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Abstract

We study identi�cation and estimation of a structural model of bargaining with optimism

where players have heterogeneous beliefs about the �nal resolution of a dispute if they fail

to reach an agreement. We show the distribution of the players�beliefs and the stochas-

tic bargaining surplus are nonparametrically identi�ed from the probability of reaching an

agreement and the distribution of transfers in the �nal resolution of the dispute. We use a

Maximum Simulated Likelihood approach to estimate the beliefs of doctors and patients in

medical malpractice disputes in Florida during the 1980s and 1990s. We �nd strong evidence

that beliefs for both parties vary with the severity of the injury and the quali�cation of the

doctor named in the lawsuit, even though these characteristics are statistically insigni�cant

in explaining whether the court rules in favor of the plainti¤ or of the defendant. We also

quantify the reduction in settlement amounts that would result from the introduction of a

(counterfactual) policy that imposes caps on the total compensation for plainti¤s.
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gation
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1 Introduction

Excessive optimism is often invoked as a possible explanation for why parties involved

in a negotiation sometimes fail to reach an agreement even though a compromise could be

mutually bene�cial. For example, consider a medical malpractice dispute where a patient

(the plainti¤) su¤ered a damage allegedly caused by a doctor�s (the defendant) negligence

or wrongdoing. If the plainti¤ and the defendant are both overly optimistic about their

chances of getting a favorable jury verdict, there may not be any settlement that can satisfy

both parties�exaggerated expectations. The general argument dates back to Hicks (1932),

and was later developed by Shavell (1982), among others, in the context of legal disputes.

A recent theoretical literature originated by the work of Yildiz (2003, 2004), extends this

insight and studies a general class of bargaining models with optimism (see Yildiz (2011)

for a survey). These models have also been used in a variety of empirical applications

that range from pretrial negotiations in medical malpractice lawsuits (Watanabe (2006)), to

negotiations about market conditions (Thanassoulis (2010)), and cross-license agreements

(Galasso (2012)).

Despite the recent surge of interest in the theory and application of bargaining with

optimism, none of the existing contributions formally addresses the issue of identi�cation in

this class of models. That is, under what conditions can the structural elements of the model

be unambiguously recovered from the history of bargaining outcomes reported in the data?

This is the main question we address in this paper. We introduce an empirical framework for

structural estimation of bargaining models with optimism, and show that the model elements

are nonparametrically identi�ed.

We consider a bilateral bargaining environment where players are optimistic about the

probability that a stochastic outcome favors them if they fail to reach an agreement. The

players have a one-time opportunity for reaching an agreement at an exogenously scheduled

date during the bargaining process, and make decisions about whether or not to settle and,

if so, the amount of the settlement based on their beliefs and time discount factors. We

show that all structural elements in the model are identi�ed nonparametrically from the

probability of reaching an agreement and the distribution of transfers in the �nal resolution

of the dispute. The identi�cation strategy does not rely on any parametrization of the

structural primitives such as players�beliefs or the bargaining surplus distribution. We then

propose a Maximum Simulated Likelihood (MSL) estimator based on �exible parametrization

of the joint beliefs of the players, and estimate the model using data on medical malpractice

disputes in the State of Florida during the period 1984-1999.2

2Sieg (2000) and Watanabe (2006) also use the same source of data for their empirical analyses of medical

malpractice litigation. Sieg (2000) estimates a bargaining model with one-sided incomplete information;

Watanabe (2006) a bargaining model with optimism and learning. Neither study addresses the issue of

identi�cation, which is the main focus of our paper.
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The bargaining environment we consider is simpler than the one studied by Yildiz (2004).

Rather than allowing for multiple rounds of o¤ers and countero¤ers, in our model there is a

single settlement opportunity for the players to reach an agreement. Hence, in our bargaining

environment there are no dynamic �learning�considerations in the players�decisions, and

the dates of the �nal resolution of the bargaining episodes are solely determined by the

players�optimism, their patience, and their perception of the surplus available for sharing.3

There are both theoretical and empirical reasons that motivated our choice of the bargain-

ing environment. Data limitations would prevent us from deriving robust (parametrization-

free) arguments for the identi�cation of structural elements in general models of bargaining

with optimism that admit multiple rounds of o¤ers and countero¤ers. For instance, none of

the data sets which are used in empirical applications of bargaining models with optimism

contains information on the sequence of proposers in a negotiation or the timing and size of

rejected o¤ers. By abstracting from the dynamic learning aspects that would be introduced

into the theoretical analysis if we were to consider a more general bargaining environment

with multiple rounds of (unobserved) o¤ers and countero¤ers, we take a pragmatic approach

and specify a model that is identi�able under realistic data requirements and mild econo-

metric assumptions. At the same time, despite this simpli�cation, our model captures the

key insight of bargaining with optimism in that the timing of agreement is determined by

the players�optimism and their patience. Thus, our work represents a �rst important step

toward addressing the issue of nonparametric identi�cation in more general models of bar-

gaining with optimism.4 Our modeling choice is also motivated by the speci�c empirical

application we consider here, which analyzes medical malpractice disputes in Florida. The

law of the State of Florida (Florida Statues, Title XLV, Chapter 766, Section 108), requires

that a one-time, mandatory settlement conference between the plainti¤ and the defendant

be held �at least three weeks before the date set for trial�. The settlement conference is

scheduled by the county court, is held before the court, and is mediated by court-designated

legal professionals.

Our identi�cation strategy builds on the following insights. First, if the length of time

between the scheduled settlement conference and the trial (henceforth, the �wait-time�)

were reported in the data, we would be able to recover the distribution of optimism by

observing how the conditional settlement probability varies with the wait-time. Second, the

3Sieg (2000) also considers a bargaining environment where there is a one-time opportunity for the

players to settle out of court. Rather than studying a model of bargaining with optimism, Sieg (2000)

assumes that the defendant has an informational advantage over the plainti¤. In other words, his analyasis

of medical malpractice disputes is based on a bargaining model with one-sided incomplete information, where

the defendant knows the actual probability of a vefrdict in his/her favor, while the plainti¤ does not.
4Watanabe (2006) studies medical malpractice disputes in the context of a dynamic model of bargaining

with optimism and learning. As we already mentioned, however, his analysis is fully parametric and does

not address the issue of identi�cation.
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distribution of the potential surplus to be divided between players can be recovered from the

distribution of total compensation awarded to the plainti¤ by the court decision, provided

the surplus distribution is orthogonal to the beliefs of the plainti¤ and the defendant and

the court decision. Third, because the accepted settlement o¤er re�ects a plainti¤�s time-

discounted expectation of his or her share of the total surplus, we can identify the conditional

distribution of the plainti¤�s belief given that there is a settlement using the distribution

of accepted settlement o¤ers given the length of the wait-time. This is done through a

deconvolution argument using the distribution of surplus recovered above. Finally, since

optimism is de�ned as the sum of both parties�beliefs minus one, the objects identi�ed from

the preceding steps can be used to back out the joint distribution of the beliefs through a

standard Jacobian transformation.

A key challenge for implementing this identi�cation strategy in our empirical application

is that the wait-time is not reported in the data. In order to solve the issue of unobserved

wait-time, we tap into a recent literature that uses eigenvalue decomposition to identify �nite

mixture models or structural models with unobserved heterogeneity (see, for example, Hall

and Zhou (2003), Hu (2008), Hu and Schennach (2008), Kasahara and Shimotsu (2009),

An, Hu and Shum (2010) and Hu, McAdams and Shum (2013)). In particular, we �rst

exploit the institutional details of our environment to group lawsuits into smaller clusters

de�ned by the county and the month in which a lawsuit is �led. We argue that the lawsuits

within each cluster can be plausibly assumed to share the same, albeit unobserved wait-time

between the mandatory settlement conference and the trial. We then use the cases in the

same cluster as instruments for each other and apply eigenvalue decomposition to the joint

distribution of settlement decisions and accepted o¤ers within the cluster. This allows us to

recover the settlement probability and the distribution of accepted o¤ers conditional on the

unobserved wait-time. Then, the arguments in the previous paragraph apply to identify the

joint distribution of beliefs.

Using data from medical malpractice lawsuits in Florida in the 1980s and 1990s, we �nd

clear evidence in our estimates that the beliefs of the plainti¤s and the defendants vary

with observed characteristics of the lawsuits such as the severity of the injury arising out of

medical malpractice and the professional quali�cation of the doctor named in the lawsuit. On

the other hand, we �nd that the observed case characteristics are statistically insigni�cant

in explaining the court and jury decisions.

We use our estimated model to assess the e¤ects of a counterfactual tort reform which

limits the liability of defendants by imposing caps on the total compensation received by

plainti¤s. For each level of severity of the injury arising out of malpractice, we set a cap

equal to the 75th percentile of the total compensation paid by the defendant following a

jury verdict observed in the data. Our calculations show these caps can induce sizeable

reductions in the average settlement amounts. Speci�cally, the reductions are 33%, 45%
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and 24% for low, medium and high severity cases, respectively. There is also clear evidence

that the impact of these caps varies with the quali�cation of the defendant: doctors who

are board certi�ed would bene�t from a signi�cantly more sizable reduction in the average

settlement amounts they would have to pay to the plainti¤s than their non-board-certi�ed

counterparts in medium- and high-severity cases.

The rest of the paper is organized as follows. Section 2 introduces the model of bilateral

bargaining with optimism. Section 3 establishes identi�cation of the structural elements in

the model. Section 4 presents the Maximum Simulated Likelihood (MSL) estimator. Section

5 describes the data and the institutional details of the empirical application which focuses on

medical malpractice lawsuits in Florida. Sections 6 and 7 present and discuss our estimation

results and policy analysis, respectively. We conclude with Section 8. All the proofs and a

monte carlo study are contained in the appendices.

2 The Model

Consider a lawsuit following an alleged instance of medical malpractice involving a plain-

ti¤ (the patient) and a defendant (the doctor). The total amount of potential compensation

related to the injury arising out of the malpractice, C, is assumed to be common knowledge

among the plainti¤ and the defendant. This amount can be interpreted as a sunk cost for

the defendant, which the defendant may or may not be able to recover, in part or in total,

depending on the �nal outcome of the legal dispute. After the �ling of the lawsuit, the

plainti¤ and the defendant are noti�ed of a date for a one-time settlement conference, which

is mandatory by state law, according to Title XLV, Chapter 766, Section 108 of the Florida

Statutes. The conference, which is held before the court, requires attendance by both parties

(and their attorneys), as well as legal professionals designated by the county court where the

lawsuit is �led. This conference must take place at least three weeks before the date set for

trial.5

During the settlement conference, the defendant has the opportunity to make a settlement

o¤er of S to the plainti¤. If the plainti¤ accepts it, then the case is settled out of court with

the plainti¤ receiving S and the defendant reclaiming C � S. Otherwise, the case is taken
to court and decided by a jury. Both the defendant and the plainti¤ are aware that the trial

must take place at least three weeks after the settlement conference and are informed of the

exact date of the trial, which is determined by the court schedule and the backlogs of the

county court judges.6 Let T denote the length of time between the settlement conference

5The current Florida Statutes pertaining to medical malpractice and related matters are available online

at http:// www. �senate. gov/ Laws/ Statutes/ 2014/ Chapter766
6Cases are assigned randomly among all the county court judges in the county court where the suits are

�led depending on their availability.
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and the trial (henceforth, the �wait-time�).

