erode bank’s financial

health despite having lower rates of risk-weighted assets.

With regard to efficiency, the results show a positive relationship between efficiency and

change in NPL as well as change in capital, suggesting more efficient banks increase capital

holdings and take on greater credit risk (NPL), supporting the “skimping hypothesis”. This

finding is contrary to the results by S. H. Kwan and Eisenbeis (1996) but consistent with Yener

Altunbas et al. (2007). While when risk is measured by RWA, efficiency and change in RWA

is negatively related, implying that less efficient banks take on greater overall risk, supporting

Hypothesis 1 which is the moral hazard hypothesis.

Further, the results show the parameter estimates of lagged capital and risk are negative

and highly significant. The coefficients show the expected negative sign and lie in the required

interval [0,-1]. The can be interpreted as the speed of capital and risk adjustment towards

banks’ target level (Stolz et al. (2003)). The speed of risk adjustment is significantly slower

than the capital adjustment, which is in line with findings by Stolz et al. (2003).

Regarding buffers, capital buffers are negatively related to adjustment in RWA. This finding

is consistent with Vallascas and Hagendorff (2013) and according to them it might be a sign

that banks underreport their portfolio risk.

6.2.2 Impact of regulatory pressures on changes in capital and risk

One important goal of this study is to assess what impact the risk-based capital standards

had on changes in bank capital ratios, portfolio risk, and efficiency levels. To answer this
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question, an examination of the dummy REG and its interaction term provides some interesting

insights. The negative coefficients of REG on both capital equations suggest that banks with

low capital buffers increase capital by less than banks with large capital buffers. This result

reflects the desire of very-well capitalized banks to maintain a large buffer stock of capital, and

the regulatory capital requirement was effective in raising capital ratios among banks which

were already in compliance with the minimum risk-based standards. The parameter estimates of

REG are negative and significant on ∆NPL but positive and significant on ∆RWA, suggesting

that banks with low capital buffers reduce their level of nonperforming loans by more but

decrease overall risk-weighted assets by less than banks with high capital buffer. The dummy

REG has a positive sign on both efficiency equations, implying banks with lower capital buffer

has higher cost efficiency than banks with high capital buffer.

The interaction terms REG×Riskt−1 and REG×Capt−1 shed further light on how the speed

of adjustment towards the target level depends on the size of the capital buffer. The coefficients

on REG × Capt−1 are significant and positive, indicating that banks with low capital buffer

adjust capital toward their targets faster than better capitalized banks. This is in line with the

study by Berger, DeYoung, Flannery, Lee, and Oztekin (2008) in which they find that poorly

capitalized and merely adequately capitalized banks adjust toward their capital targets at a

faster speed than do already well capitalized banks. With respect to risk, we find that the

coefficient of REG×Riskt−1 has the negative sign when risk is measured by RWA but becomes

positive when risk is measured by NPL. The results suggest that banks with low capital buffer

adjust NPL faster but adjust RWA slower than banks with high capital buffers.

The interaction terms of REGi,t ×∆Capi,t and REGi,t ×∆Riski,t represent the impact of

capital buffer on the management of short term risk and capital adjustments. We find that the

coefficients on REGi,t×∆Capi,t is insignificant when risk is measured by NPL but is significant

and negative when risk is measured RWA. This finding indicates that banks with low capital

buffer reduce overall risk-taking when capital is increased. We also find the coefficients on

REGi,t ×∆Riski,t is significant and negative when risk is measured by NPL but is significant

and positive when risk is measured RWA, suggesting that banks with low capital buffer reduce

capital holding when NPL is increased but increase capital holding when RWA is increased. In
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sum, the findings are in line with the capital buffer theory hypothesis.

6.2.3 Variables affecting target capital and risk, and efficiency levels

With regards to the bank specific variables, We find that larger banks (in terms of total assets)

tend to be less cost efficient, implying dis-economies of scale for banks. This results are contrary

to previous studies where they find large institutions tend to exhibit greater efficiency associated

with higher scale economies (Wheelock and Wilson (2012); Hughes and Mester (2013)). Bank

size (SIZE ) has a significant and negative effect on changes in capital and RWA but positive

effect on changes in NPL. The finding is consistent with literature that larger banks generally

have lower degrees of capitalization (Shrieves and Dahl (1992), Aggarwal and Jacques (2001),

Rime (2001), Stolz et al. (2003) and etc.). Larger banks have larger investment opportunity

sets and are granted easier access to capital markets (Ahmad, Ariff, and Skully (2008)), which

renders their target capital level smaller than the target capital levels of smaller banks. The

negative relationship between size and change in RWA can be explained as larger banks are

believed to be more diversified and could contribute to a reduction of their overall risk exposure

(Lindquist (2004)). The results also show that size has a positive impact on change in NPL,

suggesting larger banks tend to increase credit risk (NPL) more than smaller banks. This can

be attributed to their Too-Big-To-Fail position, whereby larger banks believe any distress will

be bailed out by government assistance.

In addition, the results support the findings of Stolz et al. (2003) and Yener Altunbas et al.

(2007) that profitability (measured by ROA) and capital are strongly positively related. Hence,

banks seem to rely strongly on retained earnings in order to increase capital. The coefficients of

loan loss provision ratio on ∆NPL ratio is positive but negative on ∆RWA ratio. The results

are contrary to the finding of Aggarwal and Jacques (2001) where they find U.S. banks with

higher loan loss provision have higher risk-weighted assets. Liquidity (measured by loan-deposit

ratio) appears to be negatively related to change in capital and positively related to efficiency.

There is a strong significant positive relationship between liquidity and change in RWA. Banks

with more liquid assets need less insurance against a possible breach of the minimum capital

requirements. Therefore banks with higher liquidity generally have smaller target capital levels
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and may also be willing to take on more risk.

6.3 The Spatial Effects

As a benchmark, we estimate Equation (9) by non-spatial FE, and test for the presence of

spatial correlation in the regression residuals by utilizing the aforementioned weights matrices.

Estimation results using the weights matrices constructed by k-nearest neighbors where k=10

are reported in Table D.3 - Table D.8. Column 1-3 report estimates from Spatial FE, FE,

and GMM FE respectively. To minimize the impact of selection bias, the regressions reported

are re-estimated using a Heckman type two-step procedure (Heckman (1979)) to control for

the likelihood of surviving long enough to remain in the sample. The results using Heckman

correction are reported in column 5-7 in the table.

As suggested by Elhorst (2010), two measures of goodness-of-fit are reported for each model,

R2 and Corr2. The R2 reported for SFE differs from the R2 for an OLS regression with a

disturbance variance-covariance matrix σ2I. According to Elhorst (2010), there is no precise

counterpart of the R2 for an OLS regression for a generalized regression with a disturbance

variance-covariance matrix σ2Ω, where we 6= Ω. We also report the squared correlation

coefficient between actual and fitted values corr2(Y, Ŷ ). This measure ignores the variation

explained by the spatial fixed effects (Verbeek 2000,p320). Thus the difference between R2 and

corr2 indicates how much variation is explained by the spatial fixed effects.

