
Department of Economics
Baker Hall, MS22
6100 Main Street, Houston, Texas 77005
https://economics.rice.edu

RISE Working Paper15-006

“Banking Crises, Early Warning Models, 

and Efficiency” 

by Pavlos Almanidis and Robin C. Sickles

RISE RICE INITIATIVE for the
STUDY of ECONOMICS



Banking Crises, Early Warning Models, and E¢ ciency�

Pavlos Almanidis
International Transfer Pricing Services

Ernst & Young LLP

Robin C. Sickles
Department of Economics

Rice University

June 12, 2015

Abstract

This paper proposes a general model that combines the Mixture Hazard Model with
the Stochastic Frontier Model for the purposes of investigating the main determinants of
the failures and performances of a panel of U.S. commercial banks during the �nancial
crisis that began in 2007. The combined model provides measures of the probability and
time to failure conditional on a bank�s performance and vice versa. Both continuous-
time and discrete-time speci�cations of the model are considered in the paper. The
estimation is carried out via the expectation-maximization algorithm due to incomplete
information regarding the identity of at-risk banks. In- and out-of-sample predictive
accuracy of the proposed models is investigated in order to assess their potential to
serve as early warning tools.
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1 Introduction

In light of the recent 2007-2011 �nancial meltdown in the United States (U.S.), during
which more than 400 banks and thrifts failed, that is were forced into closure by regulatory
agencies1, the need for e¤ective regulations and intervention policy that would identify and
resolve future crises and undertake prompt corrective actions to resolve such crises with
minimal cost in a timely fashion has been recognized as essential to the health of the U.S.
economy. In this paper we only consider failed banks as ones that appear on the FDIC�s
failed bank list and ceased their operation due to reasons other than merger or voluntary
liquidation, or that remained inactive or no longer were regulated by the Federal Reserve.
The 2007-2011 �nancial crisis, which originated from the secondary market for residential
mortgage-backed securities (RMBS) immediately after the collapse of the housing bubble
in 2006, caused severe losses to banks and in particular large banks, which were highly
involved in the RMBS market. At the same time and as a result of the large banks�
widespread distress and contagion e¤ects, the number of problem banks on the watch list
maintained by the Federal Deposit Insurance Corporation (FDIC) dramatically increased.
Systemically important �nancial institutions at risk, commonly described as too-big-to-
fail, received heavy doses of government funds through the Troubled Asset Relief Program
(TARP) from regulatory authorities who apparently believed that the banks�failures would
impose greater systemic risk that could substantially damage the economy and lead to
conditions similar to, or possibly exceeding, those of the Great Depression. The �nancial
crisis footprint was not the same across the states. Those that experienced the most failures
were California, Florida, Georgia and Illinois, accounting for more than half of the failures
in the U.S.

Banking crises are not a new phenomena in the U.S. economy2 and regulatory authorities
have always considered banking failures as a major public policy concern, because of the
special role that banks play in the economic network and in the implementation of an
e¤ective monetary policy. The distinguishing characteristic of the banking crisis of 2007-
2011 from those in the 1980s and 1990s, however, is that failures were not limited to small
�nancial institutions. Rapid credit expansion and low quality loans and investments made
during a period of economic expansion mainly took their toll on large multi-billion dollar
�nancial institutions. Approximately one in �ve banks that failed had assets of over $1
billion and in 2008 thirty-six percent were large banks, among them the largest bank failure
in the history of the U.S., that of Washington Mutual with $307 billion in assets.3 That
same year saw Lehman Brothers �le for Chapter 11 bankruptcy protection and IndyMac
Bank with $32 billion in assets taken over by the FDIC.4 These large �nancial institution

1According to the Federal Deposit Insurance Corporation�s Failed Bank List available at:
http://www.fdic.gov/bank/individual/failed/banklist.html

2The Great Depression of 1930s and savings and loan (S&L) crisis of the 1980s and 1990s are the two
most obvious examples from the last century.

3Continental Illinois Bank and Trust Company of Chicago failed in 1984 and had one-seventh of Wash-
ington Mutual�s assets.

4Chapter 11 permits reorganization under the bankruptcy laws of the United States. A �nancial insti-
tution �lling for Chapter 11 bankruptcy protection usually proposes a plan of reorganization to keep its
business alive and pay its creditors over time.
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failures created large uncertainties about the exposure of other �nancial institutions (healthy
and troubled) to additional risks, reduced the availability of credit from investors to banks,
drained the capital and money markets of con�dence and liquidity, triggered the failure of
smaller community banks5, and raised fears of severe instability in the �nancial system and
the global economy.

In the U.S., the FDIC and state banking regulatory authorities are responsible for the
identi�cation and resolution of insolvent institutions. A bank is considered at a risk of im-
mediate closure if it is unable to ful�l its �nancial obligations the next day or its capital
reserves fall below the required regulatory minimum.6 The FDIC is required to resolve out-
standing issues with problem banks in a manner that imposes the least cost on the deposit
insurance fund (DIF) and ultimately on the taxpayer. Thus, early detection of insolvent
institutions is of vital importance, especially if the failure of those institutions would pose
a serious systemic risk on the �nancial system and the economy as a whole. The FDIC
and state authorities utilize on-site and o¤-site examination methods in order to determine
which institutions are insolvent and, thus, should be either closed or be provided �nancial
assistance in order to rescue them. The o¤-site examinations are typically based on statis-
tical and other mathematical methods and constitute complementary tools to the on-site
visits made by supervisors to institutions considered at risk. There are three advantages
to o¤-site versus on-site examinations: (i) the on-site examinations are more costly as they
require the FDIC to bear the cost of visits and to retain extra sta¤ during times when
economic conditions are stable; (ii) the on-site examinations are usually time-consuming
and cannot be performed with high frequency; and (iii) the o¤-site examinations can help
allocate and coordinate the limited on-site examination resources in an e¢ cient way with
priority given to �nancial institutions facing the most severe challenges. The major draw-
back of statistically-based o¤-site tools is that they incorporate estimation errors which may
a¤ect the classi�cation of banks as failure and nonfailures. An e¤ective o¤-site examination
tool must aim at identifying problem banks su¢ ciently prior to the time when a marked
deterioration of their �nancial health would occur. Therefore, it is desirable to develop
a model which would identify future failures with a high degree of accuracy in a timely
manner and would rarely �ag healthy banks as being at risk of closure.

This paper develops an early warning model of bank troubles and failures based on
the Mixture Hazard Model (MHM) of Farewell (1977, 1982) with continuous and discrete
time speci�cations.7 MHM e¤ectively combines the static model, which is used to identify
troubled banks, and the duration model, which provides estimates of the probability of
failure along with the timing of closure of such troubled banks. We view the �nancial

5Community banks are banks with assets sizes of $1 billion or less. Their operation is oftentimes limited
to rural communities and small cities. Community banks usually engage in traditional banking activities
and provide more personal-based services.

6Under the current regulations issued by the Basel Committee on Banking Supervision (Basel II&III),
a bank is considered as failed if its ratio of Tier 1 (core) capital to risk-weighted assets is 2% or lower.
This ratio must exceed 4% to avoid supervisory intervention and prompt corrective action as underlined in
Federal Deposit Insurance Corporation Improvement Act (FDICIA) of 1992. A bank with ratio of 6% or
above is considered as a well-capitalized bank.

7Applications of the discrete-time version of the MHM can be found in Gonzalez-Hermosillo et al.(1997),
Yildirim (2008) and Topaloglu and Yildirim (2009).
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crisis as a negative shock that a¤ected banks in an unequal way. Well-capitalized, well-
prepared, and prudently-managed institutions may have felt relatively little distress during
the �nancial turmoil. On the other hand, poorly-managed banks that previously engaged
in risky business practices faced an increased probability of their being on the FDIC watch
list and, subsequently forced into closure or merger with a surviving bank by regulatory
authorities. Unlike standard duration models, which assume that all banks are at the risk
of failure, we implicitly assume that a proportion of banks will survive for a su¢ ciently
long time after the end of a crisis and thus are incapable of entering an absorption state.
In other words, we assume that the probability of failure for a bank that has never been
on the watch list is arbitrarily close to zero. The MHM is appropriate for dealing with this
issue as it is able to distinguish between healthy and at-risk of failure banks.

One of our (testable) assumptions concerns the fact that banks with low performance,
as calculated by the radial measure of realized outcome to the maximum potential outcome,
will increase their probability of failure. An ine¢ ciently-managed bank could cumulatively
save valuable funds by improving its performance. The saved funds often prove to be vital
in servicing a bank�s short-term obligations during �nancial crisis periods when interbank
markets su¤er from poor liquidity, and would therefore prevent the bank to need to draw
on shareholders� equity. Shareholders� equity is the most expensive source of �nancing,
the reduction of which would trigger on-site examination by regulators and possibly would
place the bank on the watch list of problem banks. On-site examination subsequently would
redirect the bank management�s focus on clearing problem accounts rather than on improv-
ing its overall performance and thus could make it even less e¢ cient. This process could
continue in a spiral fashion, deteriorating the bank�s �nancial assets and the capital. To
account for this mutual e¤ect, we employ a single step joint estimation procedure proposed
by Tsionas and Papadogonas (2006), wherein a stochastic frontier model (SFM) is jointly
estimated with a frailty model.