Let A � 1 denote the event that a settlement is reached at the conference, and A � 0

that the case goes to trial. In the latter case, at the end of the trial, the jury makes a binary

decision, D, and rules either in favor of the plainti¤, D = 1, in which case the plainti¤

is awarded the compensation C, or in favor of the defendant, D = 0, in which case the

defendant is not awarded any compensation.7

The plainti¤ and the defendant have heterogeneous beliefs about the probability that

the jury would rule in their favor in the event that the case goes to trial. We let �p; �d 2
[0; 1], denote the subjective probability of winning the trial believed by the plainti¤ and

the defendant, respectively. Excessive optimism arises from the assumption that the joint

support of (�p; �d) is 
� � f(�; �0) 2 (0; 1]2 : 1 < �+ �0 � 2g. The realized value of (�p; �d)
is common knowledge between both parties participating in the settlement conference. We

also maintain the following assumption throughout the paper.

Assumption 1 (i) (�p; �d) and C are independent from the wait-time T ; and the distribu-

tions of (�p; �d) is continuous with positive density over 
�. (ii) Conditional on A = 0, the

jury decision D is orthogonal to C and T .

Assumption 1 allows the beliefs of the plainti¤ and the defendant to be correlated and

be asymmetric with di¤erent marginal distributions. This is empirically relevant because

the marginal distribution of beliefs may very well di¤er between patients and doctors due

to factors such as informational asymmetries (e.g., doctors may be better informed about

the cause and severity of the damage arising out of medical malpractice) or unobserved

individual heterogeneities.

The beliefs of the plainti¤ and the defendant are also likely to be correlated through

unobserved heterogeneity at the case level. For example, the doctor and the patient may

both know aspects related to the cause and severity of the damage arising out of medical

malpractice that are not recorded in data. Such aspects lead to correlations between pa-

tients�and plainti¤s�beliefs from the perspective of the econometrician. Assumption 1 also

accommodates correlation between (�p; �d) and C.

The independence between the wait time T and the beliefs of the parties in the lawsuit

is plausible because the wait-time T is mostly determined by the availability of judges and

juries in the county court where the suit is �led. This, in turn, depends on the court schedule

and the backlogs of the county court judges, which are idiosyncratic and orthogonal to the

parties�beliefs (�p; �d).

The orthogonality of C from D given T and A = 0 in condition (ii) is also plausible.

On the one hand, C is a monetary measure of the magnitude of the damage su¤ered by the

plainti¤ regardless of its cause; on the other hand, D captures the jury�s judgement about

7We abstract here from the legal costs associated with the lawsuit.
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the cause of the damage based on the evidence presented at trial. It is likely that the jury

decision is correlated with speci�c features of the lawsuit that are reported in the data and

that may also a¤ect the beliefs of both parties. Nevertheless, once we condition on such

observable features, jury decisions are likely to be orthogonal to the measure of damage

captured by C. At the end of this section, we discuss how to extend our model to account

for heterogeneities across lawsuits reported in the data.

We now characterize the Nash equilibrium at the settlement conference. The plainti¤

accepts an o¤er if and only if S � �T�pC, where � is a constant time discount factor �xed
throughout the data-generating process. The defendant o¤ers the plainti¤S = �T�pC if and

only if C � S � �T�dC. Hence, in equilibrium a settlement occurs during the conference if

and only if:

C � �T�pC � �T�dC

which is equivalent to �d + �p � ��T . It then follows that the distribution of settlement

amounts, conditional on the wait-time between the settlement conference and the trial being

T = t, is:

Pr (S � s j A = 1; T = t) = Pr
�
�pC � ��ts j �d + �p � ��t

�
, (1)

where the lower case letters denote realized values for random variables, and the equality

follows from part (i) in Assumption 1. Besides the distribution of the potential compensation,

conditional on there not being a settlement in a conference T = t periods ahead of the trial

and conditional on the jury ruling in favor of the plainti¤, is:

Pr(C � c j A = 0; D = 1; T = t) = Pr(C � c j �d + �p > ��t), (2)

where the equality follows from both conditions in Assumption 1.

The data we use in this paper reports characteristics of plainti¤s and defendants, such

as the professional quali�cation (board certi�cation) of the defendant and the age of the

plainti¤. It also reports the severity of the injury arising out of medical malpractice. These

variables, denoted by a vector X, are correlated with the potential compensation C and the

beliefs (�p; �d).

The model described above can incorporate such observed case-heterogeneity by letting

the primitives (i.e., the distribution of (�p; �d), compensations C, jury decisions D, and

the wait-time T ) depend on X. If both restrictions in Assumption 1 hold conditional on

X, then the structural links between the data and the model elements are characterized in

the same way as above, except that all distributions need to be conditioned on X. Since

these characteristics that vary across lawsuits are reported in the data, our identi�cation

argument in Section 3 should be interpreted as conditional on X. We suppress dependence

of the structural elements on X only for the sake of notational simplicity. We only make the

dependence explicit when needed.
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3 Identi�cation

This section shows how to recover the distribution of both parties�beliefs from the proba-

bility of reaching settlements and the distribution of accepted settlement o¤ers. We consider

an empirical environment where for each lawsuit the data reports whether a settlement oc-

curs during the mandatory conference (A). For each case settled at the conference, the data

reports the amount paid by the defendant to the plainti¤ (S). For each of the other cases

that were taken to the court, the data reports the jury decision (D) and, if the court rules in

favor of the plainti¤, the amount of total compensation paid by the defendant (C). However,

the exact dates of settlement conferences and the scheduled court hearings (if necessary) are

never reported in the data.8 Thus, the wait-time T between settlement conferences and

scheduled court hearings, which is known to both parties at the time of the conference, is

not available in data.

To address this issue with unreported wait-time, we propose sequential arguments that

exploit an implicit panel structure of the data. In particular, we note that lawsuits �led with

the same county court during the same period (week) practically share the same wait-time

T . The reason for such a pattern is as follows: First, the dates for settlement conferences are

mostly determined by availability of authorized legal professionals a¢ liated with the county

court, and are assigned on a ��rst come, �rst served�basis. Thus, the settlement conferences

for the cases �led with the same county court at the same time are practically scheduled

for the same period. Besides, the dates for potential court hearing are determined by the

schedule and backlog of judges at the county court. Hence, the cases �led with the same

county court simultaneously can be expected to be handled in court in the same period in

the future. This allows us to e¤ectively group lawsuits into clusters with the same wait-time,

despite unobservability of T in data. We formalize this implicit panel structure as follows.

Assumption 2 The data is partitioned into known clusters, each of which consists of mul-
tiple (potentially more than three) cases that share the same wait-time T . Across the cases

within a cluster, (�p; �d; C) and D (if necessary) are independent draws from the same dis-

tribution.

This implicit panel structure in our data allows us to use accepted settlement o¤ers

8For example, the data we use in Section 5 reports the �date of �nal disposition�for each case. However,

for a case settled outside the court, this date is de�ned not as the exact date of the settlement conference, but

as the day when o¢ cial administrative paperwork is �nished and the claim is declared closed by the insurer.

There is a substantial length of time between the two. For instance, for a large proportion of cases that

are categorized as �settled within 90 days of the �ling of lawsuits�, the reported �dates of �nal disposition�

are actually more than 150 days after the initial �ling. Similar issues also exist for cases that were taken

to the court in that the reported �dates of �nal disposition�do not correspond to the actual dates of court

hearings.
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in the lawsuits within the same cluster as instruments for each other, and apply eigen-

decomposition-based arguments in Hu (2008) and Hu and Schennach (2008) to recover the

joint settlement probability and the distribution of accepted settlement o¤ers conditional on

the unobserved T . We then use these quantities to back out the joint distribution of beliefs

using variations in T .

For the rest of this section, we �rst present arguments for the case where T is discrete (i.e.

jT j < 1). At the end of this section, we explain how to generalize them for identi�cation

when T is continuously distributed. We maintain that there is positive probability that a

cluster contains at least three cases.

3.1 Conditional distribution of settlement o¤ers

We �rst recover the settlement probability and the distribution of settlement o¤ers given

the wait-time T before court hearings. Let S; T denote the unconditional support of S; T

respectively.

Assumption 3 (i) The support of T is �nite (jT j < 1) with a known cardinality and
inff�t : t 2 T g � 1=2. (ii) Given any (�p; �d), the potential compensation C is continuously
distributed with positive density over [0; c].

That the support T is known is empirically relevant in our setting. Without loss of

generality, denote the elements in T by f1; 2; :; jT jg. Condition (i) also rules out unlikely
cases where a court hearing is scheduled so far in the future or the one-period discount factor

is so low that the compounded discount factor is less than one half. Condition (i), together

with the non-increasingness of E[Ai j T = t] over t 2 T under Assumption 1, pin down the

index for eigenvalues and eigenvectors in the aforementioned decomposition. Condition (ii)

is a mild restriction on the support of potential compensation. It is implied if C is orthogonal

from (�p; �d) with a bounded support.
9 The role of (ii) will become clear as we discuss the

identi�cation result below.

Lemma 1 Under Assumptions 1, 2 and 3, E (A j T = t) and fS (s j A = 1; T = t) are jointly
identi�ed for all t 2 T and s 2 S.

This intermediate result uses arguments similar to that in Hu, McAdams and Shum (2013)

for identifying �rst-price sealed-bid auctions with non-separable auction heterogeneities. It

exploits the conditional independence of beliefs across lawsuits within a cluster in Assump-

tion 2. These conditions allow us to break down the joint distribution of the incidence of

9It is worth noting that our identi�cation argument remains valid even with c being unbounded, as long

as the full-rank condition in Lemma B1 in Appendix B holds for some partition of S.
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settlement and the size of accepted o¤ers across multiple lawsuits within one cluster into the

composition of three linear operators.