The presence of spatial correlation is tested by applying Moran’s statistic to the residuals

after regression in Section 6.2. Here we report two Moran’s I statistics. The first Moran’s I is

obtained by applying Morans statistic to the residuals after GMM FE regression obtained in

Section 6.2. The second Moran’s I is obtained by applying Moran’s statistic to the residuals after

spatial fixed effect regression using weight matrices constructed. The null hypothesis of absence

of spatial correlation in the errors is rejected for all weights matrices I used, suggesting the

validity of applying the spatial error model in the first place. The second Moran’s I’s statistics

are non-significant in all models, suggesting there is zero spatial autocorrelation present in the

residuals after FE spatial error regression.
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Model where risk= NPL

Y = NPL Y = Tier 1 ratio Y = Efficiency

Network Effect λ 0.0974*** 0.152*** 0.797***

Average Network Multiplier 1.108 1.179 4.926

Corr2 0.115 0.924 0.622

Number of banks 889 889 889

Model where risk= RWA

Y = RWA Y= Tier 1 ratio Y= Efficiency

Network Effect λ 0.189*** 0.135*** 0.797***

Average Network Multiplier 1.233 1.156 4.926

Corr2 0.235 0.924 0.621

Number of banks 889 889 889

Table 6.2: Spatial Error Model Estimation

Table 6.2 reports results from the spatial error fixed effect model with estimates of the

spatial dependency parameter λ, the implied average network multiplier 1
1−λ , and the Corr2 of

the regression. Full coefficient estimates are reported in Table D.3 - Table D.8 in the Appendix.

The autocorrelation term λ captures unobserved dependencies arising from links in the interbank

network. The importance of the spatial dependence phenomenon is confirmed by the positive

significant value of λ (significant at 1%) in all models, indicating the presence of a substantial

network multiplier effect. For example, the estimated λ on Tier 1 ratio is about 0.152, suggesting

that a $1 idiosyncratic capital shock to one bank would result in a $1.179 shock to aggregate

change in capital in the banking network.

Parameter estimates resemble a large extent those obtained in the previous section. For

the risk equation (measured by NPL), the coefficients on ∆Capital and efficiency have the

expected positive sign for all columns. This is also consistent with the results in Section 6.2.

When risk is measured by RWA, the coefficients on ∆Capital and efficiency become negative

for all columns. Banks increase NPL (decreases RWA) when capital increases and vice versa.

The high significance of the inverse mills ratio suggests that controlling for survival bias is

important. For the risk equation, the coefficient on the inverse Mills ratio is positive, suggesting

positive selection has occurred, that is being said, without the correction, the estimate would
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have been upward-biased.

The coefficients on REG measure the impact of the risk-based capital standards had on

changes in bank risk-taking. In Section 6.2, the parameter estimates of REG are negative

and significant on ∆NPL but positive and significant on ∆RWA, suggesting that banks with

low capital buffers reduce their level of nonperforming loans by more but decrease overall

risk-weighted assets by less than banks with high capital buffer. While the coefficients on

REG are not significant when risk is measured by NPL as seen in Table D.3 column 1-3 and

become significant and negative after Heckman correction.

The interaction terms REG × Riskt−1 shed further light on how the speed of adjustment

towards the target level depends on the size of the capital buffer. In Section 6.2, the coefficient

is positive and significant, however in this case all coefficients are non-significant, suggesting

size of capital buffer does not affect the speed of Risk (NPL) change. The positive effect of size

on the change of NPL is in line with the too-big-to-fail notion that larger banks are more likely

to take more risks.

For the capital equation (risk measured by NPL), the coefficients on ∆Risk are negative

without correction but become positive and highly significant with Heckman correction. Results

in column 4-6 are consistent with the results obtained in Section 6.2. When risk is measured by

RWA, the coefficients on ∆Risk are negative in all specifications and comparable with results

in Section 6.2.

Size initially has a non-significant impact on changes in capital without correction term but

has a negative impact on changes in capital when the correction term is included. The negative

sign of size is in line with findings in Section 6.2, suggesting that larger banks generally have

lower degrees of capitalization. The coefficients on REG are negative in all specifications and

on both capital equations, suggesting that banks with low capital buffers increase capital by

less than banks with large capital buffers. The magnitude of the REG coefficients is smaller

after correction for selection bias and smaller in the case of spatial fixed effect error model.

In sum, the fixed effect spatial error model fits the data well, as the spatial interaction

terms are both statistically and economically significant and both pseudo R2 and corr2 give

36



reasonable goodness-of-fit. The comparison of FE, GMM models with spatial fixed effects

models provides clear evidence on the existence of unobserved spatial effects in the interbank

network on individual bank risk, capital and efficiency levels and that such effects can be

captured by the error term in the form of the non-systematic risk of neighboring banks.

6.4 Robustness Checks

One skepticism about spatial econometric methods is that the results are said to depend on the

choice of the weighting matrix. As mentioned above, there is no clear guidance in the literature

as to what the best weighting matrix might be. In order to check the robustness of the results,

we also estimated spatial models for alternative weight matrices using hierarchical clustering

methods. These results are consistent with estimations using KNN clustering.

7 Concluding Remarks

In this paper, we investigate the drivers of banks’ risk-taking in the U.S., and test how they

respond to an increase in capital requirements. We use the most recent dataset of U.S. banks

between 2001-2016 and model risk, capital and banks’ best business practices (proxied by cost

efficiency) in a robust framework. Controlling for endogeneity between risk, capital and cost

efficiency, we propose a method to construct the network based on clustering of residuals from

GMM estimates. We then re-estimate the model in a spatial error framework to further address

the issue of spatial correlation among banking networks.

Our findings suggest that a stricter capital requirement causes banks to reduce investments

in risk-weighted assets, but at the same time, increase ex-post non-performing loans, suggesting

the unintended effects of higher capital requirements on credit risk. We also find capital buffer

has important impact on capital, risk adjustments and cost efficiency. Banks with low capital

buffer adjust capital toward their targets faster than better capitalized banks. In addition, my

results show that there exist unobserved spatial effects in the interbank network and such effects

can be captured by the error term in the form of the non-systematic risk of neighboring banks.

This study has important policy implications and will shed light on how a more risk-sensitive

capital regulation (i.e. Basel III) could influence banks’ behavior. The different signs on
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non-performing loans (NPL) and risk-weighted assets (RWA) raise concern whether risk-weighted

assets are a credible measure of risk. It might be the case that banks under-report RWA

to minimize regulatory burdens. Since the risk-weighting methodology remains essentially

unchanged in Basel III, banks will still have the incentive to game the system by reallocating

portfolios away from assets with high risk weights to assets with low risk weights.

The results also imply that current capital requirements are still not sufficient to ensure

effective loss absorption during stress scenarios such as those experienced during the financial

crisis. Basel III introduces a conservation buffer of 2.5 %. My study finds that the majority of

banks actually maintained capital buffer levels that significantly exceeded Basel III requirements.

Hence, the introduction of an additional capital buffer may not be effective in affecting bank’s

risk-taking as much as expected.

Taken as a whole, these results suggest that the effectiveness of the Basel III to increase

capital and reduce risk-taking might be limited as it does not properly address the shortcomings

of Basel II. Therefore, policymakers will have to carefully revise the risk-weighting approach

and conduct tight and efficient supervision to minimize banks’ ability to game the system.

38



References

Aggarwal, R. & Jacques, K. T. (2001). The impact of fdicia and prompt corrective action

on bank capital and risk: Estimates using a simultaneous equations model. Journal of

Banking & Finance, 25 (6), 1139–1160.