A challenge that we face in this paper is the incomplete information associated with the
troubled banks on the watch list of the FDIC. Each quarter the FDIC releases the number
of problem banks, but their identities are not publicly disclosed. To address this problem
of missing information, we make an assumption that a bank that failed was on this list and
based on available information we make a prediction of which banks potentially could be on
this list through an expectation-maximization (EM) algorithm, which is designed to deal
with this type of incomplete information. We also follow a forward step-wise procedure
in model building and covariates selection, which is not only based on the conventional
measures of the goodness-of-�t and statistical tests, but also on the contribution of these
covariates to the predictive accuracy of the proposed models.

Finally, our model recognizes the fact that insolvency and failure are two di¤erent events.
The realization of the �rst event is largely attributed to the actions undertaken by a bank
itself, while the second usually occurs as a result of regulators� intervention following its
insolvency. Supervisors typically tend not to seize an insolvent bank unless it has no realistic
probability of survival and its closure does not threaten the soundness and the stability of
the �nancial system. Based on the above considerations, we are able to assess the type I
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and type II errors implicit in bank examiners�decision process when closing banks.8 We
�nd that the within sample and out-of-sample average of the two misclassi�cation errors is
less than 6% and 2%, respectively, for our preferred model. We also �nd that the predictive
power of our model is quite robust when using estimates derived from di¤erent sub-periods
of the �nancial crisis.

The remainder of the paper is organized as follows. In Section 2 we provide a brief review
of banking crisis models. Section 3 describes the potential decision rule adopted by the
regulatory authorities in determining and closing insolvent banks, which naturally will lead
to the MHM. Two variants of the MHM are discussed, the continuous-time semiparametric
proportional MHM and discrete-time MHM. In section 4 we discuss the joint MHM-SFM.
Section 5 deals with empirical speci�cation issues and the data description. Estimation,
testing, and predictive accuracy results are provided in section 6, along with a comparison
of various models and speci�cations. Section 7 contains our main conclusions.

2 Banking Crisis Studies

Accurate statistical models that serve as early warning tools and that potentially could be
used as an alternative or complement to costly on-site visits made by supervisors have been
well documented in the banking literature. These models have been applied successfully to
study banking and other �nancial institutions�failures in the U.S. and in other countries.
As the literature that deals with bankruptcy prediction of �nancial institutions is vast and
there are a myriad of papers that speci�cally refer to the banking industry failures, we will
discuss only few the studies that are closely related to our work and are viewed as early
warning models.

The more widely-used statistical models for bankruptcy prediction are the single-period
static probit/logit models and the methods of discriminant analysis. These method usu-
ally estimate the probability that an entity with speci�c characteristics will fail or survive
within a certain time interval. The timing of the failure is not provided by such models.
Applications of the probit/logit models and discriminant analysis can be found in Altman
(1968), Meyer and Pifer (1970), Deakin (1972), Martin (1977), Lane et al. (1986), Cole and
Gunther (1995, 1998), Cole and Wu (2011), among others.

Others in this literature have employed the Cox proportional hazard model (PHM) and
the discrete time hazard model (DTHM) to explain banking failures and develop early
warning models.9 In the hazard model the dependent variable is time to the occurrence
of some speci�c event, which can be equivalently expressed either through the probability
distribution function or the hazard function, which provides the instantaneous risk of failure
at some speci�c time conditional on the survival up to this time. The PHM has three
advantages over the static probit/logit models: (i) it provides not only the measure of
probability of failure (survival), but also the probable timing of failure; (ii) it accommodates

8Typically, a type I error is de�ned as the error due to classifying a failed bank as a non-failed bank,
while a type II error arises from classifying a non-failed bank as a failed bank.

9A thorough discussion of hazard models can be found in Cox (1972), Lancaster (1990), Kalb�eisch and
Prentice (2002), and Klein and Moeschberger (2003).
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censored observations, those observations that survive through the end of the sample period;
and (iii) it does not make strong assumptions about the distribution of duration times. The
disadvantage of the PHM model is that it requires the hazard rate to be proportional to
the baseline hazard between any two cross-sectional observations. Moreover, inclusion
of time-varying covariates is problematic. The DTHM, on the other hand, easily allows
for time-varying covariates and has the potential to provide more e¢ cient estimates and
improved predictions. The application of PHM to the study the U.S. commercial banking
failures was undertaken by Lane et al. (1986), Whalen (1991), as well as in Wheelock and
Wilson (1995, 2000).10

Barr and Siems (1994) and Wheelock and Wilson (1995, 2000) were the �rst to consider
ine¢ ciency as a potential in�uential factor explaining U.S. commercial banking failures dur-
ing the earlier crisis. They estimated the e¢ ciency scores with Data Envelopment Analysis
(DEA) techniques, which were then used in a static model to predict banking failures.11

Wheelock and Wilson (1995, 2000), on the hand, included ine¢ ciency scores among their
regressors to allow these to a¤ect the probability of failure and acquisitions by other banks in
the PHM framework. They employed three measures of radial technical ine¢ ciency, namely
the parametric cost ine¢ ciency measure, the nonparametric input distance function mea-
sure, and the inverse of the nonparametric output distance function measure. According to
the authors, the �rst two had a statistically signi�cant (positive) e¤ect on the probability of
failure, while only the �rst measure signi�cantly decreased the acquisition probability. The
estimation of the models was conducted in two stages. The �rst stage involved the para-
metric or nonparametric estimation of ine¢ ciency scores. In the second stage these scores
were used among the explanatory variables to investigate their e¤ect on the probabilities of
failure and acquisition. Tsionas and Papadogonas (2006) criticize the two-step approach,
arguing that this may entail an error-in-variables bias as well as introduce an endogenous
auxiliary regressor.

3 Mixture Hazard Model

Our banking failure modelling approach is based on the rules and policies that regulatory
authorities implement in order to identify problem banks that subsequently fail or survive.12

We �rst let Hit de�ne the �nancial health indicator of bank i at time t and assume that
there is a threshold level of it, H�

it, such that if the �nancial health falls bellow this level
then the bank is considered at risk of closure by regulatory authorities. Second, we let
the di¤erence between H�

it and Hit, denoted by h
�
it, be dependent on bank-speci�c �nancial

metrics and market variables as follows:

h�it = H
�
it �Hit = x0it� + eit (1)

10Shumway (2001), Halling and Hayden (2006), Cole and Wu (2009), and Torna (2010) provide non-
banking applications, along with arguments for using the DTHM over the static models and PHM.
11DEA, which was proposed by Charnes et al. (1978), is a nonparametric approach that estimates a

relative e¢ ciency score for a bank based on linear programming techniques.
12See Kasa and Spiegel (2008) on various regulatory closure rules.
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where eit represents the error term, which is assumed to be identically and independently
distributed (iid) across observations and over time.13

The �nancial health threshold of a particular bank is a composite and oftentimes sub-
jective index and its lower bound is not observable to the econometrician; therefore, h�it is
not observable as well. Instead a binary variable hit can be de�ned such that

hit =

�
1 if h�it > 0
0 if h�it � 0

Based on the above, the probability that a bank will become a problem bank is given by

P (hit = 1) = P (h
�
it > 0) = P (eit > �x0it�) = Fe(x0it�)

where Fe is the cumulative distribution function of the random error e, which can be assumed
to be either normally distributed (probit model) or logistically distributed (logit model).

Speci�cation of the likelihood function then follows that of the standard hazard model,
wherein a nonnegative random variable T represents the time to failure of a bank within a
given period of time. This is characterized by the conditional probability density function
fT and the cumulative distribution function FT . A binary variable di is also speci�ed and
takes on a value of 1 for observations that fail at time t and 0 for observations that are right
censored (i.e., when a bank does not fail by the end of the sample period or disappears during
the period for reasons other than failure).14 Assuming that the rate at which regulatory
authorities tend to seize healthy banks is arbitrary close to zero, the likelihood function for
a bank i is given by

Li(�;x;w) = [Fe(x
0
i�)�

p
i (t;wi)S

p(t;wi)]
di
�
Fe(x

0
i�)S

p(t;wi) +
�
1� Fe(x0i�)

��1�di (2)

where Sp is a survivor function, which represents the probability that a problem bank will
survive for a period longer than t and �p represents the hazard rate or probability that
such bank will fail during the next instant, given that it was in operation up until this time.
The � represents the parameter vector, while x and w are covariates associated with the
probability of being problem and failed, respectively. A detailed derivation of the likelihood
function is provided in Appendix A of this paper. After rearranging the expression in (2) and
dropping the superscript from measures pertaining to problem banks to reduce notational
clutter, the sample likelihood for all banks can be written as:

13The iid assumption of the error term can be relaxed in the panel data context by assuming eit = �i+�it
with �i � N(0; �2�) and �it � N(0; �2�) independent of each other. This adds an additional complication to
the model and it is not pursued in this paper.
14 In this paper, failed banks are only considered as the banks that appear on the FDIC�s failed bank list.