More speci�cally, let fR1(r1, R2 = r2 j :) be shorthand for @
@~r
PrfR1 � ~r, R2 = r2 j :gj~r=r1

for any discrete random vector R2 and continuous random vector R1. For any three lawsuits

i; j; k sharing the same wait-time T , let Ai;k = 1 be a shorthand for �Ai = Ak = 1�. By

construction,

fSi;Sk(s; s
0; Aj = 1 j Ai;k = 1)

=
P
t2T
fSi(s j Sk = s0; Aj = 1; T = t; Ai;k = 1)E[Aj j Sk = s0; T = t; Ai;k = 1]fT;Sk(t; s0 j Ai;k = 1)

=
P
t2T
fSi(s j Ai = 1; T = t)E[Aj j T = t]fT;Sk (t; s0 j Ai;k = 1) . (3)

The second equality follows from Assumption 1, the fact that �S = �T�pC whenever A = 1�

and �A = 1 if and only if �p + �d � ��T�and that (�p; �d; C) are independent draws across
the lawsuits i; j; k under Assumption 2.

To illustrate the identi�cation argument, it is useful to adopt matrix notations. Let DM
denote a partition of the unconditional support of accepted settlement o¤ers S into M non-

degenerate intervals, each of which is denoted by dm.10 For a given partition DM , let LSi;Sk
be a M -by-M matrix whose (m;m0)-th entry is the probability that Si 2 dm and Sk 2 dm0

conditional on Ai;k = 1 (settlements are reached in the two cases i, k); and let �Si;Sk be aM -

by-M matrix with its (m;m0)-th entry being f(Si 2 dm; Aj = 1; Sk 2 dm0 j Ai;k = 1). Note
that both �Si;Sk and LSi;Sk are directly identi�able from data. Thus a discretized version of

(3) is:

�Si;Sk = LSijT �j LT;Sk (4)

where LSijT be a M -by-jT j matrix with (m; t)-th entry being Pr(Si 2 dm j Ai = 1; T = t);
�j be a jT j-by-jT j diagonal matrix with diagonal entries being [E(Aj j T = t)]t=1;:;jT j; and
LT;Sk be a jT j-by-M matrices with its (t;m)-th entry being Pr (T = t; Sk 2 dm j Ai;k = 1).
Besides,

LSi;Sk = LSijT LT;Sk (5)

due to conditional independence in Assumption 2.

Part (ii) in Assumption 3 implies the supreme of the conditional support of accepted

o¤ers given T = t is �tc and hence decreases in t. This, in turn, guarantees there exists a

partition DjT j such that LSijT as well as LSi;Sk are non-singular (see Lemma B1 in Appendix
B for details). Then (4) and (5) imply

�Si;Sk (LSi;Sk)
�1 = LSijT �j

�
LSijT

��1
(6)

10That is, dm � [sm; sm+1] for 1 � m � M , with (sm : 2 � m � M) being a vector of ordered endpoints
on S such that s1 < s2 < :: < sM < sM+1 and s1 � inf S, sM+1 � supS.
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where the left-hand side consists of directly identi�able quantities. The right-hand side of

(6) takes the form of an eigen-decomposition of a square matrix, which is unique up to a

scale normalization and unknown indexing of the columns in LSijT and diagonal entries in

�j (i.e. it remains to �nd out the speci�c value of t 2 T that corresponds to each diagonal

entry in �j).

The scale in the eigen-decomposition is implicitly �xed because the eigenvectors in LSijT
are conditional distributions and needs to sum up to one. The question of unknown indices

is solved because in our model E[Aj j T = t] is monotonically decreasing in t over T
provided the parties follow rational strategies described in Section 2. This is again due to the

independence between timing and the beliefs in Assumption 1 and the moderate compounded

discounting in Assumption 3. This establishes the identi�cation of �j and LSijT , which are

used for recovering LT;Sk and then the conditional density of accepted settlement o¤ers over

its full support S (see proof of Lemma 1 in Appendix B).

3.2 The joint belief distribution

We now explain how to identify the joint distribution of beliefs (�p; �d) from the quantities

recovered from Lemma 1 under the following orthogonality condition.

Assumption 4 The joint distribution of (�p; �d) is independent from C.

This condition requires the magnitude of potential compensation to be independent from

plainti¤ and defendants�beliefs. This condition is plausible because C is meant to capture

an objective monetary measure of the severity of damage in�icted upon the patient. On

the other hand, the beliefs (�p; �d) should depend on the evidence available as to whether

the defendant�s neglect is the main cause of such damage. It then follows from (2) that the

distribution of C is directly identi�ed as:

Pr(C � c) = Pr(C � c j A = 0; D = 1). (7)

Let St � [0; c�t] denote the conditional support of accepted settlement o¤ers S = �T�pC
given A = 1 and T = t; and let 't(s) denote the probability that a settlement is reached

when the wait-time between the settlement conference and the trial is t and that the accepted

settlement o¤er is no greater than s.11 That is, for all (s; t),

't(s) � Pr (S � s; A = 1 j T = t) = Pr
�
�pC � s=�t; �d + �p � 1=�t

�
(8)

where the equality is due to Assumption 1. The non-negativity of C and (�p; �d) and an

application of the law of total probability on the right-hand side of (8) implies:

't(s) =

Z �c

0

Pr
�
1
�p
� c

s
�t; 1

�d+�p
� �t

�
fC(c)dc =

Z �c

0

ht (c=s) fC(c)dc (9)

11In general, we could also allow S, T and St to depend on observed heterogeneity of lawsuits. Throughout
this section, we refrain from such generalization in order to simplify exposition.
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where fC(c) is the density of C and ht(v) � Prf��1p � v�t; (�d + �p)�1 � �tg; and the �rst
equality is due to orthogonality between C and (�p; �d).

Changing variables between C and V � C=S for any �xed t and s, we can write (9) as:

't(s) =

Z 1

0

ht(v)�(v; s)dv (10)

where �(v; s) � sfC(vs). With the distribution (and hence density) of C recovered from

(7), the kernel function �(v; s) is considered known for all (v; s) hereinafter for identi�cation

purposes. Also note for any s > 0, �(:; s) is a well-de�ned conditional density with support

[0; �c=s].12 Let FV jA=1;T=t denote the distribution of V given T = t and A = 1, whose support

is denoted as Vt.

Assumption 5 For any t and g(:) such that E[g(V ) j A = 1; T = t] < 1, the statement
�
R1
0
g(v)�(v; s) = 0 for all s 2 St�implies the statement �g(v) = 0 a.e. FV jA=1;T=t�.

This condition, known as the �completeness� of kernels in integral operators, was in-

troduced in Lehmann (1986) and used in Newey and Powell (2003) for identi�cation of

nonparametric regressions with instrumental variables. Andrews (2011) and Hu and Shiu

(2012) derived su¢ cient conditions for various versions of such completeness conditions when

g(:) is restricted to belong to di¤erence classes. This condition is analogous to a �full-rank�

condition on � if the conditional supports of S and V were �nite.13

Proposition 1 Under Assumptions 1-5, Pr(�p � � ; �p + �d � ��t) is identi�ed for all

� 2 (0; 1) and t 2 T .

For the rest of this section, we discuss how to generalize results above when T is in�nite
(T is continuously distributed over a known interval). First o¤, the key idea of using eigen-

decompositions in Section 3.1 remains applicable, except that LSijT and LT;Sk become linear

integral operators, and their invertibility needs to be stated as an assumption as opposed to

being derived from restrictions on model primitives and implications of rational strategies

(as is the case when T is discrete).

Under the support condition that inff�t : t 2 T g � 1=2, the eigenvalues in the de-

composition E[Aj j T = t] remains strictly monotonic over the interval support T when

12This is because �(v; s) > 0 for any v � 0, s > 0, and that
R1
0
�(v; s)dv =

R �c=s
0

sfC(vs)dv = 1 for any s.
13If the support of potential compensation is unbounded, there are plenty of examples of parametric

families of densities that satisfy the completeness conditions. For example, suppose potential compensations

follow a Gamma distribution with parameters �; � > 0. That is, fC(t) =
��

�(�) t
��1 expf�t�g. Then, with

s > 0, the kernel �(v; s) � sfC(vs) = [s�]�

�(�) v
��1 expf�v (s�)g is a density of a Gamma distribution with a

shape parameter � > 0 and a scale parameter s� > 0. That is, �(v; s) remains a conditional density within

the exponential family, and satis�es the su¢ cient conditions for the completeness condition in Theorem 2.2

in Newey and Powell (2003).
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T is continuously distributed. On the other hand, the argument that uses monotonicity of

the eigenvalues over a �nite support T to index them is no longer applicable when T is

continuously distributed. However, in our model the supremum of the support of accepted

settlement o¤ers given T = t must be �tc. With the supremum of the support of compensa-

tions c identi�ed and known, this means t can be expressed through a known functional of

the eigenvectors fSi(: j Ai = 1; T = t) in the eigen-decomposition identi�ed in the �rst step.
Thus the issue with indexing eigenvalues is also solved.

The remaining step of identifying the joint distribution of 1=�p and 1=(�p + �d) from

fS(: j A = 1; T = t) and E[A j T = t] follow from the same argument as in the discrete

case. An additional step based on Jacobian transformation leads to identi�cation of the joint

distribution of (�p; �d) when T is continuously distributed.

4 Maximum Simulated Likelihood Estimation

A nonparametric estimator based on the identi�cation result in Section 3 would require

a large data set, and the �curse of dimensionality�aggravates if the data also report case-

level variables that may a¤ect both parties�beliefs (such as the severity of the injury arising

out of medical malpractice and the quali�cation of the defendant) and therefore should be

conditioned on in estimation. To deal with case-heterogeneity in moderate-sized data, we

propose in this section a Maximum Simulated Likelihood (MSL) estimator based on a �exible

parametrization of the joint belief distribution.

Consider a data containing N clusters. A cluster is indexed by n and consists of mn � 1
cases, each of which is indexed by i = 1; :::;mn. For each case i in cluster n, let An;i = 1

when there is an agreement for settlement outside the court and An;i = 0 otherwise. De�ne

Zn;i � Sn;i if An;i = 1; Zn;i � Cn;i if An;i = 0 and Dn;i = 1; and Zn;i � 0 otherwise.

Let Tn denote the wait-time between the settlement conference and the scheduled date for

court decisions, which is shared by all cases in cluster n. We propose an MSL estimator

for the joint distribution of (�p; �d) that also use variation in the heterogeneity of lawsuits

reported in the data. Throughout this section, we assume the identifying conditions hold

once conditional on such observed heterogeneity of the lawsuits.

Let xn;i denote the vector of case-level variables reported in the data that a¤ects the

distribution of C. (We allow xn;i to contain a constant in the estimation below.) The

total potential compensation C in a lawsuit with observed features xn;i is drawn from an

exponential distribution with the rate parameter given by:

�(xn;i; �) � expfxn;i�g

for some unknown constant vector of parameters �. In the �rst step, we pool all observations
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where the jury is observed to rule in favor of the plainti¤ to estimate �:

�̂ � argmax
�

P
n;i dn;i(1� an;i) [xn;i� � expfxn;i�gcn;i] .