Ahmad, R., Ariff, M., & Skully, M. J. (2008). The determinants of bank capital ratios in a

developing economy. Asia-Pacific financial markets, 15 (3-4), 255–272.

Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic

frontier production function models. Journal of Econometrics, 6 (1), 21–37.

Almanidis, P., Qian, J., & Sickles, R. C. (2014). Stochastic frontier models with bounded

inefficiency. In Festschrift in honor of peter schmidt (pp. 47–81). Springer.

Altunbas, Y., Carbo Valverde, S., & Molyneux, P. (2003). Ownership and performance in

european and us banking–a comparison of commercial, co-operative and savings banks.

Fondacion de las Cajas de Ahorros Working Paper, (180).

Altunbas, Y. [Yener], Carbo, S., Gardener, E. P., & Molyneux, P. (2007). Examining the

relationships between capital, risk and efficiency in european banking. European Financial

Management, 13 (1), 49–70.

Arellano, M. & Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence

and an application to employment equations. The review of economic studies, 58 (2),

277–297.

Arnold, M., Stahlberg, S., & Wied, D. (2013). Modeling different kinds of spatial dependence

in stock returns. Empirical Economics, 1–14.

Asgharian, H., Hess, W., & Liu, L. (2013). A spatial analysis of international stock market

linkages. Journal of Banking & Finance, 37 (12), 4738–4754.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77 (4), 1229–1279.

Barth, J. R., Caprio, G., & Levine, R. (2004). Bank regulation and supervision: What works

best? Journal of Financial intermediation, 13 (2), 205–248.

Battese, G. & Coelli, T. (1992). Frontier production functions, technical efficiency and panel

data: With application to paddy farmers in india. Journal of Productivity Analysis, 3 (1-2),

153–169.

BCBS. (2011). Basel iii: A global regulatory frame work for more resilient banks and banking

systems. Basel Committee on Banking Supervision (BCBS).

Bech, M. L. & Atalay, E. (2010). The topology of the federal funds market. Physica A: Statistical

Mechanics and its Applications, 389 (22), 5223–5246.

Berger, A. N. & DeYoung, R. (1997). Problem loans and cost efficiency in commercial banks.

Journal of Banking & Finance, 21 (6), 849–870.

Berger, A. N., DeYoung, R., Flannery, M. J., Lee, D., & Oztekin, O. (2008). How do large

banking organizations manage their capital ratios? Journal of Financial Services Research,

34 (2-3), 123–149.

Blundell, R. & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel

data models. Journal of econometrics, 87 (1), 115–143.

39



Camara, B., Lepetit, L., & Tarazi, A. (2013). Ex ante capital position, changes in the different

components of regulatory capital and bank risk. Applied Economics, 45 (34), 4831–4856.

Cornwell, C., Schmidt, P., & Sickles, R. C. (1990). Production frontiers with cross-sectional and

time-series variation in efficiency levels. Journal of Econometrics, 46 (1), 185–200.

Craig, B. R., Koetter, M., & Kruger, U. (2014). Interbank lending and distress: Observables,

unobservables, and network structure.

Craig, B. & Von Peter, G. (2014). Interbank tiering and money center banks. Journal of

Financial Intermediation, 23 (3), 322–347.

Deelchand, T. & Padgett, C. (2009). The relationship between risk, capital and efficiency:

Evidence from japanese cooperative banks. Capital and Efficiency: Evidence from Japanese

Cooperative Banks (December 18, 2009).

Demirguc-Kunt, A. & Detragiache, E. (2011). Basel core principles and bank soundness: Does

compliance matter? Journal of Financial Stability, 7 (4), 179–190.

Denbee, E., Julliard, C., Li, Y., & Yuan, K. (2017). Network risk and key players: A structural

analysis of interbank liquidity.

Elhorst, J. P. (2003). Specification and estimation of spatial panel data models. International

regional science review, 26 (3), 244–268.

Elhorst, J. P. (2010). Spatial panel data models. Handbook of applied spatial analysis, 377–407.

Fernandez, V. (2011). Spatial linkages in international financial markets. Quantitative Finance,

11 (2), 237–245.

Fiordelisi, F., Marques-Ibanez, D., & Molyneux, P. (2011). Efficiency and risk in european

banking. Journal of Banking & Finance, 35 (5), 1315–1326.

Frye, J. & Pelz, E. A. (2008). Bankcar (bank capital-at-risk): A credit risk model for us

commercial bank charge-offs.

Furfine, C. (2003). Interbank exposures: Quantifying the risk of contagion. Journal of Money,

Credit, and Banking, 35 (1), 111–128.

Haldane, A. (2009). Rethinking the financial network, april 2009. Speech delivered at the Financial

Student Association, Amsterdam.

Heckman, J. (1979). Sample selection bias as a specification error. Econometrica, 47 (1), 153–162.

Hughes, J. P., Lang, W., Mester, L. J., Moon, C.-G., et al. (1995). Recovering technologies that

account for generalized managerial preferences: An application to non-risk-neutral banks.

Wharton School Center for Financial Institutions, University of Pennsylvania.

Hughes, J. P. & Mester, L. J. (2013). Who said large banks don’t experience scale economies?

evidence from a risk-return-driven cost function. Journal of Financial Intermediation,

22 (4), 559–585.

Jablecki, J. et al. (2009). The impact of basel i capital requirements on bank behavior and

the efficacy of monetary policy. International Journal of Economic Sciences and Applied

Research, 2 (1), 16–35.

Jacques, K. & Nigro, P. (1997). Risk-based capital, portfolio risk, and bank capital: A simultaneous

equations approach. Journal of Economics & Business, 49 (6), 533–547.

40



Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical

inefficiency in the stochastic frontier production function model. Journal of Econometrics,

19 (2-3), 233–238.

Kane, E. J. (1995). Three paradigms for the role of capitalization requirements in insured

financial institutions. Journal of Banking & Finance, 19 (3), 431–459.

Kelejian, H. H. & Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure

for estimating a spatial autoregressive model with autoregressive disturbances. The Journal

of Real Estate Finance and Economics, 17 (1), 99–121.

Kneip, A., Sickles, R. C., & Song, W. (2012). A new panel data treatment for heterogeneity in

time trends. Econometric Theory, 28 (03), 590–628.

Kumbhakar, S. C. (1990). Production frontiers, panel data, and time-varying technical inefficiency.

Journal of Econometrics, 46 (1), 201–211.

Kwan, S. H. & Eisenbeis, R. A. (1996). An analysis of inefficiencies in banking: A stochastic

cost frontier approach. Economic Review-Federal Reserve Bank of San Francisco, (2), 16.

Kwan, S. & Eisenbeis, R. A. (1997). Bank risk, capitalization, and operating efficiency. Journal

of financial services research, 12 (2-3), 117–131.

Lall, R. (2012). From failure to failure: The politics of international banking regulation. Review

of International Political Economy, 19 (4), 609–638.

Lee, L.-F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial

autoregressive models. Econometrica, 72 (6), 1899–1925.

Lee, Y. H. & Schmidt, P. (1993). A production frontier model with flexible temporal variation in

technical efficiency. The measurement of productive efficiency: Techniques and applications,

237–255.