Banks that ceased their operation due to reasons other than failure (e.g., merger or voluntary liquidation)
or remained inactive or are no longer regulated by the Federal Reserve, have censored duration times.
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L(�;x;w; d) =
Yn

i=1
Li(�;x;w; d) (3)

=
Yn

i=1
Fe(xi�)

hit(1� Fe(xi�))1�hitf�i(t;wi)gdihitfSi(t;wi)ghit

If T is assumed to be a time-varying variable, then the model can be estimated based
on the proportional hazards assumption (Cox, 1972), which unfortunately does not allow
for time-varying covariates. Following Kuk and Chen (1992) and Sy and Taylor (2000), the
survivor and hazard functions in this case are given by the expressions bellow:

�i(t;wi) = �0(t) exp(w
0
i�) and Si(t;wi) = S0(t)

exp(w0i�) (4)

where, �0(t) and S0(t) de�ne the conditional baseline hazard function and baseline survivor
function, respectively. These are nonnegative functions of time only and are assumed to be
common to all banks at risk.

The discrete-time version of the model on the other hand is more �exible and adds
more dynamics to the model by allowing for inclusion of time-varying covariates. This
speci�cation, however, requires that the time-varying regressors remain unchanged in the
time interval [t; t+1]. The survivor and hazard functions in the discrete-time MHM can be
shown to be derived as:15

Sij(t;w; u) =

"Yti

j=1

1

1 + exp(w
0
ij�)

#
and �ij(t;w) = 1�

S(tij)

S(ti;j�1)
forj = 1; 2; :::; ti:

In what follows, we refer to the continuous-time MHM as Model I and the discrete-
time MHM as Model II. Following the standard nomenclature in the medical and biological
sciences, we refer to the portion of the model that assesses the �nancial health of a bank as
the incidence component and the portion of the model that assesses survival times as the
latency component.

If hit is observed by the econometrician for each individual bank as it is by regulators then
the estimation process reduces to that of the standard MHM. However, as discussed above
hit is only partially observed by the econometrician. We address this problem of incomplete
information by utilizing the EM algorithm to deal with the missing data. The EM algorithm
consists of two iterative steps: the expectation (E) step and the maximization (M) step.
The expectation step involves the projection of an appropriate functional (likelihood or log-
likelihood function) containing the augmented data on the space of the original (incomplete)
data. Thus, the missing data are �rst estimated, given the observed data and the initial
estimates of the model parameters, in the E step. In the M step the function is maximized
while treating the incomplete data as known. Iterating between these two steps yields
estimates that under suitable regulatory conditions converge to the maximum likelihood

15See Cox and Oaks (1984), Kalb�eisch and Prentice (2002), and Bover et al. (2002) for discussion on
discrete-time proportional hazard models.
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estimates (MLE).16

To implement the EM algorithm �rst consider the expectation of the full log-likelihood
function with the respect to the hit and the data, which completes the E step of the algo-
rithm. Linearity of log-likelihood function with respect to the hit considerably facilitates
the calculations and the analysis.

The log-likelihood for the ith observation in the M step is given by:

E
(M)
hjX;W;�;�0 [Li(�;x;w; d)] = ~h

(M)
it log [Fe(xi�)] + (1� ~h(M)

it ) log [1� Fe(xi�)] (5)

+~h
(M)
it di log [�i(t;wi)] + ~h

(M)
it log [Si(t;wi)]

where ~hit is the probability that the ith bank will eventually belong to the group of problem
banks at time t, conditioned on the observed data and the model parameters. It represents
the fractional allocation to the problem banks and is given by:

~h
(M)
it = E

h
hitj�(M); Data

i
= Pr(h

(M)
it = 1jti > Ti) (6)

=

(
Fe(x0i�

(M))Si(t;wi)

Fe(x0i�
(M))Si(t;wi)+(1�Fe(x0i�

(M)))
if di = 0

1 otherwise

In Model I, the nuisance baseline hazard function �0 is estimated nonparametrically from
the pro�le likelihood function as:

�̂0(t) =
N(ti)X

j2R(ti)
~hjt exp(w0j�)

(7)

where N(ti) is the number of failures and R(ti) is the set of all individuals at risk at time
ti , respectively. Substituting (7) into (5) leads to the M step log-likelihood for Model I:

~L(�;x;w; ~h) =
Xn

i=1

n
~hit logFe(x

0
i�) + (1� ~hit) log(1� Fe(x0i�))

o
(8)

+
XN

i=1

�
w0i��N(ti) log

�X
j2R(ti)

~hjt exp(w
0
j�)

��
= L1(�;x; ~h) + ~L2(�;w; ~h)

The full implementation of the EM algorithm involves the following four steps:

� Step 1: Provide an initial estimate for the parameter � and estimate the ordinary
MHM in order to obtain the starting values for �0;

� Step 2 (E step): Compute ~hit from (6) based on the current estimates and the observed
16For more discussion on the EM algorithm and its convergence properties and limitations see Dempster

et al. (1977) as well as McLachlan and Krishnan (1996).
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data;

� Step 3 (M step): Update the estimate of parameter � using (5); and

� Step 4: Iterate between steps 2 and 3 until convergence is reached.17

Alternatives to the EM method can also be utilized. For example, in his study of the
recent U.S. commercial banking failures Torna (2010) attempted to identify troubled banks
on the FDIC�s watch list based on their tier 1 capital ranking. Banks were ranked according
to their tier 1 capital ratio and the number of banks with the lowest value were selected
to match the number provided by the FDIC in each quarter. Other ratios, such as Texas
ratio, also can be utilized to deduce the problem banks. The Texas ratio was developed by
Gerard Cassidy to predict banking failures in Texas and New England during recessionary
periods of the 1980�s and 1990�s. It is de�ned as the ratio of nonperforming assets to total
equity and loan-loss reserves and banks with ratios close to one are identi�ed as high risk.
There are at least two limitations to these approaches besides their crude approximation.
First, they ignore other variables that play a pivotal role in leading banks to a distressed
state. For example, ratios based on nonperforming loans are major indicators of di¢ culties
that bank will face in near future, even if their current capital ratios are at normal levels.
Second, �nancial ratios that are used to classify banks as healthy or troubled cannot be
subsequently employed as determinants due to a possible endogeneity problem.

3.1 Combined SFM and MHM Model

In this section we consider the e¢ ciency performance of a bank as a determinant of the
probability of being both a problem bank and one that subsequently fails. The e¢ ciency
performance of a �rm relative to the best practice (frontier) technology �rm was formally
considered by Debreu ( 1951) and Farrell (1957). Aigner et al. (1977), Meeusen and
van den Broeck (1977), and Battese and Cora (1977) introduced the parametric stochastic
frontier model (SFM). In the SFM the error term is assumed to be multiplicative in a levels
speci�cation of the production or of one of its dual presentations, such as the cost function
we use in our analysis, and is composed of two parts: (i) a one-sided error term that captures
the e¤ects of ine¢ ciencies relative to the stochastic frontier; and (ii) a two-sided error term
that captures random shocks, measurement errors and other statistical noise.18

The general SFM is represented by the following functional relationship:

yit = g(zit;�) exp("it) (9)

where the dependent variable yit could represent cost, output, pro�t, revenue and so forth,
zit is a vector of independent regressors, and g(�) is the frontier function, which can be
17Convergence to a stationary point in the EM algorithm is guaranteed since the algorithm aims at

increasing the log-likelihood function at each iteration stage. The stationary point need not, however, be a
local maximum. It is possible for the algorithm to converge to local maxima or saddle points. We check for
these possibilities by selecting di¤erent starting values and checking for the proper signs of the Hessian.
18Excellent surveys of frontier models and their applications are found in Kumbhakar and Lovell (2000)

and Greene (2008).
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either linear or non-linear in coe¢ cients and covariates. Depending on the particular dual
representation of technology speci�ed, " = � � u [= log yit � log g(zit;�)] represents the
composed error term, with �it representing the noise and ui the ine¢ ciency process. The
noise term is assumed to be iid normally distributed with zero mean and constant variance.
Ine¢ ciencies are also assumed to be iid random variables with distribution function de�ned
on the domain of positive numbers (u 2 R+). Both � and u are assumed to be independent
of each other and independent of the regressors.19 In this paper, we follow Pitt and Lee
(1981) and assume that the ine¢ ciency process is a time-invariant random e¤ect, which
follows the half-normal distribution (i.e., ui � N+(0; �2u) ).

Under the above assumptions the marginal distribution of the composed error term,
which for the production or cost frontier model is derived as:

f"("it) =
2

(2�)Ti=2�Ti�1� �
exp

"
�"

0
it"it
2�2�

+
�"2i�

2

2�2

# �
1� �

�
Ti�"i�

�

��
(10)

where � =
p
�2� + Ti�

2
u , � = �u=��, and �"i = (1=Ti)

XTi

t=1
"it.20 The parameter � is the

signal-to-noise ratio and measures the relative allocation of total variation to the ine¢ ciency
term. In practice we can use an alternative parametrization, called the 
�parameterization,
which speci�es 
 = �2u=�

2.21

It can be also shown (see Jondrow et al., 1982) that the conditional distribution of the
ine¢ ciency term is given by

fuj"(uij"it) =
f";u("i; ui)

f"("i)
=

1
��(

ui���i
��

)h
1� �

�
���i
��

�i (11)

where fuj"(�) represents the normal distribution truncated at 0 with mean ��i = �Ti�"i�2u=�2
= �Ti�"i
 and variance �2� = �2u�2�=�2 = 
�2(1 � 
Ti); and �(�) and �(�) are, respectively,
the pdf and cdf functions of the standard normal distribution. The mean or the mode of
this conditional distribution function provides an estimate of the technical ine¢ ciency.