Next, let wn;i denote the vector of case-level variables in the data that a¤ects the joint

belief distribution. (The two vectors xn;i and wn;i are allowed to have overlapping elements.)

We suppress the subscripts n; i for simplicity when there is no ambiguity. In the second

step, we estimate the belief distribution conditional on such a vector of case-level variables

W using �̂ above as an input in the likelihood. To do so, we adopt a �exible parametrization

of the joint distribution of (�p; �d) conditional on W as follows. For each realized w, let

(Y1; Y2; 1 � Y1 � Y2) be drawn from a Dirichlet distribution with concentration parameters

�j � expfw�jg for j = 1; 2; 3 for some constant vector � � (�1; �2; �3). In what follows, we
suppress the dependence of �j on w to simplify the notation.

Let �p = 1 � Y1 and �d = Y1 + Y2. The support of (�p; �d) is f(�; �0) 2 [0; 1]2 : 1 �
� + �0 � 2g, which is consistent with our model with optimism. (Table C1 in Appendix C
shows how �exible such a speci�cation of the joint distribution of (�p; �d) is in terms of the

range of moments and the location of the model it allows.) Also note Y2 = �p + �d � 1 by
construction, so it is a measure of optimism. Under this speci�cation, the marginal distrib-

ution of Y1 conditional on W = w is Beta(�1; �2 + �3), where of course �j�s are functions

of w. The conditional distribution Y2 j Y1 = � ;W = w is the same as the distribution of

(1� �)Beta(�2; �3). For any y and � 2 (0; 1), we can write:

PrfY2 � y j Y1 = � ;W = wg = Pr
�

Y2
1� � �

y

1� �

����Y1 = � ;W = w

�
where the right-hand side is the c.d.f. of a Beta(�2; �3) evaluated at y=(1� �).
Let qn;i � Pr(Dn;i = 1 j An;i = 0;Wn;i = wn;i). Recall that we maintain D is orthogonal

to (T;C) conditional on A = 0 and W . Hence qn;i does not depend on cn;i. This conditional

probability is directly identi�able from the data. Let hn(:; �) denote density of the wait-time

Tn in cluster n. This density in general depends on cluster-level variables reported in the

data, and is speci�ed up to an unknown vector of parameters �.

The log-likelihood of our model is:

LN(�; �; �) �
PN

n=1 ln
�P

t2T hn(t; �)
Qmn

i=1 fn;i(t; �; �)
�

where fn;i(t; �; �) is shorthand for the conditional density of Zn;i; An;i; Dn;i given Tn = t,

Wn;i = wn;i and with parameter �, evaluated at (zn;i; an;i; dn;i). Speci�cally,

fn;i(t; �; �) � [g1;n;i(t; �; �)]an;i � fg0;n;i(t; �) [1� pn;i(t; �)] qn;ig(1�an;i)dn;i

�f[1� pn;i(t; �)] (1� qn;i)g(1�an;i)(1�dn;i)
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where

pn;i(t; �) � Pr(An;i = 1 j Tn = t;Wn;i = wn;i; �) = Pr(�p;n;i + �d;n;i � ��t j wn;i; �)
= Pr(Y2 �

�
1� �t

�
=�t j wn;i; �);

g0;n;i(t; �) � g0(zn;i; xn;i; t; �)

� @ Pr(Cn;i�ZjAn;i=0;Tn=t;Xn;i=xn;i;�)
@Z

���
Z=zn;i

= fC(zn;i j xn;i; �); (11)

with fC(: j xn;i; �) being the conditional density of the potential compensation given Xn;i =

xn;i; and

g1;n;i(t; �; �) � g1(zn;i; wn;i; xn;i; t; �; �) � @ Pr(Sn;i�Z;An;i=1jTn=t;wn;i;xn;i;�;�)
@Z

���
Z=zn;i

= @
@Z

Z 1

0

Pr
�
Y1 � 1� Z=(c�t); Y2 � 1��t

�t

���wn;i; �� fC(c j xn;i; �)dc����
Z=zn;i

.(12)

In the derivation above, we have used the conditional independence between Cn;i and Dn;i,

Tn, (�p;n;i; �d;n;i) conditional on Wn;i; Xn;i. Under regularity conditions that allow for the

change of the order of integration and di¤erentiation in (12), g1;n;i(t; �; �) equals:Z 1

zn;i�
�t
Pr
n
Y2 � 1��t

�t

���Y1 = 1� zn;i��t=c; wn;i; �o fY1(1� zn;i��t=c j wn;i; �)fC(c j xn;i; �)c�t
dc

where the lower limit is zn;i�
�t because the integrand is nonzero only when 1 � zn;i��t=c 2

(0; 1), c 2 ( zn;i
�t
;+1).Changing variables between c and � � 1� zn;i��t=c for any i; n and

�xed t, we can write g1;n;i(t; �; �) as:

Z 1

0

Pr

�
Y2
1� � �

1��t
�t(1��)

����Y1 = � ; wn;i; �� fY1(� j wn;i; �)fC
�

zn;i
�t(1��) j xn;i; �

�
�t(1� �)

d�

where the �rst conditional probability in the integrand is a Beta c.d.f. evaluated at 1��t
�t(1��)

and parameters (�2(wn;i; �2); �3(wn;i; �3)) and the second term fY1(� j wn;i; �) is the Beta
p.d.f. with parameters (�1(wn;i; �1); �2(wn;i; �2) + �3(wn;i; �3)). For each n, i, t and a �xed

vector of parameters (�; �), let ĝ1;n;i(t;�; �) be an estimator for g1;n;i(t;�; �) using S > N

simulated draws of � . (We experiment with various forms of density for simulated draws.) It

follows from the Law of Large Numbers that ĝ1;n;i(t;�; �) is an unbiased estimator for each

n; i and (�; �).

Our Maximum Simulated Likelihood estimator for the belief parameter � in the second

step is

(�̂; �̂) � argmax
�;�

L̂N(�; �; �̂). (13)

15



where L̂N(�; �; �) is an estimator for LN(�; �; �) by replacing g1;n;i(t; �; �) with ĝ1;n;i(t; �; �)

and replacing qn;i with a parametric (logit or probit) estimate q̂n;i; and �̂ is the estimates for

the parameters in the distribution of potential compensation in the �rst step.

Under appropriate regularity conditions, (�̂; �̂) converge at a
p
N -rate to a zero-mean

multivariate normal distribution with some �nite covariance as long as N !1, S !1 andp
N=S ! 0. The covariance matrix can be consistently estimated using the analog principle,

which involves the use of simulated observations. (See equation (12.21) in Cameron and

Trivedi (2005) for a detailed formula.)

5 Data Description

Since 1975 the State of Florida has required all medical malpractice insurers to �le reports

on their resolved claims to the Florida Department of Financial Services. Using this source,

we construct a sample that consists of 13,351 medical malpractice lawsuits �led in Florida

between 1984 and 1999.14 Our sample includes those cases that are either resolved through

the mandatory settlement conference or by a jury decision following a trial. For each lawsuit,

the data reports the date when the suit is �led (Suit_Date) and the county court with which

it is �led (County_Code), the date of the �nal disposition (Year_of_Disp) corresponding

to the date when the claim is closed with the insurer, and whether the case is resolved by

a settlement at the settlement conference or by a jury decision in court (A = 1 or A = 0).

The data also reports the size of the transfer from the defendant to the plainti¤ upon the

resolution of the lawsuit. This transfer is equal to the settlement amount accepted by

the plainti¤ (S), if the case is settled out of court, or the total compensation awarded to

the plainti¤ according to the court decision (C), otherwise. In addition, we also observe

case-level variables that may be relevant to the joint distribution of beliefs and/or to the

distribution of potential compensations. These variables include the severity of the injury

arising out of medical malpractice (Severity), the age (Age) of the patient who su¤ered

the injury and whether the doctor named in the lawsuit is board-certi�ed (Board_Code),

where Board_Code = 1 denotes that the doctor is reported to be certi�ed by at least one

professional board and 0 otherwise.

The dates of the settlement conference and of the scheduled jury trial for each lawsuit

are not reported in the data, regardless of whether the case is settled out of court or decided

by a jury. In fact, the recorded date of the �nal disposition of a case only reports when

the claim is closed with the insurer, which typically occurs later than the actual date when

an agreement is reached in the settlement conference or when a decision is made by the

jury in court, and includes administrative delays which may vary across cases and are not

14Sieg (2000) and Watanabe (2009) also use the same source of data for their empirical analyses of medical

malpractice lawsuits.
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directly measurable. Therefore, the wait-time between the settlement conferences and the

trials cannot be recovered from data.

Despite these data limitations, we de�ne clusters within which the cases could be reason-

ably assumed to share the same length of wait-time. It is, in fact, plausible that the lawsuits

�led with the same county court in the same month would be scheduled for court proceedings

in the same month, since the schedule for hearings in a county court is mostly determined by

the backlog of unresolved cases �led with that court, and by the availability of judges and

other legal professionals from that court. By the same token, the schedule for settlement

conferences, which require the presence of court o¢ cials who have the authority to facilitate

a settlement, are also mostly determined by the backlog of cases as well as the availability

of attorneys representing both parties. Based on these considerations, we maintain that the

lengths of wait-time between settlement conferences and court hearings for all lawsuits �led

with the same county court in the same month are the same. As explained in Section 3, the

distribution of settlement decisions and accepted o¤ers in lawsuits from these clusters are

su¢ cient for recovering the joint beliefs of plainti¤s and defendants.

The data consists of 3,545 clusters de�ned by month-county pairs. In total there are

1,344 clusters which report at least three medical malpractice lawsuits. About half of these

clusters (661 clusters) contain at least six cases. Moreover, among these 1,344 clusters, 1,294

have at least two lawsuits that were settled out of court during the mandatory settlement

conference. These features of the data con�rm that we can apply our identi�cation strategy

from Section 3 to recover the joint distribution of patients�and doctors�beliefs. It is worth

mentioning that in our MSL estimation, the likelihood includes all 3,545 clusters to improve

the e¢ ciency of the estimator, even though in theory identi�cation only requires the joint

distribution of settlement decisions and accepted o¤ers from the subset of clusters that have

at least two settlements out of three or more cases.