Lindquist, K.-G. (2004). Banks’ buffer capital: How important is risk. Journal of International

Money and Finance, 23 (3), 493–513.

Liu, X. & Prucha, I. R. (2016). A robust test for network generated dependence.

Meeusen, W. & Van den Broeck, J. (1977). Efficiency estimation from cobb-douglas production

functions with composed error. International Economic Review, 435–444.

Milne, A. & Whalley, A. E. (2001). Bank capital regulation and incentives for risk-taking.

Qu, X. & Lee, L.-f. (2015). Estimating a spatial autoregressive model with an endogenous spatial

weight matrix. Journal of Econometrics, 184 (2), 209–232.

De-Ramon, S., Francis, W., & Harris, Q. (2016). Bank capital requirements and balance sheet

management practices: Has the relationship changed after the crisis?

Rime, B. (2001). Capital requirements and bank behaviour: Empirical evidence for switzerland.

Journal of Banking & Finance, 25 (4), 789–805.

Roodman, D. (2009). A note on the theme of too many instruments. Oxford Bulletin of Economics

and statistics, 71 (1), 135–158.

Schmidt, P. & Sickles, R. C. (1984). Production frontiers and panel data. Journal of Business

& Economic Statistics, 2 (4), 367–374.

41



Sealey, C. W. & Lindley, J. T. (1977). Inputs, outputs, and a theory of production and cost at

depository financial institutions. The journal of finance, 32 (4), 1251–1266.

Shrieves, R. E. & Dahl, D. (1992). The relationship between risk and capital in commercial

banks. Journal of Banking and Finance, 16 (2), 439–457.

Stock, J. H. & Yogo, M. (2002). Testing for weak instruments in linear iv regression. National

Bureau of Economic Research Cambridge, Mass., USA.

Stolz, S., Heid, F., & Porath, D. (2003). Does capital regulation matter for bank behavior?

evidence for german savings banks.

Tan, Y. & Floros, C. (2013). Risk, capital and efficiency in chinese banking. Journal of International

Financial Markets, Institutions and Money, 26, 378–393.

Upper, C. & Worms, A. (2004). Estimating bilateral exposures in the german interbank market:

Is there a danger of contagion? European economic review, 48 (4), 827–849.

Vallascas, F. & Hagendorff, J. (2013). The risk sensitivity of capital requirements: Evidence

from an international sample of large banks. Review of Finance, 17 (6), 1947–1988.

Van Roy, P. (2005). The impact of the 1988 basel accord on banks’ capital ratios and credit

risk-taking: An international study.

Weng, Y. & Gong, P. (2016). Modeling spatial and temporal dependencies among global stock

markets. Expert Systems with Applications, 43, 175–185.

Wheelock, D. C. & Wilson, P. W. (2012). Do large banks have lower costs? new estimates of

returns to scale for us banks. Journal of Money, Credit and Banking, 44 (1), 171–199.

Williams, J. (2004). Determining management behaviour in european banking. Journal of

Banking & Finance, 28 (10), 2427–2460.

42



A Stochastic Frontier Model

In the same spirit as Schmidt and Sickles (1984) and Cornwell, Schmidt, and Sickles (1990),

we specify a panel data application of stochastic frontier model. Let yit and xit represent,

respectively, the scalar output level and the input vector of k inputs for firm i at time t. The

model has the general form:

yit = αt + f(xit;β) + vit − uit, i = 1, 2, . . . N, t = 1, 2, . . . Ti

= αit + f(xit;β) + vit

vit ∼iid N(0, σ2
v)

where αt is the frontier intercept, i.e. the maximum possible value for αit. vit is a two-sided

symmetric, idiosyncratic component. Normal distribution is usually assumed for vit. uit ≥ 0

is a firm effect representing technical inefficiency of firm i at time t. f(xit;β) is a log-linear

production function (e.g. Cobb-Douglas, translog or fourier flexible form). The fundamental

idea of stochastic frontier technical efficiency can be formalized as the ratio of realized output,

given a specific set of inputs, to maximum attainable output:

TEit =
yit
y∗it

=
f(xit;β)e−uitevit

f(xit;β)evit
= e−uit ∈ (0, 1]

with y∗it is the maximum attainable output for unit i given xit.

Cornwell et al. (1990) proposed a model that the technical inefficiency term uit is a quadratic

function over time. They assumed that the intercepts depend on a vector of observables Wt in

the following way:

αit = δiWt = δi1 + δi2t+ δi3t
2

where the parameters δi1, δi2, δi3 are firm specific and t is the time trend variable. Following a

slightly different strategy, Y. H. Lee and Schmidt (1993) specifies uit as the form of g(t)ui in

which

g(t)ui = (

T∑
t=1

βtdt)ui

where dt is a time dummy variable and one of the coefficients is set equal to one.

Numerous similarly motivated specifications have been proposed for uit. Two that have

proved useful in applications are Kumbhakar (1990)’s model,

g(t) = (1 + exp(η1t+ η2t
2)−1.

and Battese and Coelli (1992)’s “time decay model” (which is the model of choice in many

recent applications),

g(t) = exp[−η(t− Ti)].
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where Ti is the last period in the ith panel, η is the decay parameter. The decay parameter

gives information on the evolution of the inefficiency. When η > 0, the degree of inefficiency

decreases over time; when η < 0, the degree of inefficiency increases over time. If η tends to 0,

then the time-varying decay model reduces to a time-invariant model.

The specifications of uit are summarized below.

Model Specification of uit

CSS(1990) αit = θi1 + θi2t+ θi3t
2, ûit = max α̂it − α̂it

Kumbhakar (1990) uit = (1 + exp(η1t+ η2t
2)−1ui

Battese & Coelli(1992) uit = exp[−η(t− Ti)]ui
Lee & Schmidt(1993) uit = (

∑T
t=1 βtdt)ui

Table A.1: Different specifications of uit

The main purpose of the stochastic frontier analysis is to estimate inefficiency uit or efficiency

TEit = exp(−uit). Since only the composed error term εit = vit − uit is observed, the firms

inefficiency is predicted by the conditional mean ûit = E[uit|εit]. Jondrow, Lovell, Materov, and

Schmidt (1982) (JLMS) present the explicit result of E[uit|εit] for the half-normal model

E[uit|εit] =

[
σλ

1 + λ2

] [
µ̃it +

φ(µ̃it)

Φ(µ̃it)

]
, µ̃it =

−λεit
σ

where σ2 = (σ2
u + σ2

v), λ = σ2
u/σ

2
v and φ(.) and Φ(.) are the density and CDF of the standard

normal distribution. With these in hand, estimates of technical efficiency E[TEit|εit] = E[exp(−uit)|εit]
is also obtained.
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Authors Period of study Countries Methodology Main empirical results

Kwan and Eisenbeis (1996) 1986-1991 254 large U.S. BHCs 2SLS
Less efficient banks took on more risk to offset the inefficiency;

less efficient banks tend to be less well capitalized

Berger and DeYoung (1997) 1985-1994 U.S. commercial banks

Increases in NPL is followed by reductions in cost efficiency;

Granger-causality decreases in cost efficiency are followed by increases in NPL;

OLS for the most efficient banks, increases in cost efficiency is followed by

increases in NPL; thinly capitalized banks

have incentive (moral hazard) to take increased risks.