In the absence of any e¤ect of the ine¢ ciencies on the probability of being troubled and
failed, (10) and (11) can be employed to obtain the maximum likelihood estimates of model
parameters and e¢ ciency scores. However, consistent and e¢ cient parameter estimates
cannot be based solely on the frontier model when there is feedback between this measure
of economic frailty and the likelihood of failure and the ensuing tightening of regulatory
supervision. There is a clear need for joint estimation of the system when the decision of a
�rm is a¤ected by these factors.

19The assumption of independence of the ine¢ ciency term and the regressors is restrictive, but is necessary
for our current analysis. Its validity can be tested using the Hausman-Wu test. In the panel data context,
this assumption can be relaxed by assuming that ine¢ ciencies are �xed e¤ects or random e¤ects correlated
with all or some of the regressors (Hausman and Taylor, 1981; Cornwell, Schmidt, and Sickles, 1990).
20The cost frontier is obtained by reversing the sign of the composed error.
21This reparametrization is desirable as the 
 parameter has compact support, which facilitates the nu-

merical procedure of maximum likelihood estimation, hypothesis testing, and establishing the asymptotic
normality of this parameter.
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In deriving the likelihood function for this model, we maintain the assumption that
censoring is non-informative and statistically independent of hi. Following Tsionas and Pa-
padogonas (2006) we also assume that conditional on ine¢ ciency and the data the censoring
mechanism and hi are independent of the composed error term. To simplify notations, let

i = fxi; wi; zig denote the set of covariates and � = f�;�; �1; �2;�;�2�; �2ug be the vector
of the structural and distributional parameters. The observed joint density of the structural
model for bank i, given hi and after integrating out the unobserved ine¢ ciency term, can
be written as:

Li(yi; hi; dij
i;�0) =

Z 1

0
Fe(x

0
i� + �1ui)

hi(1� Fe(x0i� + �1ui))1�hi (12)

�f�i(t;wi; ui)gdihifSi(t;wi; ui)ghi f�("it � ui)f(ui)| {z } dui
f"(")fuj"(uj")

= f"("it)

Z 1

0
Fe(x

0
i� + �1ui)

hi(1� Fe(x0i� + �1ui))1�hi

�f�i(t;wi; ui)gdihifSi(t;wi; ui)ghifuj"(uj")dui:

The hazard rate and survival function for the continuous-time counterpart of the model are
now given by:

�i(t;wi; ui) = �0(t) exp(w
0
i�+ �2ui) and S(t;wi) = S0(t)

exp(w0i�+�2ui)

It should be noted that the above model is rather a general one and consists of three
individual parts: (1) the SFM; (2) the probit/logit model for the incidence part; and (3)
the standard hazard model for the latency part. Each of these three models are nested
within the general model. For example, if there is no association between ine¢ ciency and
the probability of being troubled or failed (�1 = 0 and �2 = 0), then (12) consists of two
distinct parts, the SFM and the MHM. Both can be estimated separately using the methods
outlined in the previous sections.

The integral in the joint likelihood (12) has no closed form solution and thus the max-
imization of this function requires numerical techniques, such as simulated maximum like-
lihood (SML) or Gaussian quadrature.22 In SML the sample of draws from fuj"(�) are
required to approximate the integral by its numerical average (expectation). As such, the

22Tsionas and Papadogonas (2006) employed the Gaussian quadrature in estimation of the model where the
technical ine¢ ciency has a potential e¤ect on �rm exit. Sickles and Taubman (1986) used similar methods
in specifying structural models of latent health and retirement status, while controlling for multivariate
unobserved individual heterogeneity in the retirement decision and in morbidity.
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simulated log-likelihood function for the ith observation becomes:

Li = logLi(yi; hi; dij
i;�0) = Constant� (Ti � 1)
2

log �2(1� 
Ti) (13)
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2
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+ log
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Fe(xi� + �1uij)

hit [1� Fe(xi� + �1uij)]1�hit [�i(t;wi; uij)]dihit [Si(t;wi; uij)]hit
o

where uis is a random draw from the truncated normal distribution fuj"(�) and J is the
number of draws. We utilize the inverse cdf method to e¢ ciently obtain draws from this
distribution as:

uij = �
�
i + ���

�1
�
Uis + (1� Uis)�(�

��i
��
)

�
(14)

where U is a random draw from uniform U [0; 1] distribution or a Halton draw. By sub-
stituting (14) into (13) and treating the hits as known we can maximize the log-likelihood
function L =

X
i
Li by employing standard optimization techniques and obtain the model

parameters.
Finally, after estimating the model parameters, the e¢ ciency scores are obtained as the

expected values of the conditional distribution, in the spirit of Jondrow et al. (1982):

ûi = E
h
uij"̂i; ~hi; di;
i;�0

i
=

Z 1

0
uiG(ui;�)fuj"(uj")duiZ 1

0
G(ui;�)fuj"(uj")dui

(15)

where G(ui; �) = ~F (x0i�+�1ui)
~hit
h
1� ~F (x0i� + �1ui)

i1�~hit
[�i(t;wi; ui)]

di~hit [S(t;wi; ui)]
~hit .

The integrals in the numerator and denominator are calculated numerically by the SML
method and the e¢ ciency score of ith �rm is estimated as TEi = exp(�ûi). It is straight-
forward to check that if � is zero then (15) collapses to the formula derived by Jondrow et
al. for production frontiers (i.e., ûi = E [uij"̂i] = �� + ��(

��
��
)=�(���� )).

The EM algorithm for the stochastic frontier MHM involves the following steps:

� Step 1: Provide initial estimates of the parameter vector �. Set the initial value
of parameters �1 and �2 equal to zero and obtain the initial value of the baseline
hazard function from (7). Consistent starting values of the variances of the noise and
ine¢ ciency terms are based on method of moments estimates

�̂2u =

�p
2=�

�
�

� � 4

�
m̂3

�2=3
(16)

�̂2� =

�
m̂2 �

�
� � 2
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�
�̂2u

�
13



where m̂2 and m̂3 are the estimated second and third sample moments of the OLS residuals,
respectively. Estimates of � and 
 parameters are obtained through the relevant expressions
provided above.

� Step 2 (E step): Compute ~hit based on the current estimates and the observed data
from

~h
(M)
it = E

h
hitj�(M);
i

i
= Pr(h

(M)
it = 1jti > Ti)8<: Fe(x0i�

(M)+�
(M)
1 ui)Si(t;wi;ui)

Fe(x0i�
(M)+�

(M)
1 ui)Si(t;wi;ui)+(1�Fe(x0i�

(M)+�
(M)
1 ui))

if di = 0

1 otherwise
(17)

� Step 3 (M step): Update the estimate of parameters by maximizing L via simulated
maximum likelihood technique.

� Step 4: Iterate between steps 2 and 3 until convergence.

Continuous-time and discreet-time versions of this combined model are referred as Model
III and Model IV, respectively, throughout this paper.

4 Empirical Model and Data

In this section we outline the empirical speci�cation used in estimating the four models
described above (Models I-IV). We describe the data on which our estimates are based
and the step-wise forward selection procedure we employ in model building and variable
selection.

4.1 Empirical Speci�cation

Following Whalen (1991) we employ a model with a two-year timeline to estimate the
probability of distress and failure and the timing of bank failure. In the Model I and Model
III, the time to failure is measured in months23 (1-24 months) starting from the end-year
of 2007, while in the Model II and Model IV the duration times are measured in quarters
as banks report their data on a quarterly basis. The covariates used in the estimation
process of Model I and Model III are based on information from the fourth quarter of
the 2007 Consolidated Reports of Condition and Income (Call Reports). State-speci�c
macroeconomic variables are also derived from the Federal Reserve databases to control for
state-speci�c e¤ects.