Table 1(a): Settlement probability and accepted o¤ers

Board Cert�n Severity # obs p̂settle s:e:(p̂settle) �̂SjA=1 ($1k) s:e:(�̂SjA=1) ($1k)

certi�ed low 1,129 0.717 0.013 42.553 2.313

medium 2,996 0.805 0.007 158.521 4.234

high 2,623 0.831 0.007 263.089 7.213

uncerti�ed low 1,783 0.812 0.009 41.300 2.256

medium 2,192 0.863 0.007 128.796 4.748

high 2,628 0.880 0.006 333.161 12.357

Next, we report some evidence from the data that the beliefs of the plainti¤s and the

defendants are a¤ected by certain observed characteristics that vary across lawsuits. Table
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1(a) summarizes the settlement probability and the average size of accepted settlement o¤ers

in the sample after controlling for the doctors� quali�cation and the level of severity of

the injury arising out of medical malpractice. There is evidence that both the settlement

probability and the size of accepted settlement o¤ers di¤er systematically across the sub-

groups. Table 1(b) reports the p-values of two-sided t-tests (using the unequal variance

formula) for the equality of settlement probabilities in sub-groups. We let (u,c) and (l,m,h) be

shorthand for the realized values of (uncerti�ed, certi�ed) in Board_code and (low, medium,

high) in Severity respectively. With the exception of three pair-wise tests, the nulls in the

other tests are all rejected at the 2% signi�cance level. Among the three exceptions, the

null for equal settlement probability between (u,m) and (u,h) is also rejected at the 10%

level. The only two cases where the null can not be rejected even at the 10% signi�cance

level are �(u,l) versus (c,m)�and �(u,l) versus (c,h)�. This is consistent with the intuition

that a plainti¤may be relatively more optimistic that the jury would rule in his or her favor

when the injury su¤ered is relatively more severe, or when the doctor�s quali�cation is not

supported by board certi�cation. Our estimates in the next section are also consistent with

this intuition.

The failure to reject the null of equal settlement probability between the two subgroups

(u,l) and (c,h), for example, may be due to the fact that the impact of severity and of board

certi�cation on the plainti¤�s belief o¤set each other. Pairwise t-tests for the equality of

average accepted settlement o¤ers between the sub-groups de�ned by severity and doctor

quali�cation also demonstrate similar patterns. Speci�cally, the null of equal average set-

tlement o¤ers is almost always rejected at the 1% signi�cance level for all pair-wise t-tests

using unequal variances, with the only exception being the test comparing (u,l) versus (c,l).

Table 1(b): p-values for t-tests: settlement probability

u,l u,m u,h c,l c,m c,h

u,l � < 0.001 < 0.001 < 0.001 0.601 0.105

u,m � 0.072 < 0.001 < 0.001 0.002

u,h � < 0.001 < 0.001 < 0.001

c,l � < 0.001 < 0.001

c,m � 0.014

c,h �

The data also contains some evidence that the distribution of total compensation may

be partly determined by the age of the plainti¤ and the severity of the injury. Out of the

total 2,298 lawsuits which were not resolved through settlement, 359 were ruled in favor of

the plainti¤ by the court. The observations of the realized total compensation in these cases
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are useful for inference on the distribution of C. Figure 1(a) and 1(b) in Appendix A report

histograms of the accepted o¤ers (S) from the cases settled outside the court and the total

compensation (C ) from the cases where the court ruled in favor of the plainti¤, conditioning

on the information about the plainti¤s. The variable Age is discretized into three categories:

young (Age < 33), older (Age > 54) and middle, with the two cuto¤s being the 33rd and the

66th percentiles in the data. Figure 1(a) suggests the younger plainti¤s tend to receive higher

transfers either through accepted o¤ers in settlement or through the total compensation paid

by the defendant when the court rules in favor of the plainti¤. Figure 1(b) shows the cases

with more severe injuries in general are associated with higher transfers. Both patterns are

intuitive, and consistent with our estimates presented in the next section below.

To further compare the distribution of accepted settlement o¤ers with that of total com-

pensations awarded by the court, we compare the percentiles of both variables conditional on

Age and Severity. We �nd that the 10th, 25th, 50th, 75th and 90th conditional percentiles

of the accepted settlement o¤ers are consistently lower than those of the total compensations

awarded by the court. This is consistent with the notion that an accepted settlement o¤er

is equal to the discounted expectation of the total compensation that could be awarded by

the court.

The quali�cation of the doctors does not seem to have any noticeable e¤ect on the distrib-

ution of the total compensation. Figure 1(c) reports the histogram of the total compensation

for the cases where the court ruled in favor of the plainti¤, conditioning on the board certi-

�cation status of the doctors. A t-test for the equality of the average compensation for the

two subgroups with and without board certi�cation reports an asymptotic p-value of 0.5036

(assuming unequal population variance). Furthermore, a one-sided Komolgorov-Simirnov

test against the alternative that the distribution of C is stochastically lower when the defen-

dant is board-certi�ed yields a test statistic of 0.0705 and an asymptotic p-value of 0.4078.

Thus, in either test the null can not be rejected even at the 15% signi�cance level.

On the other hand, it is reasonable to postulate that the total potential compensation

in a malpractice lawsuit is positively correlated with the contemporary income level in the

county where the lawsuit is �led. In order to control for such an income e¤ect, we collect

data on household income in all counties in Florida between 1981 and 1999. We collect data

on the median household income in each Florida county in 1989, �93, �95, �97, �98 and �99

from the Small Area Income and Poverty Estimates (SAIPE) produced by the U.S. Census

Bureau.15 We also collect a time series of state-wide median household income in Florida

each year between 1984 and 1999 from the U.S. Census Bureau�s Current Population Survey.

We combine this latter state-wide information with the county-level information from SAIPE

to extrapolate the median household income in each Florida county in the years 1984-89,

15See http://www.census.gov/did/www/saipe/data/statecounty/data/index.html
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�92, �94 and �96.16 We then incorporate this yearly data on household income in each county

while estimating the distribution of total compensation next year.

6 Estimation Results

As the �rst step in estimation, we use a logit regression to �t the court decisions in those

lawsuits that are resolved through court hearings. The goal is to provide some evidence

about whether the jury decisions were a¤ected by case characteristics reported in the data.

Moreover, the predicted probability for D = 1 (the jury ruled in favor of the plainti¤) from

the logit regression will be used in the MSL estimation of the joint beliefs of doctors and

patients.

Table 2. Logit Estimates for Court Decisions

(Response Variable: D. Total # of observations: 2,289 cases.)
(1) (2) (3)

Board_Code -0.0701 (0.120) -0.207 (0.282) -0.233 (0.288)

Severity. 0.045** (0.023) 0.032 (0.033) 0.083 (0.056)

Age 0.003 (0.003) 0.003 (0.003) 0.021* (0.012)

Severity�Board_Code 0.025 (0.046) 0.029 (0.046)

Age2 -0.014 (0.011)

Severity�Age -0.012 (0.011)

Constant -2.042*** (0.189) -1.954*** (0.228) -2.393*** (0.391)

Log likelihood -953.5592 -953.4136 -952.2051

Pseudo-R2 0.0026 0.0028 0.0041

p-value for L.R.T. 0.1676 0.2533 0.2557

Notes: Standard errors are reported in parentheses. *** signi�cant at 1%; ** signi�cant at 5%; *

signi�cant at 10%. Age2 is reported in units of �100 yr2�.

Table 2 reports the logit regression estimates under di¤erent speci�cations, using 2,289

lawsuits from the data that were not settled outside the court and thus had to be resolved
16The extrapolation is done based on a mild assumption that a county�s growth rate relative to the state-

wide growth rate remains steady in adjacent years. For example, if the ratio between the growth rate in

County A between 1993 and 1995 and the contemporary state-wide growth rate is �, then we maintain the

yearly growth rates in County A in 1993-94 (and 1994-95) are both equal to
p
� times the state-wide growth

rates in 1993-94 (and 1994-95 respectively). With the yearly growth rate in County A beteen 1993-1995

calculated, we then extrapolate the median household income in County A in 1994 using the data from the

SAIPE source.
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through scheduled court hearings. The case heterogeneity used in the logit regressions include

Board_Code, Severity and the age of the patients Age. In all three logit regressions, the

constant term is highly statistically signi�cant at the 1% level. The severity is statistically

insigni�cant in the latter two speci�cations. Besides, the age of the patient is only signi�cant

at 10% level in the third speci�cation. The board certi�cation of doctors and the interaction

terms in the logit regressions are all insigni�cant.

The pseudo R-squares are low for all three speci�cations. This suggests that the patient

and case characteristics considered are rather insigni�cant in explaining the court decisions.

Furthermore the p-values for the likelihood ratio tests of the joint signi�cance of all slope

coe¢ cients are 0:1676, 0:2533 and 0:2557 in the three speci�cations respectively. Therefore

we conclude from Table 2 that the doctor�s board certi�cation, the severity of the malpractice

and the age of the plainti¤ do not have signi�cant impact on jury decisions in the court.

Next, we estimate the distribution of total potential compensation using a subset of the

observations of lawsuits above where the court ruled in favor of the plainti¤s (A = 0 and

D = 1). The descriptive statistics in Section 5 show that the severity of the injury and the

age of the plainti¤s have a noticeable impact on the size of the total potential compensation,

while the doctors�board certi�cation does not. In one of the speci�cations, we include the

county-level income in the same year when the lawsuit is �led in order to allow for the e¤ect

of income level. We adopt an exponential speci�cation where the density of the compensation

given case characteristics xn;i is �n;i expf��n;icg, where �n;i � expfxn;i�g.

Table 3(a). Coe¢ cient Estimates in the Distribution of Total Compensation

(Total # of observations: 351 cases.)
(1) (2)

M.Sev. -1.198*** (0.157) -1.014*** (0.392)

H.Sev. -1.855*** (0.159) -0.707** (0.348)

M.Sev.�Age -0.003 (0.009)

H.Sev.�Age -0.023*** (0.008)

Age 0.004 (0.003) 0.016** (0.007)

Income (in $1k) -0.026*(0.014) -0.031** (0.014)

Constant -3.810*** (0.506) -4.288*** (0.554)

Log likelihood -1179.27 -1167.48

Pseudo-R2 0.513 0.541

p-value for LRT <0.001 <0.001

Notes: *** signi�cant at 1%; ** signi�cant at 5%; * signi�cant at 10%.
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Table 3(a) presents the maximum likelihood estimates for �. We calculate the standard

errors using a standard robust form that consists of estimates for the Hessian and cross-

products of the Jacobian of the likelihood. In both speci�cations, likelihood ratio tests for

the joint signi�cance of all slope coe¢ cients yield p-values that are lower than 0:001, thus

rejecting the null of joint insigni�cance even at the 1% level. In both speci�cations, signs of

the estimates show that more severe injuries lead to higher total potential compensation on

average; and the expectation of such compensation is higher when the local median household

income in the county is higher. (Note that under our speci�cation the conditional mean of

the compensation is 1=�n;i = expf�xn;i�g, so a negative coe¢ cient implies a positive e¤ect
on the conditional mean.)