Williams(2004) 1990 - 1998 European savings banks

Granger causality Poorly managed banks (lower cost efficiency) tend to make more risky

OLS loans supporting the “bad management” hypothesis;

results are sensitive to the number of lags included

Altunbas et al., (2007) 1992-2000

Large sample of

SUR

Positive relationship between capital and risk;

Banks from 15 European inefficient banks appear to hold more capital and take on less risk;

countries relationships vary depending on types of banks.

Deelchand (2009) 2003-2006 2SLS

Negative relationship between risk and capital;

263 Japanese inefficient banks appear to operate with larger capital

cooperative banks and take on more risk; larger banks holding less capital

take on more risk and are less efficient.

Fiordelisi et al., (2011) 1995-2007

Subdued bank efficiency (cost or revenue) granger causes

Commercial banks Granger-Causality higher risk supporting the “bad management” hypothesis;

from EU-26 countries GMM more efficient banks seem to eventually become more capitalized;

higher capital also tends to have a positive effect on efficiency levels

Tan & Floros(2013) 2003-2009 101 Chinese banks 3SLS
Positive and significant relationship between risk and efficiency;

relationship between risk (Z-score) and capital is negative and significant.

Table A.2: Recent empirical studies on risk, capital and efficiency of banks
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B Derivation

Quasi-Maximum Likelihood Formulation

The Equation (11) can be re-written as

Y = Xβ + (In − λW )−1ε

Since ε ∼ N
(
0, σ2IN

)
, then u ∼ N (0,Ω) where Ω = σ2 (In − λW )

′
(In − λW )−1. Note that

(In − λW )−1 should be non-singular, this imposes restrictions on the value of λ. If W is row

standardized, so that the influence of neighbours can be represented in terms of averages, then

1/rmin < λ < 1, where rmin is the smallest negative eigenvalue of W (Ord, 1975; Anselin, 1982).

The loglikelihood of the spatial error model if the spatial specific effects are assumed to be

fixed can be obtained as:

lnL = −NT
2

ln
(
2πσ2

)
+ T ln |In − λW | −

1

2σ2

N∑
i=1

T∑
t=1

ν
′
itνit (B.1)

where ν = (In − λW )(y −Xβ).

β, σ2 and λ can be estimated jointly using (quasi) maximum likelihood methods:

β̂ =
(
X̃ ′X̃

)−1
X̃
′
Ỹ , σ̂2 =

ν̂
′
ν̂

NT

where X̃ = X∗ − λ(IT ⊗W )X∗ and Ỹ = Y ∗ − λ(IT ⊗W )Y ∗.

Y ∗ and X∗ are demeaned form of X and Y . The maximization of (B.1) can be done by searching

over a grid values for λ. The asymptotic variance matrix of the parameters is:

Asy. Var(β, λ, σ2) =


1

σ2
X∗
′
X∗ 0 0

0 T ∗tr(W̃W̃ + W̃ ′W̃ ) 0

0
T

σ2
tr(W̃ )

NT

2σ4


where W̃ = W (IN − λW )−1.
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C Variable Definitions

Variable Symbol Description

Total cost TC Interest + non-interest expenses

Outputs

Total securities Y1 Securities held to maturity + securities held for sale

Total loans Y2 Net loans (Gross loans - reserve for loan loss provisions)

Inputs prices

Price of physical capital W1 Expenditures on premises and fixed assets/premises and fixed assets

Price of labor W2 Salaries/full-time equivalent employees

Price of borrowed funds W3 Interest expenses paid on deposits/total deposits

Table C.1: Input and output description

Variables Descriptions

Capital :

Tier 1 risk-based ratio Core Capital (Tier 1)/ Risk-weighted Assets

Total risk-based ratio Core Capital (Tier 1)+Tier 2 capital/ Risk-weighted Assets

Tier 1 leverage ratio Core Capital (Tier 1)/Total assets

Risk:

NPL ratio Non-performing Loans/Total assets

RWA ratio Risk-weighted Assets /Total assets

Bank-specific variables:

Size The natural logarithm of banks total assets

ROA Annual net income/total assets

ROE Annual net income/total equity

LLP ratio Loan loss provisions/total assets

Cash ratio Noninterest-bearing balances, currency, and coin/total assets

Loan-deposit ratio Total loans/ Total deposits

Buffer Total risk weighted capital ratio -8%

REG ( Regulatory Pressure)
1 if a bank has a capital buffer ≤ 10th percentile capital

buffer over all observations, and zero otherwise

Macro indicators:

GDPG Growth rate of real GDP for the United States

Crisis 1 if year is between 2007 and 2009 and 0 otherwise

Case-Shiller Home Price Index Growth rate of 20-city composite

constant-quality house price indices

Table C.2: Description of variables used in the study

47



D Tables

Dependent Total Cost

Parameter SE

lny1 0.066*** 0.005
lny2 -0.009 0.009
lnw1 -0.063*** 0.007
lnw2 0.454*** 0.010
lnw3 0.593*** 0.006
lny1lny2 -0.049*** 0.000
lnw1lnw2 0.036*** 0.001
lnw1lnw3 -0.011*** 0.001
lnw2lnw3 -0.102*** 0.001
1/2lny21 0.068*** 0.000
1/2lny22 0.099*** 0.001
1/2lnw2

1 -0.031*** 0.001
1/2lnw2

2 0.041*** 0.002
1/2lnw2

3 0.119*** 0.001
lny1lnw1 0.000 0.000
lny1lnw2 -0.005*** 0.001
lny1lnw3 0.006*** 0.000
lny2lnw1 0.007*** 0.001
lny2lnw2 -0.007*** 0.001
lny2lnw3 0.005*** 0.001
t 0.016*** 0.000
t2 0.000*** 0.000
lny1t -0.001*** 0.000
lny2t -0.001*** 0.000
lnw1t -0.001*** 0.000
lnw2t 0.001*** 0.000
lnw3t 0.001*** 0.000
constant 1.302*** 0.056

µ 0.555*** 0.006
η -0.008*** 0.000
γ 0.888
σu2 0.099
σv2 0.013

Estimated inefficiencies ûit

Mean 0.508
SD 0.243
Min 0.006
Max 1.290

Estimated cost efficiency ĈEit

Mean 0.619
SD 0.149
Min 0.275
Max 0.994

Observations 330,790

Note: The top and bottom 5% of inefficiencies scores

are trimmed to remove the effects of outliers.