We employ the cost frontier in the stochastic frontier model speci�cation, which describes
the minimum level of cost given output and input prices. The gap between the actual cost

23Duration times measured in weeks were also considered, but not reported in this paper.
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and the minimum cost is the radial measure of total (cost) ine¢ ciency and is composed
of two parts: (i) the technical ine¢ ciency arising from excess usage of inputs and (ii) the
allocative ine¢ ciency that results from a non-optimal mix of inputs. We do not make this
decomposition but rather estimate overall cost ine¢ ciency. We adopt the intermediation
approach of Sealey and Lindley (1977), according to which banks are viewed as �nancial
intermediaries that collect deposits and other funds and transform them into loanable funds
by using capital and labor. Deposits are viewed as inputs as opposed to outputs, which is
assumed in the production approach.24

As in Kaparakis et al., (1994) and Wheelock and Wilson (1995), we specify a mul-
tiple output-input short-run stochastic cost frontier with a quasi-�xed input. Following
the standard banking literature we specify a translog functional form to describe the cost
function:25

logCit = �0+

5X
m=1

�m log ymit +
4X
k=1

�k logwkit

+
1

2

5X
m=1

5X
j=1

�mj log ymit log yjit + �1t+
1

2
�2t

2

+
1

2

4X
k=1

4X
n=1

�kn logwkit logwnit + �1 logXit +
1

2
�2(logXit)

2

+
5X

m=1

4X
k=1

�mk log ymit logwkit +
5X

m=1

�1x log ymit logXit

4X
k=1

�2x logwkit logXit +

5X
m=1

�mt log ymitt+

4X
k=1

�kt logwkitt+ �it + ui

where C is the observed short-run variable cost of an individual bank at each time period, ym
is the value of mth output, m = 1; ::; 5. Outputs are real estate loans (yreln), commercial
and industrial loans (yciln), installment loans (yinln), securities (ysec), and o¤-balance
sheet items (yobs). The w0s represent input prices of the total interest-bearing deposits
(dep), labor (lab), purchased funds (purf), and capital (cap). The quasi-�xed input (X)
consists of non-interest-bearing deposits. Kaparakis et al. assume that a bank takes the
level of non-interest-bearing deposits as exogenously given and since there is no market price
associated with this input, the quantity of it should be included in the cost function instead
of its price. We also include the time and its interaction with outputs and input prices to
account for non-neutral technological change. Symmetry (�mj = �jm and �kn = �nk) and
linear homogeneity in input price (

P4
k=1 �k = 1 ,

P4
k=1 �kn =

P4
k=1 �mk =

P4
k=1 �2x =

24See Baltensperger (1980) for example.
25The translog function provides a second-order di¤erential approximation to an arbitrary function at a

single point. It does not restrict the share of a particular input to be constant over time and across individual
�rms.
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P4
k=1 �kt = 0) restrictions are imposed by considering capital as the numeraire and dividing

the total cost and other input prices by its price.

4.2 Data

The data are from three main sources: (i) the public-use quarterly Call Reports for all U.S.
commercial banks, which is collected and administrated by the Federal Reserve Bank of
Chicago and the FDIC; (ii) the FDIC website, which provides information regarding failed
banks and industry-level indicators; and (iii) the website of the Federal Reserve Bank of St.
Louis, which provides information on regional-speci�c macroeconomic variables.

We drop bank observations with zero costs, zero output and input levels, as well as those
with obvious measurement errors and other data inconsistencies. In addition, we exclude
banks that voluntarily liquidated during the sample period and those that were chartered
and started to report their data after the �rst quarter of 200726, which require a special
treatment. The estimation sample consists of 125 banks that failed during 2008 and 2009
and 5,843 surviving banks.

More than forty bank-speci�c �nancial metrics, state-speci�c macroeconomic, geograph-
ical, and market structure variables are constructed from variables obtained form the above
sources as potential determinants of banking distress and failure. We apply the stepwise
forward selection procedure (Klein and Moeschberger, 2003) to chose the most relevant
explanatory variables based on conventional statistical tests and the Akaike Information
Criterion (AIC). In addition to these tests, we base our variable selection on their contri-
bution to the overall prediction accuracy of a particular model we employ. The �nal set
of variables pertaining to the incidence and the latency part includes proxies for the capi-
tal adequacy, asset quality, management, earnings, liquidity, and sensitivity (the so-called
"CAMELS")27, six market structure and geographical variables, and four state-speci�c vari-
ables. We use the same set of explanatory variables in both the incidence and latency parts
of our models in order to capture the di¤erent e¤ects that these have on the probability
that a particular bank is troubled, as well as the probability and timing of the resolution
of the bank�s troubles by the FDIC. Tables 1 and 2 provide our mnemonics for the variable
names, as well as their formal de�nitions.

The �rst variable in Table 1 is the tier 1 risk-based capital ratio. Banks with a high
level of this ratio are considered having su¢ cient capital to absorb the unexpected losses
occurring during the crisis and hence, have a higher chance of survival. We expect a negative
sign for this variable in both the incidence and latency parts. The next variable is the ratio
of nonperforming loans28 to total loans, which is the primary indicator of the quality of loans
made by banks and historically has been an in�uential factor in explaining their distress and
failure. The higher this ratio, the higher the probability that the bank will enter the watch
list and subsequently fail. The next �ve ratios also re�ect banks�asset quality. We expect
the ratio of allowance for loan and lease loss to average total loans to have a positive e¤ect

26These are typically referred to as the "De Novo" banks (DeYoung, 1999, 2003).
27The "CAMELS" variables construction closely follows that of Lane et al. (1986) and Whalen (1991).
28Nonperforming loans consist of total loans and lease �nancing receivables that are nonacrual, past due

30-89 days and still accruing, and past due 90 days or more and still accruing.
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on a bank�s survival. Higher ratios may signal banks to anticipate di¢ culties in recovering
losses and thus this variable may positively impact incidence. Similarly, charge-o¤s on loan
and lease loss recoveries provide a signal of problematic assets that increase the probability
of insolvency and failure. Provision for loan and lease losses are based upon management�s
evaluation of loans and leases that the reporting bank intends to hold. Such a variable can
expect to decrease the probability of distress and increase the probability of survival. We
can also view this as a proxy to control for one of the several ways in which di¤erent banks
pursue di¤erent risk strategies (Inanoglu, et al., 2014). An often-used measure of credit
risk is the gross charge-o¤ rate (dollar gross charge-o¤s normalized by lending book assets).
We control for risk-taking strategies in which banks may engage that di¤er from their role
as a provider of intermediation services�the service we analyze�by including both of these
risk measures as explanatory variables.

Two of the three management quality proxies that we include are constructed from the
balance sheet items of the reporting banks. The �rst is the ratio of the full-time employees
to average assets, which has an ambiguous sign in both the incidence and latency parts
of our model. We conjecture, however, a negative sign on this variable as the FDIC may
face constraints in seizing large banks with a large number of employees. The second is the
intermediation ratio, which shows the ability of a bank to successfully transform deposits
into loans and thus we expect its overall impact also to be negative. Finally, the third
management quality proxy is managerial performance, which we estimate as part of our
combined model. The level of banks�earnings as measured by the operating income and
returns on assets and equity are also expected to have a negative e¤ect on both the incidence
and latency parts. From liquid assets we expect cash and core deposits to have negative
signs, while the direction of the e¤ect of Jumbo time deposits is uncertain. Banks with
relatively more market price sensitive liabilities and illiquid assets should be considered at
a higher risk of failure ex ante.

5 Results and Predictive Accuracy

In Table 3, we report the results for Model I and Model II. Both models produce qualitatively
similar results. The in�uential factors that were considered to have a strong e¤ect on both
sets of probabilities a priori turn out to have the correct sign and most are statistically
signi�cant in both models. Results indicate that there is a large marginal e¤ect of the tier
1 capital ratio on the incidence probability. Other measures of earnings proxies and asset
quality also have a material e¤ect on this probability. In other words, well-capitalized banks
with positive earnings and quality loans are less likely to appear on the FDIC watch list. In
contrast, banks that already are on this list will increase their probability of failure if their
capital ratio is insu¢ cient, their ratio of nonperforming loans is high, and their earnings are
negative and have a decreasing trend. The certi�cates of deposits and core deposits have
the expected e¤ect though not a statistically signi�cant one. On the other hand, cash has
a positive and signi�cant e¤ect. One explanation of this could be that, after controlling
for pro�tability, banks that remain cash idle have a higher opportunity cost. It would only
stand to reason for these banks to be costly and ine¢ cient. Banks with a large number of
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full-time employees are shown to have less chances to fail. Banks that successfully transform
deposits into vehicles of investment are considered potentially stronger, while others with
more rate sensitive liabilities appear to be less promising.

The state-speci�c variables have the expected economic congruences which appear to
be non-signi�cant in the incidence part of the models. We would expect these variables
to signi�cantly a¤ect the probability of incidence of banks in the states with higher unem-
ployment rates, lower growth in personal income, limited construction permits, and falling
housing prices, all of which would give cause for increased on-site inspections. Only two
of the four geographical variables have a signi�cant e¤ect. Banks that are Federal Reserve
System (FRS) members have a higher probability of failure than those that are not. This
is associated with behavior consistent with moral hazard. Such banks have felt secure as
members of the FRS and hence may have assumed higher risks than they would have had
they not been FRS banks. The positive result of the FRS district code indicates that the
probability of insolvency and failure is higher for banks in the Atlanta (6) district than for
banks in the Boston (1) district, for example. Bank size is shown to have a negative and
signi�cant e¤ect only in the incidence part of Model II, which could be interpreted that
larger banks are less likely to be placed on the watch list and subsequently fail. Finally,
the older and well-established banks appear to have lower failure probabilities than their
younger counterparts.