The patient�s age also has a signi�cant impact on the total compensation awarded in

the second (richer) speci�cation. A likelihood ratio test for the joint signi�cance of all

three age-related coe¢ cients yields a p-value of 0:002, thus o¤ering strong evidence that age

matters in determining the size of compensation. Furthermore, it is worth mentioning that

the sign of the estimated age e¤ects vary across malpractices with di¤erent severity. For

cases with low and medium severity, a patient�s age is estimated to have a negative impact

on the conditional mean of compensation (because 0:016 > 0 and 0:016 � 0:003 > 0); for

case with high severity, the estimated e¤ect is positive (0:016 � 0:023 < 0). This pattern

may be due to the nature of the interaction between the patient�s age and the damage

in�icted by malpractice. When the damage is moderate (severity=�low�or �medium�), the

compensation that is required to keep the patients�life-quality is likely to be proportional

to the patient�s remaining life span. On the other hand, the seniority in age may aggravate

severe damage (severity=�high�) much more than it does moderate damage. Thus costs for

maintaining the life-quality (or even sustaining the life) of the patient when the severity is

high could increase drastically with the patient�s age.

To better understand the magnitude of age, severity and income e¤ects in terms of

monetary units, we report estimates for the average marginal e¤ects (AME) of severity,

income and age on the total potential compensation in Table 3(b). The standard errors are

calculated using a bootstrap resampling method. While reporting the AME of Income and

Age, we condition on the severity of the malpractice because the latter is shown in Table

3(a) to be statistically signi�cant in determining compensation.
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Table 3(b). Average Marginal E¤ects on Potential Compensation

(units: one thousand US $)

Estimates 90% C.I.

Severity

low to medium 237:108 [39:149; 342:710]

medium to high 228:637 [177:517; 626:792]

Income

low sev. 3:046 [1:203; 14:433]

medium sev. 10:780 [3:640; 57:358]

high sev. 20:240 [7:331; 254:106]

The average marginal e¤ect on the total potential compensation is estimated to be

$237; 108 when the severity increases from low to medium, and $228; 637 when from medium

to high. In both cases, the 90% con�dence interval does not include zero, which suggests

such increases in mean compensation are statistically signi�cant. A $1k-increment in the

local income raises the average compensation by $3; 046 when the severity of malpractice is

low; and raises it by $10; 780 (and $20; 240) if the severity is medium (and high). That such

an increase is greater for more severe damage may be ascribed to the fact that more severe

damage requires more resources for care, which cost more in counties with higher household

income.

Our last step is to estimate the joint distribution of plainti¤ and defendant beliefs. To do

so, we plug in the logit estimates from speci�cation (3) in Table 2 and the MLE estimates from

the second speci�cation in Table 3 (a) in our MSL estimator de�ned in (13). As explained

in Section 4, we maintain the speci�cation that �p = 1� Y1 and �d = Y1 + Y2, where Y1; Y2
are the �rst two components in the draw from a Dirichlet distribution with concentration

parameters (�1; �2; �3). We allow �j�s to be di¤erent parameters across the classi�cation of

cases based on the severity and the board certi�cation of the doctors. We de�ne a period

in the model as a quarter in the calendar year, and adopt a binomial speci�cation for the

distribution of the wait-time T . Speci�cally, we let T~binomial(T ; p) where �T � 4. We

use a quarterly discount factor of 0:99 (which is consistent with a 4% annual in�ation rate).

While implementing MSL, we use S = 2; 000 simulated draws from the standard uniform

distribution to evaluate the integral in the likelihood for each observation.
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Table 4. Estimates for Parameters in the Belief Distribution

Board Certi�ed: Yes Board Certi�ed: No

�p �d �p �d

Sev. = low mean 0.402 0.692 0.407 0.691

[ 0.366, 0.480] [ 0.607, 0.785] [ 0.396, 0.507] [ 0.666, 0.703]

std.dev. 0.173 0.163 0.168 0.158

[ 0.167, 0.249] [ 0.144, 0.244] [ 0.167, 0.181] [ 0.157, 0.166]

skewness 0.251 -0.523 0.233 -0.509

[ 0.059, 0.345] [ -0.867, -0.321] [ -0.017, 0.262] [ -0.564, -0.439]

correlation -0.613 -0.607

[ -0.642, -0.411] [-0.646,-0.447]

Sev. = med. mean 0.431 0.671 0.542 0.549

[ 0.427, 0.464] [ 0.625, 0.677] [ 0.512, 0.602] [ 0.543, 0.600]

std.dev. 0.172 0.163 0.183 0.183

[ 0.169, 0.172] [ 0.162, 0.165] [ 0.179, 0.183] [ 0.175, 0.185]

skewness 0.173 -0.452 -0.108 -0.128

[ 0.088, 0.183] [ -0.468, -0.314] [ -0.274, -0.006] [ -0.266, -0.112]

correlation -0.804 -0.833

[ -0.846, -0.701] [ -0.845, -0.671]

Sev.= high mean 0.510 0.585 0.733 0.338

[ 0.499, 0.522] [ 0.571, 0.596] [ 0.728, 0.746] [ 0.334, 0.366]

std.dev. 0.176 0.173 0.163 0.175

[ 0.173, 0.177] [ 0.171, 0.175] [ 0.162, 0.166] [ 0.173, 0.181]

skewness -0.026 -0.216 -0.686 0.445

[ -0.056, 0.002] [ -0.246, -0.176] [ -0.746, -0.669] [ 0.361, 0.457]

correlation -0.825 -0.844

[ -0.845, -0.714] [ -0.864, -0.783]

For each severity level and certi�cation status of doctors, Table 4 reports the point

estimates and 90% con�dence intervals for the mean, standard deviation, skewness and

correlation of the beliefs of the doctor and the patients, which are calculated using the MSL

estimates for �̂j. The closed form for mappings from the concentration parameters �j to

the mean, standard deviation, skewness and the correlation of (�p; �d) is presented in the

appendix. The con�dence intervals reported in Table 4 are constructed using the empirical

distribution of the respective estimates from B = 200 bootstrap samples. Figure 2 and

Figure 3 in the appendix plots the estimated marginal and joint distribution of (�p; �d).

The estimates in Table 4 demonstrate several informative patterns about how the joint

distribution of plainti¤ and defendant beliefs vary with case characteristics. First, the plain-

ti¤s tend to be more optimistic about their chance of winning the lawsuit when the injuries
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are more severe, regardless of the doctor�s certi�cation status. This is evident from the pat-

tern that the estimated mean of �p is greater for high severity cases, and that the estimated

skewness of �p decreases (shifting more probability masses toward 1) as severity increases.

Comparing con�dence intervals for the mean and skewness of �p across severity levels, we

can see that such di¤erences in the patient�s belief are statistically signi�cant at 10% or

15% level for most cases. The only exception is that this di¤erence may be statistically

insigni�cant as severity increase from low to medium when the doctor is board certi�ed.

Second, defendants are less optimistic about the court decision as severity increases. Our

estimates show the defendant belief �d becomes more positively skewed (shifting probability

mass toward 0) with a lower mean when the injuries are more severe. Again, the di¤erences

in the mean and skewness of �d across classi�cations are mostly statistically signi�cant,

except for when the severity increases from low to medium and the doctor is board certi�ed.

One explanation for the two patterns above could be the �sympathy factor�in the jury

decision perceived by plainti¤s and defendants. That is, both parties might believe the jury

is inclined to rule in favor of the patient out of sympathy if the severity of damage is high.

Such an explanation is consistent with the earlier observation that the di¤erences in beliefs

are more pronounced when the severity reaches a high level as opposed to a medium level.

Third, for cases with medium or high severity, the plainti¤s tend to be signi�cantly

more optimistic (with beliefs �p more skewed to the left with a greater mean) when the

doctors are not reported as board certi�ed. However, for cases with low severity, the doctor�s

certi�cation does not seem to have any signi�cant impact on the skewness the patient�s belief.

In comparison, the distribution of defendant beliefs move in an opposite direction, with the

doctors with board certi�cation being more optimistic. This is probably because board

certi�cation serves as a professional endorsement of a doctor�s quali�cation and capabilities.

Thus, both parties of the lawsuit may perceive board certi�cation as a potential in�uence

on the jury�s decision that is favorable to the defendant.

Last but not the least, the joint distribution of (�p; �d) is estimated to be signi�cantly

negatively correlated, regardless of the severity and the doctor�s quali�cation. The point

estimates for the correlation is smaller for cases with lower severity, which conforms with the

patterns mentioned above.

7 Policy Experiment

We use our estimates to predict the impact of a hypothetical tort reform that limits the

liability of defendants. In particular, we consider a policy which imposes a binding cap on the

maximum compensation payable by the defendant if the court rules in favor of the plainti¤.

We allow these caps to vary with the reported severity of the injury arising out of medical

malpractice. Speci�cally, they are set to the 75-th percentiles of the total compensation
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reported for each severity level in the data. Using our estimates from Table 4, we calculate

the counterfactual mean of accepted settlement o¤ers (that is, the mean of S j A = 1)

under the caps, and compare them with the reported empirical mean in the data. Table 5

reports the point estimates as well as 90% con�dence intervals calculated using bootstrap

resampling.

Table 5: Impact of compensation caps on mean accepted settlement o¤ers

(units: one thousand US $)

Board Certi�ed: Yes Board Certi�ed: No

Low sev. emp. 42.159 [38.166, 46.794] 41.203 [37.239, 45.749]

c.f. 28.250 [21.118, 41.724] 27.522 [19.901, 34.190]

di¤. 13.909 [-1.280, 21.841] 13.680 [5.618, 22.195]

Med sev. emp. 159.001 [151.180, 165.098] 129.145 [120.558, 137.454]

c.f. 88.326 [73.371, 99.440] 117.121 [92.572, 132.746]

di¤. 70.675 [56.109, 88.235] 12.024 [-4.538, 36.286]

High sev. emp. 263.059 [251.389, 277.277] 332.938 [312.392, 356.387]

c.f. 199.944 [174.914, 226.242] 314.611 [260.384, 350.431]

di¤. 63.115 [32.691, 91.445] 18.327 [-28.745, 73.341]

Notes: �emp.�denotes the observed mean in the data; �c.f.�the counterfactual mean under the caps; and

�di¤.�equals �emp.���c.f.�

Table 5 shows that on average the binding caps could induce sizable reductions in the

accepted settlement o¤ers. For example, the point estimates suggest that when the severity

level is low, imposing a cap on total potential compensation that equals the 75% empirical

quantile of court-ruled compensation would lead to over thirty-percent reduction in the mean

of accepted settlement o¤er (32:99% when the doctor is reported to be board-certi�ed; and

33:20% when there is no reported board certi�cation). On the other hand, there is also

evidence that the impact of compensation caps (conditional on medium and high severity)

interacts with the reported quali�cation of the doctors. For cases with medium severity, the

reduction in mean accepted o¤er is 44:45% when the doctors is board certi�ed, compared

with 9:31% when there is not certi�cation reported in the data. Likewise, when severity is

high, the reduction is as high as 23:99% with board certi�cation but only 5:5% when no

certi�cation is reported in data. The bootstrap con�dence intervals suggest that the impact

of the means are statistically insigni�cant for cases with medium and high severity without

board certi�cation information.