Table D.1: Parameter estimates of the translog cost functions on the full sample
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Model where risk= NPL Model where risk= RWA

Variables Y = ∆NPL Y = ∆Tier1 ratio Y = Efficiency Y = ∆RWA Y= ∆Tier1 ratio Y= Efficiency

∆Capital 0.0243*** 0.0517*** -0.987*** 0.0378***
(0.00313) (0.00612) (0.00615) (0.00694)

∆Risk 0.00686*** -0.00509 -0.00866*** -0.00967***
(0.00246) (0.00456) (0.000192) (0.00236)

Efficiency 0.00439*** 0.00117*** -0.114*** 0.000474***
(0.00103) (0.000214) (0.00192) (0.000174)

RISKt−1 -0.263*** -0.320***
(0.00139) (0.00122)

Capt−1 -0.947*** -0.934***
(0.00129) (0.000497)

Buffer 0.00139 0.937*** -0.266*** -0.223*** 0.925*** -0.265***
(0.00126) (0.00136) (0.00243) (0.00263) (0.000494) (0.00244)

Size 0.124*** -0.00482 -8.505*** -1.099*** -0.0156*** -8.507***
(0.0124) (0.00318) (0.0175) (0.0232) (0.00210) (0.0175)

ROA -0.175*** 0.0184*** 0.761*** 0.0972*** 0.0175*** 0.760***
(0.00545) (0.00111) (0.0106) (0.0100) (0.000910) (0.0106)

LLP ratio 0.323*** -0.0451*** 0.275*** -0.400*** -0.0477*** 0.270***
(0.00583) (0.00122) (0.0111) (0.0105) (0.000955) (0.0112)

LTD -0.000540* -0.00145*** 0.0150*** 0.163*** -0.000988*** 0.0155***
(0.000305) (5.88e-05) (0.000605) (0.000683) (5.29e-05) (0.000620)

REG -0.111*** -0.298*** 0.773*** 2.000*** -0.234*** 0.773***
(0.0143) (0.0413) (0.0217) (0.214) (0.0229) (0.0217)

Crisis 0.0300*** 0.0313*** 1.474*** 0.293*** 0.0322*** 1.473***
(0.00886) (0.00144) (0.0173) (0.0166) (0.00150) (0.0173)

REG*RISKt−1 0.0344*** -0.0223***
(0.00387) (0.00268)

REG*∆ CAP 0.00301 -0.151***
(0.0154) (0.0290)

REG*Capt−1 0.0357*** 0.0286***
(0.00418) (0.00232)

REG*∆ Risk -0.0122*** 0.00731***
(0.00273) (0.000520)

GDP growth -11.81*** -0.316*** 11.99*** 25.04*** 0.0444 12.32***
(0.476) (0.0838) (0.946) (0.888) (0.0808) (0.947)

Spcs growth -2.418*** -0.108*** 23.31*** 3.186*** -0.0779*** 23.34***
(0.142) (0.0229) (0.277) (0.264) (0.0240) (0.277)

Hansen J statistic 0.063 0.097 0.217 1.403 0.92 0.233
(0.8019) (0.7553) (0.6414) (0.1084) (0.3374) (0.6295)

No. of Observations 265,905 265,905 265,985 265,905 265,905 265,985
Number of banks 7,644 7,644 7725 7,644 7,644 7725

Notes: Standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

Table D.2: Two-step GMM estimations (FE) for the relationships between bank capital, cost efficiency and risk-taking
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Capital 0.0342*** 0.0601*** 0.0349*** 0.0313*** 0.0631*** 0.0350***
(0.00649) (0.00553) (0.00671) (0.00632) (0.00552) (0.00648)

Efficiency 0.0231*** 0.00633*** 0.0224*** 0.0295*** 0.0101*** 0.0164***
(0.00291) (0.000981) (0.00279) (0.00286) (0.000997) (0.00113)

RISKt−1 -0.319*** -0.314*** -0.315*** -0.352*** -0.348*** -0.356***
(0.00322) (0.00315) (0.00331) (0.00320) (0.00318) (0.00327)

Buffer 0.00448* 0.00206 0.00349 0.00867*** 0.00479** 0.00738***
(0.00237) (0.00228) (0.00250) (0.00231) (0.00230) (0.00241)

Size 0.0787*** 0.0162 0.0961*** 0.638*** 0.540*** 0.659***
(0.0229) (0.0175) (0.0254) (0.0247) (0.0209) (0.0231)

ROA -0.131*** -0.139*** -0.138*** 0.291*** 0.282*** 0.361***
(0.0122) (0.0116) (0.0121) (0.0143) (0.0138) (0.0145)

LLP ratio 0.338*** 0.351*** 0.341*** 0.0991*** 0.118*** 0.0661***
(0.0144) (0.0139) (0.0146) (0.0147) (0.0145) (0.0148)

LTD 4.06e-05 -0.000261 -0.000333 -0.0192*** -0.0199*** -0.0240***
(0.000607) (0.000591) (0.000629) (0.000691) (0.000692) (0.000728)

REG -0.0313 -0.0237 -0.0322 -1.554*** -1.560*** -1.890***
(0.0416) (0.0412) (0.0430) (0.0494) (0.0498) (0.0523)

Crisis 0.0343* 0.0157 0.0489*** 0.0167 -0.0150 -0.0105
(0.0190) (0.0168) (0.0181) (0.0186) (0.0166) (0.0167)

REG*RISKt−1 -0.00668 -0.00885 -0.00966 -0.00197 -0.00683 -0.00798
(0.0151) (0.0150) (0.0155) (0.0147) (0.0148) (0.0150)

REG*∆ CAP -0.0244 -0.0447 -0.0229 0.0111 -0.0209 0.0106
(0.0444) (0.0439) (0.0461) (0.0433) (0.0436) (0.0445)

GDP growth -12.67*** -11.78*** -12.33*** -34.51*** -34.26*** -38.92***
(1.003) (0.895) (0.929) (1.064) (0.984) (1.006)

Home index growth -1.903*** -2.150*** -1.812*** -4.460*** -4.804*** -5.327***
(0.297) (0.270) (0.276) (0.295) (0.268) (0.269)

Invmills 4.001*** 4.025*** 4.869***
(0.0741) (0.0749) (0.0831)

Constant 0.453* -1.124*** -10.23*** -12.80***
(0.233) (0.393) (0.318) (0.353)

λ 0.0912*** 0.0974***
(0.00944) (0.00942)

1
1−λ 1.100** 1.108***

Moran’s I (1) 0.9481*** 0.9481***
Moran’s I (2) 0.02 0.03

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared(within) 0.164 0.164 0.163 0.203 0.203 0.210
Corr2 0.0907 0.0908 0.0886 0.115 0.117 0.123
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.3: Estimation results using KNN: Risk equation (risk=NPL)
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Capital -1.191*** -1.213*** -1.200*** -1.164*** -1.182*** -1.160***
(0.0136) (0.0116) (0.0140) (0.0134) (0.0115) (0.0137)

Efficiency -0.0477*** -0.0149*** -0.0588*** -0.0406*** -0.00937*** -0.0475***
(0.00647) (0.00200) (0.00548) (0.00633) (0.00198) (0.00543)

RISKt−1 -0.290*** -0.281*** -0.288*** -0.313*** -0.304*** -0.314***
(0.00259) (0.00255) (0.00268) (0.00261) (0.00257) (0.00271)

Buffer -0.198*** -0.180*** -0.192*** -0.214*** -0.197*** -0.212***
(0.00536) (0.00520) (0.00556) (0.00529) (0.00514) (0.00548)

Size -0.222*** 0.137*** -0.197*** 0.675*** 0.949*** 0.714***
(0.0510) (0.0371) (0.0499) (0.0543) (0.0420) (0.0559)

ROA -0.0454* -0.114*** -0.0955*** 0.652*** 0.543*** 0.648***
(0.0263) (0.0227) (0.0235) (0.0309) (0.0279) (0.0298)

LLP ratio -0.423*** -0.533*** -0.493*** -0.851*** -0.937*** -0.958***
(0.0289) (0.0265) (0.0275) (0.0303) (0.0281) (0.0296)