In Table 4, we present results for the continuous-time semiparametric and discrete-
time MHM with the stochastic frontier speci�cation. With few exemptions, the results are
qualitatively similar to those reported in Table 3. Ine¢ ciency has a positive e¤ect on the
incidence and failure probabilities. The e¤ect is only signi�cant on the latter probability
and this is consistent with the view that bank performance is not the criterion for an on-site
examination, but rather a factor a¤ecting a bank�s longer term viability. The distributional
parameters are signi�cant at the one-percent signi�cance level. The descriptive statistics
for the e¢ ciency score obtained from Models III and IV as well as from the standard
time-invariant random e¤ects (RE) model for the sample of nonfailed and failed banks are
summarized in Table 5. There is a small, but a statistically signi�cant di¤erence between
the average e¢ ciencies estimated form Models III and IV. This di¤erence is not statistically
signi�cant for e¢ ciencies derived from the RE model. Figure 1 depicts the distribution of
ine¢ ciencies obtained from the three models (Model III, Model IV and RE). It is worthwhile
to note that the RE model reports certain surviving banks as extremely ine¢ cient, while the
most e¢ cient banks are banks that failed. Based on these observations, we suspect that the
two-step approach would yield the opposite sign on ine¢ ciency component from what we
would expect. The di¤erence in average e¢ ciencies from the single step estimation can be
mainly attributed to the fact that distressed banks typically devote their e¤orts to overcome
their �nancial di¢ culties and clean up their balance sheets. These impose additional costs
on banks and worsen their already bad �nancial position.

In Figures 2 and 3 we depict the survival pro�le of the average bank that failed during
the 2008-2009 period for all four models. It can be seen from Figure 2 that average failed
banks in Model I are predicted to have a duration time of twenty two months. After
controlling for ine¢ ciencies, the time to failure drops to twenty one months. Based on the
Model II results, Figure 3 demonstrates that a bank with the same characteristics as the
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representative failed bank will survive up to 7 quarters, after accounting for ine¢ ciency.
It is also interesting to look at the survival pro�le of the most and the least e¢ cient banks

derived from Model III and Model IV. Figure 4 displays the survival pro�les obtained from
Model III. The least e¢ cient bank with an e¢ ciency score of 0.149 percent and is predicted
to fail in eight months. This bank was closed by FDIC in the end of August of 2008. On
the other hand, the most e¢ cient bank with e¢ ciency score of 0.971 percent has a survival
probability of one throughout the sample period. This is also illustrated in Figure 5, where
the least e¢ cient bank with an e¢ ciency score of 0.154 percent is predicted to fail by �fth
quarter, using the Model IV results. This bank failed in the third week of April of 2009.29

The most e¢ cient bank with an e¢ ciency score of 0.969 percent has an estimated survival
probability that exceeds 95 percent.

We next examine our results by recasting our model estimates as early warning tools
that can correctly classify failed and nonfailed banks within our sample used for estimation
as well as in our hold-out 2010-2011 sample. The tests are based on two types of errors,
similar to those that arise in any statistical hypothesis testing. These are type I and type II
errors.30 A type I error is de�ned as the error due to classifying a failed bank as a nonfailed
bank, while a type II error arises from classifying a non-failed bank as a failed bank. There
is a trade-o¤ between these two type of errors and both are important from a public policy
standpoint. Models with low type I error are more desirable, since timely identi�cation of
failed banks allows the regulator to undertake any prompt corrective action to ensure that
the stability and the soundness of the �nancial system is not compromised. On the other
hand, models with high type II error unnecessary will be �agging some banks as failures
while they are not, and hence could waste the regulators�time and resources. However, it
is oftentimes hard to interpret the costs of a type II error since various constraints faced
by the FDIC could delay the resolution of an insolvent bank. Thompson (1992) attributes
this to information, administrative, legal and political constraints, among others. Whalen
(1991) notes that some type II error predictions actually represent failures that occur in
the near future and hence should be considered as a success of the model rather than its
failure.

In Table 6,we report the in-sample predictive accuracy for the four models based on type
I, type II, and overall classi�cation error. Overall classi�cation error is a weighted average
of type I and type II errors. In what follows we set the weights at 0.5 for both errors.31

In our predictive accuracy analysis, each bank is characterized as a failure if its survival
probability falls bellow a probability cuto¤point, which we base on the sample average ratio
of failed to nonfailed banks (0.021). The results in Table 6 indicate that the discrete-time
speci�cation yields a lower type I error than does the continuous-time speci�cation. This
is to be expected since the former incorporates multi-period observations for each bank
and thus is more informative about a bank�s �nancial health than the single-period cross-
sectional observations. There is a signi�cant drop in type I error in both speci�cations when
the performance of a bank is added to the model as an additional factor. On the other hand

29The least e¢ cient bank is not the same in these two models. However, the most e¢ cient bank is.
30See Lane et al. 1986; Whalen, 1991; and Thompson, 1992 among others.
31Clearly this weighting scheme is arbitrary and alternative weighting schemes could be based on di¤erent

risk preference assumptions, implicit and explicit costs of regulation, etc.
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type II error is increased in the discrete-time models and it is doubled when ine¢ ciency
is included. Based on the overall classi�cation error, Model IV performs somewhat better
than Model III, but it largely outperforms the Models I and II.

Table 6 also presents the errors that judge the 2010-2011 out-of-sample classi�cation ac-
curacy of our models based on the estimates obtained using 2008-2009 data. The continuous-
time models� errors are based on the estimated survival pro�les of banks using the 2009
end-year data, while the discrete-time models�errors use the full 2010-2011 data. By com-
paring these errors with the 2008-2009 in-sample classi�cation errors, we observe that there
is a signi�cant drop in type I error for all four models. This is may be due to the fact that
the data used to estimate the banks�survival pro�les are more informative than what was
used to estimate the model parameters, which is reasonable given that the end of 2009 was
considered the peek year of the 2007-2011 banking crisis. The inter-model comparison is the
same as above with Model IV favored over the other models based on predictive accuracy.
In addition, all four models predict the major (i.e., with total assets size over $1 billion)
and the minor bank failures equally well, by reporting very low estimated type I errors. In
fact, type I error is zero for all major in- and out-of-sample bank failures.32

In order to examine the sensitivity of the models� classi�cation accuracy to the data
period selection (high risk period versus low risk period), we also estimate the models�
in-sample classi�cation accuracy using 2010-2011 data.33 The 2010-2011 in-sample classi-
�cation errors are also summarized in Table 6. Comparing the 2010-2011 out-of-sample
results to the 2010-2011 in-sample results, we observe that type I error is slightly decreased
for the continuous-time models (by 0.0295 in Model I and by 0.0226 in Model III), but it
is increased in the discrete-time models (by 0.041 in Model II and by 0.0176 in Model IV).
More speci�cally, Model II fails to predict the failure of 12 out of 171 banks that failed
in our 2010-2011 sample, while Model IV fails to predict the failure of 8 out of 171 failed
banks during the same period.34 Overall, the predictive power of our models appears to be
quite robust across di¤erent estimation sub-periods within the current �nancial crisis. We
note, however, that conditions that led to the 2007-2011 banking crisis may be substantially
di¤erent from those of future banking crises. In this case, not only the model estimates, but
also the variables that are used to predict banking troubles and failures can signi�cantly
di¤er.

5.1 Endogenous Variables and Identi�cation

Two potential complications naturally may arise in structural models like the ones pre-
sented in this paper: the presence of endogenous variables and issues of identi�cation of
the structural model. Testing for potential endogenous control variables from our variable
list and identi�cation of the casual e¤ect of the e¢ ciency component is the purpose of this
subsection.
32Detailed survival pro�le series for each bank in our sample are available upon request.
33The parameter estimates from the 2010-2011 estimation are available upon request.
34The corresponding 2010-2011 out-of-sample predictions failed to
identify only 5 of such failures.
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First, we note that some of the control variables from our list of covariates may be poten-
tially treated as endogenous in the sense that these are under a bank�s management control
and potentially can be a¤ected by the probability and timing of failure. In particular, there
is the possibility that a bank that is placed on the FDIC�s watch list may erroneously report
(underestimate or overestimate) the amount of these variables in its Call Reports. Such
variables may include the provision for loan and lease losses35, which involves subjective
assessment by a bank�s management, and the number of the full-time employees, which is
subject to substantial variation during distressed times. Other variables, such as allowance
for loan and lease loss, charge-o¤s on loans and leases and recoveries on allowance for loan
and lease losses also can be treated as endogenous. However, we note that these are subject
to stringent scrutiny by regulators and auditors who can recognize and measure the e¤ec-
tiveness and appropriateness of management�s methodology for collectively and individually
assessing these accounts in accordance with internationally accepted reporting standards.
We, therefore, treat these variables as exogenous in our models and do not further test for
their exogeneity.

Below we do test for the endogeneity of the provision for loan and lease losses and
the number of the full-time employees. We use a nonparametric test based on Abrevaya,
Hausman and Khan (2010). The test is carried out using the following steps:

� Step 1: Identify, select and validate instrumental variables for the potentially endoge-
nous variables;

� Step 2: Project the potentially endogenous variables onto the column space of the
instrumental and exogenous variables and obtain their �tted values;

� Step 3: Estimate the model36 separately by using the potentially endogenous variables
and instrumented endogenous variables and obtain the survival pro�les under both
cases (label these as S_end and S_iv, respectively)

� Step 4: Use Kendall�s tau rank correlation statistic to test for association/dependence
of S_end and S_iv (i.e., test for the null that S_end and S_iv are not associ-
ated/dependent)

� Step 5: Reject the null hypothesis of endogeneity if the p-value of Kendall�s tau statistic
is below the desired con�dence level.