The heterogeneity in the estimated impact of compensation caps across severity and

doctor quali�cation can be explained by the di¤erence in the joint beliefs and the distribution
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of compensation across these categories. Recall that the caps we consider condition on the

severity levels but not the doctor�s quali�cation. If we ignore the di¤erence in the joint belief

of plainti¤s and defendants across categories, the impact of caps on the mean of accepted

settlement should be greater when the distribution of total compensation has a thinner (far-

stretched) tail beyond the binding cap (imposed at 75% empirical quantile). For instance,

when there is no certi�cation information, the reduction in the counterfactual mean is greater

with medium severity than with low severity. This is partly attributed to the fact that the

range of realized compensations in the data that are censored by the caps (which are imposed

at the 75% quantile) is larger in the former category, as seen the right panels in Figure 1(b).

Moreover the di¤erence in the joint beliefs also interacts with that in the compensation

distribution to a¤ect the proportion of reduction. To see this, note that as severity be-

comes high, the range of censored compensation is even greater than that under a medium

severity category. Nevertheless, as our estimates in Table 4 suggest, the plainti¤s subject

to high-severity damage are signi�cantly more optimistic. This could in part explain why

the reduction in the mean of accepted settlement o¤ers is not as high as in the case with

medium severity.

To further investigate the impact of caps on the distribution of S conditional on A = 1, we

report in Table 6 the estimated quantiles of accepted settlement o¤ers between two scenarios:

one with a binding cap on total compensation; and the other with practically no binding cap

(that is, as if the cap were set to maximum reported in the data).

Table 6: Impact of compensation caps on quantiles of settlement o¤ers

(units: one thousand US $)

Board Certi�ed: Yes Board Certi�ed: No

Low sev. 25%. 0.138 [0.039, 0.456] 0.038 [-0.013, 0.330]

50% 2.154 [1.072, 4.957] 1.650 [0.718, 4.010]

75% 9.066 [-18.000, 13.867] 8.299 [-12.149, 11.319]

Med sev. 25%. 0.729 [0.353, 1.263] 0.863 [0.533, 1.562]

50% 9.938 [7.750, 15.158] 13.565 [9.841, 20.102]

75% 92.947 [-97.099, 44.544] 60.188 [48.003, 79.916]

High sev. 25%. 1.410 [0.525, 2.364] 2.135 [0.518, 3.318]

50% 15.676 [11.699, 26.511] 22.250 [14.389, 33.895]

75% 76.946 [54.004, 98.928] 108.094 [75.332, 154.836]

The estimates suggest the conditional quantiles of accepted settlement o¤ers are lower

when a binding cap is imposed. Thus these estimates conforms to the theoretical implication

that under a binding cap the distribution of accepted settlement o¤ers is stochastically lower
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once a binding cap is imposed. Moreover, the di¤erence in quantiles is statistically more

signi�cant for cases with greater severity. This is consistent with the pattern shown in

Figure 1(b) that the range of compensation values censored by the caps is greater when

severity is higher.

8 Concluding Remarks

A fundamental step in the empirical analyses of bargaining outcomes is to show how

assumptions of a model warrant that its structural elements can be unambiguously recov-

ered from the data. Merlo and Tang (2012) discuss the identi�cation of stochastic sequential

bargaining models under various scenarios of data availability. In the current paper, we

have addressed the same identi�cation question in a prototypical model of bargaining with

optimism. We have shown that all structural elements of the model are identi�ed nonpara-

metrically under realistic data requirements.

Based on our identi�cation results, we have proposed a feasible estimation procedure

using maximum simulated likelihood, and applied it to a data set on medical malpractice

lawsuits in Florida during the 1980s and 1990s. We have found that doctors�and patients�

beliefs vary with case characteristics, such as the severity of the injury and the quali�cation

of the doctor, even though these characteristics are statistically insigni�cant in explaining

which party the court rules in favor of. Using our structural estimates, we have also quanti�ed

the reduction in settlement amounts that would result from a counterfactual cap on the total

compensation for plainti¤s.

In our analysis, we have abstracted from considering the role played by legal costs in

dispute resolution due to data limitations. In particular, our data only reports litigation

costs for a relatively small fraction of defendants and does not contain any information on

the litigation costs paid by plainti¤s.17 We plan to address the question of identi�cation in

a richer bargaining framework which explicitly incorporates legal costs under di¤erent data

scenarios in future work.

17Sieg (2000) incorporates legal costs into his empirical analysis of medical malpractice litigation which

uses the same data. He deals with the data limitation issue by adopting a multivariate normal parameteri-

zation and by matching implied and sample moments under an assumption of free entry of plainti¤ lawyers.

The argument is that with free entry of plainti¤ lawyers, there is a long-run equilibrium in which the average

cost for the plainti¤ lawyers equals the expected revenue. We cannot adopt this approach in our analysis

because our model maintains a di¤erent informational assumption than Sieg�s. Speci�cally, we do not assume

the defendant has complete knowledge about the degree of his/her liability. That is, unlike Sieg (2000), we

do not assume the defendant knows the actual probability that the jury rules in his/her favor. Hence the

"zero pro�t" argument based on rational expectations cannot be applied in our setting.
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Appendix B: Proofs

Lemma B1 Under Assumption 1, 2 and 3, there exists a partition DjT j such that LSi;Sk has
full-rank jT j.
Proof of Lemma B1. By construction, the supremum and the in�mum of the support of

�p given A = 1 (�p + �d � ��t) and T = t are 1 and 0 respectively. It then follows from

(ii) in Assumption 3 implies the supremum and the in�mum of the support of S = �T�pC

conditional on �A = 1 and T = t�are �t � 1� c = �tc and �t � 0� 0 = 0 respectively. For
any t 2 T � f1; 2; :; jT jg, let �s(t) � c�t denote the supreme of the support of S conditional
on �A = 1 and T = t�. Let DjT j be a partition of the unconditional support of settlement
o¤ers S into jT j intervals, which are characterized by the sequence of endpoints �s(1) >
�s(2) > �s(3) > :: > �s(jT j) > �s(jT j + 1) � 0. (That is, the t-th smallest interval in DjT j is
[�s(jT j � t+ 2); �s(jT j � t+ 1)] for t = 1; 2; ...; jT j.) Because conditional on A = 1 and T = t
the settlement o¤er S is continuously distributed over [0; �tc] with positive densities, the

square matrix LSijT based on the partition DjT j must be triangular with full rank jT j. Next,
note that LSi;Sk = LSijT DT

�
LSkjT

�0
where

�
LSkjT

�0
is the transpose of LSkjT and DT is a

diagonal matrix with diagonal entries being [Pr(T = t)]t=1;:;jT j. Since LSkjT has full rank by

symmetric arguments and DT is non-singular by construction, it then follows that LSi;Sk has

full rank. �

Proof of Lemma 1. Lemma B1 below shows that, under Assumptions 1, 2 and 3, there

exists a partition DjT j such that LSi;Sk has full rank jT j. This necessarily means LSijT must
also be invertible (see proof of Lemma B1). Hence

LT;Sk =
�
LSijT

��1
LSi;Sk . (14)

Substituting (14) into (4) leads to

�Si;Sk = LSijT �j

�
LSijT

��1
LSi;Sk

, �Si;Sk (LSi;Sk)
�1 = LSijT �j

�
LSijT

��1
. (15)

Note the two matrices on the left-hand side of (15), LSi;Sk and �Si;Sk , are directly identi�-

able from data. The equation (15) suggests �Si;Sk(LSi;Sk)
�1 admits an eigenvalue-eigenvector

decomposition, with each eigenvalue being E (Aj j T = t) and corresponding eigenvector be-
ing [Pr(Si 2 dm j Ai = 1; T = t)]m=1;:;jT j for any t 2 T . Because each eigenvector is a
conditional probability mass function with entries summing up to 1, the scale in the de-

composition is �xed implicitly. Furthermore, Assumption 1-(i) and Assumption 3-(i) imply

that E[Aj j T = t] must be strictly decreasing in t over the support of wait-time between

settlement conferences and court hearings T . This rules out the possibility of duplicate
eigenvalues in the decomposition, and also uniquely links the eigenvalues and eigenvectors
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to each speci�c elements in T . Thus LSijT and �j are identi�ed using the partition DjT j. It

then follows that LT;Sk is also identi�ed from (14) once LSijT is identi�ed.

It remains to show that fSi(: j Ai = 1; T = t) is identi�ed over its full support. (Note

LSijT identi�ed above is only a discretized version of this conditional density.) For any s 2 S,
de�ne a jT j-vector ls;Sk whose m-th coordinate is given by fSi(s; Sk 2 dm j Ai;k = 1), where
dm is the m-th interval in the partition DjT j used for identi�cation of LSijT and �j above.

By construction,

ls;Sk = (LT;Sk)
0 �s (16)

where (LT;Sk)
0 is the transpose of LT;Sk ; and �s is a jT j-vector with the t-th coordinate being

fSi(s j Ai = 1; T = t).18 The coe¢ cient matrix (LT;Sk)
0
does not depend on the realization

of Si = s while vectors �s and ls;Sk both do. With LT;Sk invertible and identi�ed above and

with ls;Sk directly identi�able, �s is recovered as the unique solution of the linear system in

(16) for any s 2 S. �

Proof of Proposition 1.. By de�nition, the function 't(s) on the L.H.S. of (10) is directly

identi�able for all s; t. For any given t 2 T , suppose there exists ~ht 6= ht such that 't(s) =R1
0
~ht(v)�(v; s)dv for all s 2 St. Then (10) implies:Z 1

0

h
~ht(v)� ht(v)

i
�(v; s)dv = 0

for all s 2 St. It then follows from Assumption 5 that ~ht(v) = ht(v) almost everywhere

FV jt for such t. This establishes the identi�cation of ht(v) for any t 2 T and v 2 Vt. Thus
Pr( 1

�p
� b; 1

�p+�d
� �t) is identi�ed for all t 2 T and b 2 [1;+1), i.e. the support of ��1p given

�p+�d � ��t. (To see this, note that for any t, the support of V �t given �p+�d � ��t is by
construction identical to that of ��1p given (�p+ �d)

�1 � �t.) It then follows that Pr(�p � �
; �p + �d � ��t) is identi�ed for all t 2 T and � 2 (0; 1) using Jacobian transformation. �

18To see this, note for any s and dm, the Law of Total Probability implies fSi(s; Sk 2 dm j Ai;k = 1) can
be written as: P

t2T fSi(s j T = t; Sk 2 dm; Ai;k = 1)Pr(T = t; Sk 2 dm j Ai;k = 1)
=

P
t2T fSi(s j Ai = 1; T = t) Pr(T = t; Sk 2 dm j Ai;k = 1)

where the equality follows from Assumption 1.
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Appendix C: Monte Carlo Study