LTD 0.142*** 0.142*** 0.144*** 0.120*** 0.121*** 0.120***
(0.00147) (0.00143) (0.00149) (0.00154) (0.00151) (0.00158)

REG 1.095 1.198* 1.036 -1.127* -0.940 -1.459**
(0.668) (0.659) (0.690) (0.660) (0.652) (0.680)

Crisis -0.0251 0.0750** -0.0713** -0.0342 0.0577* -0.0919***
(0.0428) (0.0334) (0.0356) (0.0418) (0.0329) (0.0349)

REG*RISKt−1 -0.0135 -0.0144* -0.0124 -0.0150* -0.0153* -0.0131
(0.00848) (0.00836) (0.00873) (0.00835) (0.00824) (0.00857)

REG*∆ CAP -0.197** -0.175* -0.170* -0.144 -0.132 -0.134
(0.0909) (0.0896) (0.0922) (0.0895) (0.0883) (0.0906)

GDP growth 25.50*** 26.38*** 23.84*** -9.029*** -6.238*** -13.64***
(2.272) (1.806) (1.824) (2.373) (1.963) (2.024)

Home index growth -0.299 1.151** 0.231 -4.063*** -2.518*** -4.017***
(0.671) (0.529) (0.541) (0.661) (0.530) (0.539)

Invmills 6.258*** 5.901*** 6.761***
(0.152) (0.150) (0.169)

Constant 8.544*** 14.68*** -6.721*** -2.754***
(0.504) (0.781) (0.630) (0.923)

λ 0.194*** 0.189***
(0.00907) (0.00907)

1
1−λ 1.241*** 1.233***

Moran’s I (1) 0.975*** 0.975***
Moran’s I (2) 0.01 0.01

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared(within) 0.411 0.412 0.412 0.427 0.428 0.430
Corr2 0.223 0.216 0.209 0.235 0.226 0.220
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.4: Estimation results using KNN: Risk equation (risk=RWA)
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Risk -0.000277 -0.00131** -9.97e-05 0.00204*** 0.00288*** 0.00258***
(0.000692) (0.000635) (0.000712) (0.000675) (0.000623) (0.000695)

Efficiency -0.000634*** -0.000673*** -0.00139*** -0.000988*** -0.00127*** -0.00195***
(0.000226) (0.000159) (0.000224) (0.000222) (0.000155) (0.000218)

Capt−1 -0.954*** -0.953*** -0.955*** -0.955*** -0.955*** -0.957***
(0.000851) (0.000858) (0.000873) (0.000829) (0.000836) (0.000846)

Buffer 0.941*** 0.941*** 0.942*** 0.942*** 0.942*** 0.943***
(0.000852) (0.000860) (0.000874) (0.000830) (0.000838) (0.000847)

Size -0.00443 -0.00545* -0.0154*** -0.0886*** -0.0890*** -0.108***
(0.00327) (0.00294) (0.00335) (0.00355) (0.00326) (0.00365)

ROA 0.00510*** 0.00665*** 0.00668*** -0.0622*** -0.0613*** -0.0715***
(0.00194) (0.00180) (0.00184) (0.00227) (0.00216) (0.00225)

LLP ratio -0.0506*** -0.0522*** -0.0527*** -0.00799*** -0.00862*** -0.00244
(0.00217) (0.00210) (0.00213) (0.00225) (0.00220) (0.00225)

LTD -0.00211*** -0.00196*** -0.00195*** 0.000804*** 0.000964*** 0.00146***
(9.47e-05) (9.44e-05) (9.68e-05) (0.000107) (0.000107) (0.000111)

REG -0.407*** -0.447*** -0.491*** -0.187*** -0.223*** -0.228***
(0.0574) (0.0580) (0.0586) (0.0560) (0.0566) (0.0569)

Crisis 0.0456*** 0.0448*** 0.0408*** 0.0482*** 0.0475*** 0.0455***
(0.00306) (0.00265) (0.00268) (0.00300) (0.00258) (0.00260)

REG*Capt−1 0.0487*** 0.0526*** 0.0570*** 0.0499*** 0.0536*** 0.0582***
(0.00579) (0.00586) (0.00592) (0.00564) (0.00570) (0.00573)

REG*∆ Risk -0.00172 -0.000728 -0.00303 0.000791 -2.43e-05 -0.00107
(0.00368) (0.00371) (0.00378) (0.00358) (0.00362) (0.00366)

GDP growth 0.0740 0.0551 0.0285 3.441*** 3.488*** 4.025***
(0.166) (0.144) (0.143) (0.174) (0.154) (0.156)

Home index growth -0.220*** -0.222*** -0.248*** 0.146*** 0.151*** 0.205***
(0.0485) (0.0420) (0.0418) (0.0480) (0.0415) (0.0412)

Invmills -0.614*** -0.620*** -0.725***
(0.0114) (0.0116) (0.0127)

Constant 6.909*** 7.072*** 8.623*** 9.007***
(0.0398) (0.0470) (0.0502) (0.0576)

λ 0.146*** 0.152***
(0.00930) (0.00928)

1
1−λ 1.171** 1.179***

Moran’s I (1) 0.9371*** 0.9371***
Moran’s I (2) 0.06 0.06

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared(within) 0.961 0.961 0.962 0.963 0.963 0.964
Corr2 0.917 0.917 0.916 0.924 0.923 0.923
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.5: Estimation results using KNN: Capital equation (risk=NPL)
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Risk -0.00798*** -0.00549*** -0.00796*** -0.00726*** -0.00428*** -0.00694***
(0.000361) (0.000317) (0.000373) (0.000352) (0.000310) (0.000363)

Efficiency -0.000617*** -0.000757*** -0.00140*** -0.000981*** -0.00130*** -0.00194***
(0.000223) (0.000159) (0.000224) (0.000218) (0.000155) (0.000218)

Capt−1 -0.942*** -0.945*** -0.943*** -0.944*** -0.948*** -0.946***
(0.00101) (0.000980) (0.00104) (0.000984) (0.000958) (0.00101)

Buffer 0.930*** 0.933*** 0.930*** 0.932*** 0.936*** 0.934***
(0.000991) (0.000968) (0.00102) (0.000967) (0.000945) (0.000992)

Size -0.00378 -0.00589** -0.0158*** -0.0859*** -0.0868*** -0.104***
(0.00323) (0.00293) (0.00334) (0.00350) (0.00325) (0.00364)

ROA 0.00473** 0.00520*** 0.00504*** -0.0607*** -0.0602*** -0.0694***
(0.00192) (0.00180) (0.00184) (0.00224) (0.00215) (0.00224)

LLP ratio -0.0547*** -0.0551*** -0.0569*** -0.0129*** -0.0124*** -0.00839***
(0.00216) (0.00210) (0.00214) (0.00224) (0.00221) (0.00226)

LTD -0.00162*** -0.00166*** -0.00151*** 0.00118*** 0.00112*** 0.00171***
(9.61e-05) (9.57e-05) (9.87e-05) (0.000108) (0.000107) (0.000112)

REG -0.413*** -0.438*** -0.463*** -0.192*** -0.221*** -0.209***
(0.0590) (0.0599) (0.0605) (0.0577) (0.0585) (0.0588)