For the provision for loan and lease losses/average loans and leases variable, the selected
instruments are (i) one period lagged values of the provision for loan and lease losses/average
loans and leases; (ii) one period lagged values of the nonperforming loans/total loans;
(iii) one period lagged values of the allowance for loan and lease loss/average loans and
leases; and (iv) one period lagged values of the recoveries on allowance for loan and lease

35The provision for loan and lease loss is the amount required to establish a balance in the allowance for
credit losses account, which management considers adequate to absorb all credit related losses in its loan
portfolio.
36Note that for testing purposes only the time-varying model combined with e¢ ciencies (i.e., Model IV)

is used.
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losses/average loans and leases. The estimated Kendall�s tau statistic is 0.9293 (with p-
value = 0) and thus we reject the null hypothesis that the provision for loan and lease
losses variable is endogenous in our estimation sample. Similarly, for the number of full-
time equivalent employees/average assets variable, the selected instruments are (i) current
period overhead expense; (ii) one period lagged values of the overhead expense; (iii) current
period ratio of non-interest expense/total assets; (iv) one period lagged values of the ratio of
non-interest expense/total assets; (v) current period ratio of non-interest expense/interest
expense; and (vi) one period lagged values of the ratio of non-interest expense/interest
expense. The estimated Kendall�s tau statistic is 0.9723 (with p-value = 0) and we thus
reject the null hypothesis that the number of the full-time equivalent employees variable is
endogenous in our estimation sample. Joint testing yields Kendall�s tau statistic of 0.9115
(with p-value = 0), thus leading to the same conclusion that both of these variables are not
endogenous in our sample.

To corroborate the testing results above, we also test for the endogeneity of the provision
for loan and lease losses and the number of the full-time employees by considering only the
incidence part of the model. The rationale for using this alternative testing approach is
that one might consider that these variables would be a¤ected primarily by the incidence
probability, as a bank�s management could potentially manipulate these accounts to avoid
being placed on the FDIC�s watch list in the �rst place. The testing results are based on
the Wald statistic on the hypothesis is exogeneity of the potential endogenous variables.37

The Wald statistic is 1.74 (with p-value = 0.1866) for the provision for loan and lease
losses/average loans and leases and 3.06 (with p-value = 0.0804) for the number of the
full-time employees/average assets. These estimated test statistics are not signi�cant at
the 5% con�dence level and generally corroborate the �ndings using the alternative null
hypothesis.

The identi�cation of the casual e¤ect of the e¢ ciency term, on the other hand, is per-
formed by testing for the over-identifying restrictions using the testing approach outlined
above. Due to the fact that the e¢ ciency term is latent (unobserved) in our models, we
use the e¢ ciency scores obtained from the random e¤ects (RE) model as a proxy for the
combined model�s e¢ ciencies. We identify the one period lagged values of the return on as-
sets, the one period lagged values of the return on equity, the one period lagged value of the
intermediation ratio (total loans/total deposits), the ratio of non-interest expense/interest
expense, and the one period lagged values of the ratio of non-interest expense/interest ex-
pense as instrumental variables for the estimated e¢ ciency scores. The resulting Kendall�s
tau statistic is estimated as 0.7970 (with p-value = 0); thus, rejecting the null hypothesis
that the casual e¤ects are not identi�ed in our estimation sample.

6 Concluding Remarks

Massive banking failures during the �nancial turmoil of the Great Recession has resulted
in enormous �nancial losses and costs to the U.S. economy, not only in terms of bailouts by
regulatory authorities in their attempt to restore liquidity and stabilize the �nancial sector,

37This testing is carried out by using STATA�s ivprobit command.
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but also in terms of lost jobs in banking and other sectors of economy, failed businesses, and
ultimately slow growth of the economy as a whole. The design of early warning models that
accurately predict the failures and their timing is of crucial importance in order to ensure
the safety and the soundness of the �nancial system. Early warning models that can be
used as o¤-site examination tools are useful for at least three reasons. They can help direct
and e¢ ciently allocate the limited resources and time for on-site examination so that banks
in immediate help are examined �rst. Early warning models are less costly than on-site
visits made by supervisors to institutions considered at risk and can be performed with
high frequency to examine the �nancial condition of the same bank. Finally, early warning
models can predict failures at a reasonable length of time prior to the marked deterioration
of bank�s condition and allow supervisors to undertake any prompt corrective action that
will have minimal cost to the taxpayer.

In this paper we have considered early warning models that attempt to explain recent
failures in the U.S. commercial banking sector. We employed a duration analysis model
combined with a static logit model to determine troubled banks which subsequently fail
or survive. Both continuous and discrete time versions of the mixed model were speci�ed
and estimated. These e¤ectively translated the bank-speci�c characteristics, state-related
macroeconomic variables, and geographical and market structure variables into measures of
risk. Capital adequacy and nonperforming loans were found to play a pivotal role in deter-
mining and closing insolvent institutions. State-speci�c variables appeared to signi�cantly
a¤ect the probability of failure but not insolvency. The discrete-time model outperformed
the continuous-time model as it is able to incorporate time-varying covariates, which contain
more and richer information. We also found that managerial e¢ ciency does not signi�cantly
a¤ect the probability of a bank being troubled but plays an important role in their longer
term survival. Inclusion of the e¢ ciency measure led to improved prediction in both models.
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7 Appendix

In this appendix we show the derivation of the sample likelihood function given in expression
(3). For this purpose we �rst note that at time t, bank i can fall into four mutually exclusive
states of nature:

States =

8>><>>:
hi = 1; di = 1 (Problem & Failed) with prob. Fe(x0i�)�

p
i (t;wi)S

p
i (t;wi)
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By assumption, �si (t;wi) = 0, if and only if, hi = 0 and di = 0 (i.e., a bank is healthy
and is not observed failing). Similarly Ssi (t;wi) = 1 if and only if hi = 0 (i.e., a bank is
healthy). The �nal sample likelihood function is then given by

L(�;x;w; d) =
Yn

i=1
Fe(x

0
i�)

hi
�
1� Fe(x0i�)

�(1�hi) [�pi (t;wi)]dihi [Spi (t;wi)]hi
which implies that the completely healthy banks contribute to the likelihood function only
through their probability being troubled.
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Table 1: CAMELS proxy Financial Ratios

Capital Adequacy (C)
tier1 Tier 1 (core) capital/risk­weighted assets

Asset Quality (A)
rnpl Nonperforming loans/total loans
alll Allowance for loan and lease loss/average loans and leases
reln Commercial real estate loans/total loans
coffs Charge­offs on loans and leases/average loans and leases

lrec Recoveries on allowance for loan and lease losses/average loans
and leases

llp Provision for loan and lease losses /average loans and leases
Managerial Quality (M)

fte (Number of fulltime equivalent employees/average assets)*1000
imr Total loans/total deposits
u Random Effects inefficiency score

Earnings (E)
oi Total operating income/average assets
roa Net income (loss)/average assets
roe Net income (loss)/total equity

Liquidity (L)
cash Noninterest­bearing balances, currency, and coin/average assets
cd Total time deposits of USD 100,000 or more/total assets
coredep Core deposits/total assets

Sensitivity (S)

sens Difference in interest rate sensitive assets and liabilities repricing
within one year/total assets
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Table 2: Geographical, Market Structure, and State­Specific Macroeconomic Variables

Geographical and Market Structure Variables
chtype Charter type ( 1 if state chartered, 0 otherwise)

frsmb FRS membership indicator (1 if Federal Reserve member, 0
otherwise)

ibf International banking facility (1 if bank operates an international
based facility, 0 otherwise)

frsdistrcode

FRS district code: (Boston(1), New York (2), Philadelphia (3),
Cleveland (4),
Richmond (5), Atlanta (6), Chicago (7), St. Louis (8),
Minneapolis (9), Kansas City (10), Dallas (11), San Francisco (12),
Washington, D.C. (0­referense district))

lgta log of total assets
age Age (measured in months or quarters)

State­Specific Macroeconomic variables
ur Unemployment rate
chpi Percentage change in personal income
chphi Percentage change in house price index

chnphu Change in new private housing units authorized by building permits
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Table 3: Parameter Estimates obtained under Model I (SPMHM) and Model II (DTMHM)

p*<0.1, p**<0.05, p***<0.01 (Robust standard errors in parentheses)