In this section we present some evidence of the �nite-sample performance of the Maximum

Simulated Likelihood estimator proposed in Section 4. For the sake of simplicity, we focus

on a simple design where cases are homogenous. Let the data-generating process be de�ned

as follows. Let R 2 fr 2 [0; 1]3 : r1 + r2 + r3 = 1g follow a Dirichlet distribution with

concentration parameters (�1; �2; �3). Let �p = 1�R1 and �d = R2�(1�R1)+1 = R1+R2.
By construction, the support of (�p; �d) is f(�; �0) 2 [0; 1]2 : 1 � � + �0 � 2g, which is
consistent with our model of bargaining with optimism. The marginal distribution of �p is

Beta(�2 + �3; �1) (because the marginal distribution of R1 is Beta(�1; �2 + �3)); and the

marginal distribution of �d is Beta(�1 + �2; �3).
19 Let �0 � �1 + �2 + �3. Table C1 below

summarizes the relation how the concentration parameters determine the key features of the

distribution of (�p; �d):

Table C1: Summary of the Joint Distribution of (�p; �d)

�p �d

Marg. distr. Beta(�2 + �3; �1) Beta(�1 + �2; �3)

Mean �2+�3
�0

�1+�2
�0

Variance �1(�2+�3)

�20(�0+1)

�3(�1+�2)

�20(�0+1)

Skewness 2(�1��2��3)
p
�0+1

(�0+2)
p
�1(�2+�3)

2(�3��1��2)
p
�0+1

(�0+2)
p
�3(�1+�2)

Mode (marginal) �2+�3�1
�0�2

�1+�2�1
�0�2

Correlation �
p
�1�3p

(�2+�3)(�1+�2)

We also use the simple design where the distribution of the cake: gamma(1; 1). Pr(D =

1) = 0:05 and that the distribution of wait-time T is Binomial with parameters 5 and 0:4.

The results are reported in the following tables:

19The covariance between �p and �d is given by: Cov(�p; �d) = Cov(1 � R1; R1 + R2) = V ar(R1) �
Cov(R1; R2), which is used to calculate the expression reported in Table C1.
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Table C2: Results for DGP # 1: � �[1.25,1.50,2.70]

DGP1 mean std. dev l.q. med. h.q. r.m.s.e. m.a.e.

N = 200 �1 1.580 0.864 0.945 1.456 1.996 0.923 0.467

�2 1.635 0.860 1.155 1.401 1.801 0.868 0.328

�3 3.090 1.334 2.157 2.841 3.734 1.387 0.723

� 0.385 0.213 0.208 0.343 0.539 0.213 0.172

N = 400 �1 1.424 0.599 0.998 1.350 1.705 0.623 0.350

�2 1.482 0.489 1.131 1.403 1.711 0.489 0.312

�3 2.757 0.960 2.149 2.645 3.224 0.960 0.541

� 0.378 0.175 0.232 0.362 0.517 0.176 0.149

N = 800 �1 1.291 0.431 0.999 1.210 1.495 0.431 0.246

�2 1.330 0.318 1.126 1.275 1.494 0.359 0.266

�3 2.489 0.574 2.127 2.439 2.920 0.609 0.436

� 0.355 0.135 0.256 0.324 0.453 0.142 0.111

Table C3: Results for DGP # 2: � =[3.60, 2.00, 1.40]

DGP1 mean std. dev l.q. med. h.q. r.m.s.e. m.a.e.

N = 200 �1 5.014 2.406 3.503 4.465 5.798 2.785 1.187

�2 1.958 0.655 1.515 1.832 2.274 0.655 0.443

�3 2.056 0.916 1.460 1.828 2.290 1.124 0.432

� 0.263 0.161 0.142 0.220 0.351 0.211 0.199

N = 400 �1 4.562 1.496 3.428 4.248 5.400 1.775 0.788

�2 1.727 0.363 1.481 1.672 1.921 0.454 0.374

�3 1.871 0.563 1.474 1.730 2.154 0.733 0.342

� 0.230 0.105 0.165 0.204 0.277 0.200 0.197

N = 800 �1 4.383 0.964 3.644 4.273 4.964 1.239 0.743

�2 1.695 0.259 1.533 1.696 1.798 0.400 0.333

�3 1.828 0.378 1.559 1.759 2.087 0.570 0.359

� 0.231 0.089 0.168 0.216 0.273 0.191 0.184
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Appendix D: Calculating Counterfactuals

In this appendix we provide further details for calculating the counterfactual mean settlement o¤er under

compensation caps considered in Section 7. First, we calculate the counterfactual density of S j A = 1 under
the proposed caps on C. Let x denote the variables that a¤ect the distribution of C (that is, age, income

and severity, which is suppressed in the notation below). Let f(: j x) denote the conditional density of C; h
denote the probability mass for wait-time T (which is orthogonal to �;C). By construction,

@
@s PrfS � s j A = 1; X = xg =

@
@s PrfS�s;A=1jX=xg

PrfA=1jX=xg (17)

where the denominator is P
t Pr

n
�p + �d � 1 � 1��t

�t

o
h(t)

due to independence between T and (�;C); and the numerator is:

@
@s

P
t

�Z �c

0

Pr
�
�p � s

c�t
; �p + �d � 1

�t

�
f(c j x)dc

�
h(t)

=
P

t

�
@
@s

Z �c

0

Pr
�
Y1 � 1� s

c�t
; Y2 � 1��t

�t

�
f(c j x)dc

�
h(t)

where Y1 � 1 � �p and Y2 = �p + �d � 1. Assuming the order of integration and di¤erentiation can be
changed and using the fact that �1� s��t=c 2 (0; 1), c 2 ( s

�t
;+1)�, we can write the term in the square

brackets on the right-hand side for each t asZ 1

s��t
Pr
n
Y2 � 1��t

�t

���Y1 = 1� s��t=co fY1(1� s��t=c)fC(c j x)
c�t

dc

=

Z 1

0

Pr

�
Y2
1� � �

1��t
�t(1��)

����Y1 = �� fY1 (�)fC
�

s
�t(1��) jx

�
�t(1��) d�

where the equality follows from changing variables between c and � � 1� s
c�t
.

Suppose we put a cap ĉ on total compensation, then the expression in the numerator on the right-hand

side of (17) becomes

@
@s

P
t

24 R ĉ
0
Pr
�
�p � s

c�t
; �p + �d � 1

�t

�
f(c j x)dc+

PrfC � ĉ j xgPr
�
�p � s

ĉ�t
; �p + �d � 1

�t

�
35h(t).

By construction, @
@s Pr

�
�p � s

ĉ�t
; �p + �d � 1

�t

�
is

@
@s Pr

�
Y1 � 1� s

ĉ�t
; Y2 � 1��t

�t

�
= Pr

�
Y2 � 1��t

�t

���Y1 = 1� s
ĉ�t

�
fY1 (1�s�

�t=ĉ)

ĉ�t
.

A similar expression exists with ĉ replaced by c. Given our estimates for the distribution of C and (Y1; Y2)

from Section 4, we calculate the counterfactual mean of settlement o¤ers using these formulas and the

simulation-based integration. The estimated counterfactual means and their di¤erences with empirical means

in the data are reported in Table 5.

Next, we explain how to calculate the distribution of S j A = 1 under counterfactual caps on C. Recall
by construction

PrfS � s j A = 1; X = xg = PrfS�s;A=1jX=xg
PrfA=1jX=xg
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where the denominator is calculated as before. The numerator under a cap ĉ is

P
t

"Z ĉ

0

Pr
�
�p � s

c�t
; �p + �d � 1

�t

�
f(c j x)dc+ Pr(C � ĉ j x) Pr

�
�p � s

ĉ�t
; �p + �d � 1

�t

�#
h(t). (18)

To calculate the term in the square brackets, we need to consider two cases.

Case 1: ĉ � s��t. Then s
ĉ�t
� 1 and

Pr
�
�p � s

ĉ�t
; �p + �d � 1

�t

�
= Pr

�
Y2 � 1��t

�t

�
.

Besides, Z ĉ

0

Pr
�
�p � s

c�t
; �p + �d � 1

�t

�
f(c j x)dc =

Z ĉ

0

Pr
�
Y1 � 1� s

c�t
; Y2 � 1��t

�t

�
f(c j x)dc

= Pr
�
Y2 � 1��t

�t

�Z ĉ

0

f(c j x)dc = Pr
�
Y2 � 1��t

�t

�
Pr (C � ĉ j x)

where the second equality holds because ĉ � s��t implies 1 � s
c�t

< 0 for all c � ĉ. Therefore the square

bracket in (18) is

Pr
�
Y2 � 1��t

�t

�
Pr (C � ĉ j x) + Pr(C � ĉ j x) Pr

�
Y2 � 1��t

�t

�
= Pr

�
Y2 � 1��t

�t

�
Case 2: ĉ > s��t. Then s

ĉ�t
< 1 andZ ĉ

0

Pr
�
�p � s

c�t
; �p + �d � 1

�t

�
fC(c j x)dc

=

Z ĉ

s��t
Pr
�
Y1 � 1� s

c�t
; Y2 � 1��t

�t

�
fC(c j x)dc+ Pr

�
Y2 � 1��t

�t

�
Pr(C � s��t j x)

=

Z 1� s
ĉ�t

0

Pr
�
Y1 � � ; Y2 � 1��t

�t

�
fC

�
s

�t(1� �)

����x� s

(1� �)2�t
d� + Pr

�
Y2 � 1��t

�t

�
Pr(C � s��t j x)

where the �rst equality uses the fact that 1� s
c�t
< 0 if c > s��t and the second uses the change of variables

between c and � � 1� s
c�t
. Furthermore

Pr
�
Y1 � � ; Y2 � 1��t

�t

�
=

Z 1

�

Pr
�
Y2 � 1��t

�t

���Y1 = �� fY1(�)d�.
Hence the square bracket in (18) isZ 1� s

ĉ�t

0

Pr
�
Y1 � � ; Y2 � 1��t

�t

�
fC

�
s

�t(1� �)

����x� s

(1� �)2�t
d�

+ Pr
�
Y2 � 1��t

�t

�
Pr(C � s��t j x) + Pr(C � ĉ j x) Pr

�
Y1 � 1� s

ĉ�t
; Y2 � 1��t

�t

�
.

Again given our estimates for the distribution of C and (Y1; Y2) from Section 4, we can calculate the coun-

terfactual distribution of settlement o¤ers using these formulas and simulation-based integration. These

estimated counterfactual distributions of S j A = 1 are then inverted to estimate counterfactual quantiles,
whose di¤erences with the empirical quantiles are reported in Table 6.
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