Crisis 0.0449*** 0.0442*** 0.0399*** 0.0475*** 0.0472*** 0.0446***
(0.00301) (0.00264) (0.00268) (0.00293) (0.00258) (0.00260)

REG*Capt−1 0.0491*** 0.0515*** 0.0538*** 0.0496*** 0.0526*** 0.0548***
(0.00598) (0.00607) (0.00613) (0.00583) (0.00591) (0.00594)

REG*∆ Risk 0.00164 0.00119 0.00301** 0.00235* 0.00125 0.00331**
(0.00141) (0.00144) (0.00150) (0.00138) (0.00141) (0.00145)

GDP growth 0.316* 0.245* 0.261* 3.547*** 3.483*** 4.022***
(0.163) (0.143) (0.143) (0.170) (0.153) (0.155)

Home index growth -0.189*** -0.205*** -0.220*** 0.162*** 0.154*** 0.210***
(0.0476) (0.0419) (0.0418) (0.0469) (0.0414) (0.0412)

Invmills -0.599*** -0.601*** -0.693***
(0.0113) (0.0115) (0.0126)

Constant 6.833*** 6.956*** 8.512*** 8.824***
(0.0399) (0.0471) (0.0504) (0.0579)

λ 0.135*** 0.135***
(0.00849) (0.00848)

1
1−λ 1.156** 1.156***

Moran’s I (1) 0.949*** 0.949***
Moran’s I (2) 0.03 0 .03

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared(within) 0.961 0.961 0.962 0.963 0.963 0.964
Corr2 0.918 0.918 0.917 0.924 0.924 0.924
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.6: Estimation results using KNN: Capital equation (risk=RWA)
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Risk -0.0193 0.0703*** -0.334*** -0.0234 0.0887*** -0.461***
(0.0758) (0.0173) (0.118) (0.0758) (0.0173) (0.121)

∆Cap -0.00383 0.125*** 0.0461 -0.00301 0.108*** 0.0602**
(0.0184) (0.0240) (0.0284) (0.0184) (0.0240) (0.0283)

Buffer 0.0325*** 0.0156 -0.00219 0.0299*** -0.00897 -0.0580***
(0.00682) (0.00999) (0.0102) (0.00682) (0.0101) (0.0104)

Size -6.583*** -3.437*** -4.249*** -6.835*** -4.921*** -6.114***
(0.0854) (0.0754) (0.0790) (0.0924) (0.0890) (0.102)

ROA 1.009*** -0.431*** -0.460*** 0.847*** -1.036*** -0.817***
(0.0503) (0.0500) (0.0498) (0.0552) (0.0607) (0.0744)

LLP ratio 0.351*** 0.619*** 0.624*** 0.451*** 1.012*** 1.101***
(0.0469) (0.0582) (0.0583) (0.0489) (0.0618) (0.0696)

LTD 0.0405*** -0.00145 -8.38e-05 0.0476*** 0.0234*** 0.00946***
(0.00176) (0.00258) (0.00262) (0.00202) (0.00300) (0.00336)

REG 0.330*** -0.0541 -0.0771 0.893*** 1.889*** 1.567***
(0.0775) (0.119) (0.120) (0.111) (0.171) (0.219)

Crisis -2.442*** -1.224*** -1.585*** -2.445*** -1.572*** -2.060***
(0.228) (0.0732) (0.0731) (0.228) (0.0723) (0.0717)

GDP growth 3.030 49.62*** 17.34*** 10.95 50.78*** 21.13***
(12.82) (3.916) (4.202) (12.86) (4.315) (5.465)

Home index growth -28.41*** -18.56*** -17.57*** -27.72*** -14.25*** -15.67***
(3.648) (1.174) (1.155) (3.647) (1.164) (1.168)

Invmills -1.488*** -5.216*** -4.495***
(0.208) (0.324) (0.487)

Constant 79.02*** 89.21*** 103.1*** 118.2***
(0.961) (1.005) (1.317) (1.640)

λ 0.797*** 0.797***
(0.00274) (0.00274)

1
1−λ 4.926** 4.926***

Moran’s I (1) 0.995*** 0.995***
Moran’s I (2) 0.003 0.004

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared 0.0467 0.046 0.0523 0.0468 0.066 0.0822
Corr2 0.618 0.609 0.630 0.622 0.623 0.641
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.7: Estimation results using KNN: Efficiency equation (risk=NPL)
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Without correction Heckman correction

VARIABLES Spatial FE FE GMM FE Spatial FE FE GMM FE

∆Risk 0.267** -0.0608*** 0.435*** 0.265** -0.0534*** 0.416**
(0.107) (0.00857) (0.164) (0.107) (0.00854) (0.162)

∆Cap 0.433** 0.0314 0.753*** 0.431** 0.0283 0.719***
(0.176) (0.0276) (0.270) (0.176) (0.0275) (0.266)

Buffer 0.0108 0.0197** -0.0887*** 0.00838 -0.00524 -0.0912***
(0.0111) (0.0100) (0.0175) (0.0111) (0.0101) (0.0175)

Size -6.579*** -3.441*** -5.527*** -6.830*** -4.883*** -6.363***
(0.0854) (0.0754) (0.0871) (0.0923) (0.0889) (0.104)

ROA 1.072*** -0.444*** -0.260*** 0.910*** -1.012*** -0.996***
(0.0565) (0.0500) (0.0609) (0.0609) (0.0604) (0.0644)

LLP ratio 0.522*** 0.577*** 1.094*** 0.621*** 0.951*** 1.548***
(0.0826) (0.0584) (0.119) (0.0837) (0.0620) (0.143)

LTD 0.0264*** 0.00184 -0.0365*** 0.0336*** 0.0249*** -0.00313
(0.00590) (0.00262) (0.00919) (0.00599) (0.00302) (0.00751)

REG 0.334*** -0.0536 -0.139 0.897*** 1.770*** 2.441***
(0.0775) (0.119) (0.124) (0.111) (0.170) (0.239)

Crisis -2.439*** -1.221*** -2.103*** -2.442*** -1.570*** -2.050***
(0.228) (0.0731) (0.0739) (0.228) (0.0722) (0.0739)

GDP growth -5.232 50.76*** -10.57* 2.779 49.68*** 27.10***
(13.23) (3.919) (6.257) (13.27) (4.297) (5.133)

Home index growth -29.23*** -18.37*** -19.92*** -28.53*** -14.28*** -15.53***
(3.663) (1.174) (1.263) (3.662) (1.164) (1.200)

Invmills -0.296*** -1.598*** -1.310***
(0.0742) (0.170) (0.181)

Constant 78.79*** 97.13*** 90.95*** 110.4***
(0.961) (1.011) (1.275) (1.326)

λ 0.797*** 0.797***
(0.00274) (0.00274)

1
1−λ 4.926** 4.926***

Moran’s I (1) 0.970*** 0.970***
Moran’s I (2) 0.0023 0.003

Observations 55,118 55,118 52,451 55,118 55,118 52,451
R-squared 0.0332 0.046 0.0776 0.172 0.050 0.0818
Corr2 0.618 0.610 0.630 0.621 0.623 0.641
Number of banks 889 889 889 889 889 889

Notes: *** p<0.01, ** p<0.05, * p<0.1

Table D.8: Estimation results using KNN: Efficiency equation (risk=RWA)
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