Variable
Model I Model II

Latency Incidence Latency Incidence
Intercept ­2.5989 (2.8512) 4.9130 (2.9266)
lgta 0.0797 (0.0885) 0.0607 (0.1103) 0.0531 (0.0875) ­0.3320*** (0.1056)
age ­0.0004* (0.0002) 0.0004 (0.0003) ­0.0003 (0.0002) 0.0001 (0.0003)
tier 1 ­48.417*** (3.0567) ­86.791*** (5.3156) ­47.060*** (3.0856) ­88.728*** (5.3516)
alll ­9.5829** (4.7047) 16.473** (7.9759) ­8.8615* (4.6962) 8.8671 (7.7594)
reln 4.4321*** (1.1801) 2.0116 (1.2748) 3.7811*** (1.1731) 3.9762*** (1.2796)
rnpl 7.2555*** (1.3348) 6.3838*** (2.1574) 6.1802*** (1.3433) 9.6447*** (2.1510)
roa ­6.1672 (5.1795) ­11.248** (5.5416) ­7.2727 (5.0983) ­8.8145 (6.1201)
roe 0.0003 (0.0003) 0.0002 (0.0013) 0.0003 (0.0004) 0.0003 (0.0017)
cd 1.0098 (0.8644) 1.6651 (1.0274) 1.2499 (0.8425) 0.8245 (1.0003)
coredep ­2.7654 (1.7546) ­1.2140 (2.0839) ­2.5466 (1.7496) ­3.1272 (2.0927)
coffs 0.2351*** (0.0804) 0.3168*** (0.1183) 0.2319*** (0.0848) 0.2703** (0.1243)
lrec 38.162** (18.672) 14.463 (56.448) 35.681* (21.726) 37.945 (42.003)
llp ­10.427** (4.9577) ­15.501** (6.5158) ­11.688** (4.8628) ­13.155** (6.6190)
fte ­0.8228 (1.0468) ­3.0004** (1.4396) ­0.8329 (1.0512) ­3.1287** (1.4021)
imr ­4.2141*** (1.0634) ­1.7238 (1.2254) ­3.7792*** (1.0603) ­4.4020*** (1.2016)
sens 2.3255*** (0.8386) 2.5869** (1.0320) 2.0025** (0.8403) 5.6444*** (1.0042)
cash 6.7983*** (2.0542) 6.7497** (3.2628) 6.9211*** (2.0472) 4.5465 (3.6333)
oi ­3.9670 (4.4353) ­6.1756 (6.6955) ­3.1670 (4.3948) ­4.9651 (6.6585)
ur 0.1198*** (0.0379) 0.0196 (0.0490) 0.0655* (0.0390) 0.0548 (0.0482)
chpi ­15.091* (8.1323) ­10.555 (9.7490) ­20.313** (8.0823) ­10.645 (10.017)
chhpi ­8.1375* (4.9453) ­3.1678 (5.8411) ­9.8817** (4.8428) ­5.4824 (5.8215)
chnphu ­0.6570*** (0.2490) 0.0006 (0.0523) ­0.5246** (0.2417) 0.0047 (0.0581)
chtype ­0.2151 (0.5058) 0.4441 (0.6871) 0.0223 (0.5051) ­0.7143 (0.5943)
frsmb 0.4707*** (0.1797) 0.4018* (0.2352) 0.4617*** (0.1808) 0.3466 (0.2363)
ibf 1.1171 (0.7589) 1.4405 (0.8883) 1.2816* (0.7592) ­2.5959*** (0.7825)
frsdistrcode 0.2465*** (0.0329) 0.2615*** (0.0430) 0.2295*** (0.0325) 0.2457*** (0.0427)
LogL 1,763.87 1,714.92
N 5,968 38,571
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Table 4: Parameter Estimates obtained under Model III (SPMHM+SF) and Model IV (DTMHM+SF)

Variable
Model III Model IV

Latency Incidence Latency Incidence

Intercept ­2.6934 (2.8039) 4.7694* (2.9201)
lgta ­0.0408 (0.0935) ­ ­0.0087 (0.1243) ­0.0742 (0.0958) 0.3466*** (0.1117)

age ­0.0004* (0.0002) 0.0004 (0.0003) ­0.0004* (0.0002) 0.0001 (0.0003)
tier 1 ­48.647*** (3.0631) ­86.280*** (5.3068) ­48.452*** (3.0678) ­88.684*** (5.3396)

alll ­8.5073* (4.6488) 17.003** (7.9738) ­8.8587* (4.6066) 8.8881 ( 7.7741)

reln 4.6588*** (1.1259) 2.1044* (1.2631) 4.4871*** (1.0878) 3.9288*** (1.2805)

rnpl 6.9014*** (1.3206) 6.0653*** (2.1661) 6.7347*** (1.3210) 9.5835*** (2.1554)

roa ­6.4175 (5.0868) ­11.451*** (5.5328) ­6.1672 (5.1423) ­8.8129 (6.1180)
roe 0.0002 (0.0004) 0.0001 (0.0013) 0.0002 (0.0003) 0.0002 (0.0017)
cd 0.8641 (0.8608) 1.5840 (1.0277) 0.7565 (0.8579) 0.7329 (1.0244)
coredep ­2.3913 (1.6224) ­1.0244 (2.0568) ­1.5432 (1.6367) ­2.9196 (2.1285)

coffs 0.2447*** (0.0801) 0.3232*** (0.1172) 0.2516*** (0.0798) 0.2720** (0.1243)
lrec 37.309** (19.148) 14.661 (56.167) 37.219** (19.011) 38.569 (41.568)
llp ­11.175** (4.9577) ­15.784** (6.5199) ­11.654** (4.7671) ­13.211** (6.6345)
fte ­2.1781** (1.0195) ­3.8780** (1.5932) ­2.8670*** (1.0298) ­3.3559** (1.5165)

imr ­3.7660*** (0.9728) ­ ­1.4553 (1.2128) ­3.2640*** (0.9832) 4.2466*** (1.2601)

sens 2.2143*** (0.8294) 2.5264** (1.0309) 2.0894** (0.8282) 5.6036*** (1.0068)

cash 7.4166*** (2.0368) 7.1461** (3.2558) 7.6605*** (2.0375) 4.6012 (3.6396)

oi ­3.9483 (4.3968) ­6.4722 (6.6946) ­4.1980 (4.3825) ­5.0126 (6.6601)

ur 0.1210*** (0.0377) 0.0234 (0.0491) 0.1208*** (0.0378) 0.0555 (0.0487)

chpi ­15.567** (8.1081) ­9.7061 (9.7811) ­15.551* (8.0642) ­10.639 (10.021)
chhpi ­8.1886* (4.9593) ­3.2387 (5.8526) ­8.1802** (4.9731) ­5.4864 (5.8139)
chnphu ­0.6300*** (0.2471) ­0.0001 (0.0531) ­0.6171*** (0.2456) 0.0046 (0.0578)

chtype ­0.1496 (0.5045) 0.4875 (0.6876) ­0.1293 (0.5028) ­0.7224 (0.5953)

frsmb 0.4960** (0.1801) 0.3994* (0.2349) 0.4977*** (0.1801) 0.3487 (0.2512)
ibf 1.1325 (0.7574) 1.4718* (0.8945) 1.1295* (0.7571) ­2.5923*** (0.7815)
frsdistrcode 0.2612*** (0.0332) 0.2725*** (0.0445) 0.2663*** (0.0334) 0.2469*** (0.0429)
δ1 0.2062 (0.1577) 0.0343 (0.0828)
δ2 0.3058*** (0.0468) 0.4137*** (0.0750)

σ 0.0552*** (0.0011) 0.0548*** (0.0011)

γ 0.5173*** (0.0017) 0.5278*** (0.0015)

LogL 67,701 66,360
N 5,968 38,571

p*<0.1, p**<0.05, p***<0.01 (Robust standard errors in parentheses)
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Table 5: Cost Efficiencies Results

Mean Standard Deviation Minimum Maximum
NonFailed Banks

Model III 0.6817 0.0691 0.3167 0.9705
Model IV 0.7295 0.1630 0.1992 0.9688
Random Effects 0.6466 0.0662 0.4636 0.9650

Failed Banks
Model III 0.6721 0.1022 0.1499 0.8722
Model IV 0.6804 0.0824 0.1539 0.8488
Random Effects 0.6408 0.0798 0.3845 0.8626
The top and bottom 5% of inefficiencies scores are trimmed to remove the effects of outliers

Table 6: Predictive Accuracy Results

Model I Model II Model III Model IV
2008­2009 in­sample classification

Type I error 0.3840 0.2882 0.1123 0.0644
Type II error 0.0047 0.0051 0.0231 0.0476
Overall classification error 0.1937 0.1465 0.0581 0.0573

2010­2011 out­of­sample classification
Type I error 0.2283 0.0292 0.1630 0.0292
Type II error 0.0049 0.0012 0.0062 0.0012
Overall classification error 0.1157 0.0152 0.0840 0.0152

2010­2011 in­sample classification
Type I error 0.1988 0.0702 0.1404 0.0468
Type II error 0.0025 0.0012 0.0025 0.0012
Overall classification error 0.1007 0.0357 0.0715 0.0240

Overall classification error is a simple average of type I and type II errors
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Figure 1: Cost E¢ ciency Distributions
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Figure 2: SPMHM: Failed Banks�Average Survival Po�le
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Figure 3: DTMHM: Failed Banks�Average Survival Po�le
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Figure 4: Model III: The Most and the Least E¢ cient Bank�s Survival Pro�le
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Figure 5: Model IV: The Most and the Least E¢ cient Bank�s Survival Pro�le
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