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Abstract This paper analyzes the provision of banking services—the multi-

output/multi-input technology that is utilized by banks in their role in the provision of 

banking services, including both balance-sheet financial intermediation businesses 

and off-balance-sheet activities.  We focus on the largest financial institutions in the U. 

S. banking industry.  We examine the extent to which scale efficiencies exist in this 

subset of banks in part to address the issue of whether or not there are economic 

justifications for the notion that these banks may be “too-big-to-fail.” Our empirical 

study is based on a newly developed set data based on Call Reports from the FDIC for 

the period 1994-2013. We contribute to the post-financial crisis "too-big-to-fail" 

debate concerning whether or not governments should bail-out large institutions under 

any circumstances, risking moral hazard, competitive imbalances and systemic risk. 

Restrictions on the size and scope of banks may mitigate these problems, but may do 

so at the cost of reducing banks' scale efficiencies and international competitiveness. 

Our study also utilizes a suite of econometric models and assesses the empirical 

results by looking at consensus among the findings from our various econometric 

treatments and models in order to provide a robust set of inferences on large scale 

banking performance and the extent to which scale economies have been exhausted 

by these large financial institutions. The analyses point to a number of conclusions. 

First, despite rapid growth over the last 20 years, the largest surviving banks in the 

U.S. have decreased their level of efficiency. Second, we find no measurable returns 

to scale across our host of models and econometric treatments and in fact find 

negative correlation between bank size and the efficiency with which the banks take 

advantage of their scale of operations. In addition to the broad policy implications of 

our analysis our paper also provides an array of econometric techniques, findings 

from which can be combined to provide a set of robust consensus-based conclusions 

that can be a valuable analytical tool for supervisors and others involved in the 

regulatory oversight of financial institutions. 

Keywords: Banking productivity; panel data models; quantile regression, distance 

functions, economies of scale and scope 

JEL: C14; C21; C23; G28  
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1. Introduction 

The recent financial crisis has given rise to a reexamination by regulators and 

academics of the conventional wisdom regarding the implications of the spectacular 

growth of the financial sector of the economy. In the pre-crisis era, there was a 

widespread common wisdom that "bigger is better". The arguments underpinning this 

view ranged from potential economies of scale and scope, to a better competitive 

stance at the international level. However, in the post-crisis world the common 

wisdom has been altered somewhat as large banks have come to be viewed as 

problematic for policy makers and regulators, for various reasons. One reason often 

given is that economic agents who are insured have the incentive to take on too much 

ex ante risk, also known as the moral hazard problem. Second, there is the "too-big-

to-fail" problem, the fear that large and interconnected financial institutions may 

become a source of systemic risk if allowed to go out of business, especially in a 

"disorderly" fashion (Bernanke, 2009). Support for or against large banking 

institutions turns on the central issue of whether or not efficiencies of scale and scope 

are economically and statistically significant and are positively associated with bank 

size.  If they are positively associated with bank size then the expected benefits of the 

cost savings generated by increased efficiencies passed on to consumers in terms of 

better services or reduced banking service fees are traded off with the expected costs 

implicit in the moral hazard and systemic risk arguments. In this paper we attempt to 

shed some light on this question through an empirical analysis that investigates the 

relationship between measures of the efficiency of a bank's operation on the one hand, 

and the size of the institution on the other. 

More recently, regulatory features added by the Dodd-Frank Act (DFA) 1 

introduced a variety of new policy levers, including capital surcharges, resolution plan 

requirements, consideration of systemic risk effects in mergers which specifically 

increased the emphasis on understanding of economies of scale and scope in large 

financial firms. That is, DFA requires the review of whether a proposed merger would 

                                                               
1
 Public Law 111-203 Dodd-Frank Wall Street Reform and Consumer Protection Act 
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lead to greater concentrated risks to financial stability. Regulators have encouraged 

researchers to better understand the social utility of the largest, most complex 

financial firms (Tarullo, 2011). 

Some elaboration on what we mean by "too-big-to-fail" (TBTF) banks is also in 

order.  During times of financial crisis banking supervisors have strong incentives to 

forestall the failure of large and highly interconnected financial firms due to the 

damage that such an event could pose to both the financial sector as well as the real 

economy. Unfortunately, as market participants anticipate that a particular firm may 

be protected in this way, this has the perverse yet highly rational effect of 

undermining market discipline and encouraging excessive risk-taking by the firm. 

Furthermore, it establishes economically unjustified incentives for a bank to become 

larger in order to reap this benefit.  This results in a competitive advantage for such a 

large bank over its smaller competitors who may be perceived as lacking this implicit 

government safety net. Public sector bailouts are costly and politically unpopular and 

this issue has emerged as an enormous problem in the wake of the recent crisis. 

Therefore, as a tactical matter the state of the financial system has left supervisors 

with little choice but to use government resources to avoid failures of major financial 

institutions and accompanying destabilization of the financial sector. However, on a 

prospective basis supervisors have been directed to better address this issue through 

improved monitoring of systemically critical firms, with a view to preventing 

excessive risk-taking, and by strengthening he resilience of the financial system in 

order to minimize the consequences of a large firm being unwound. 

A series of reforms have been proposed to address these problems. They include 

increasing capital requirements and limits upon leverage (e.g., Basel III), capping the 

size of banks, limiting the scope of banking activities, subjecting bank mergers and 

acquisitions to additional scrutiny, prescribing that banks draft “living wills” to plan 

their orderly unwinding, and requiring the federal government to proactively break up 

selected banks. These measures are not without their detractors, however. Feldman 
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(2010), for example, casts doubt on the reforms focusing on size2 by arguing even if 

such reforms could address TBTF, reforms that take aim at bank size directly might 

be bad policy because their costs could exceed their benefits.  Moreover, the size of a 

bank may be positively related to other benefits.  Large banks could offer cost 

advantages that would ultimately benefit society by taking advantage of scale 

economies in their service production processes. Wheelock and Wilson (2012), for 

example, concluded that most U.S. banks faced increasing returns to scale using their 

highly parameterized local linear estimator of banking services. 

However, there may be problems with this perceived wisdom that large banks are 

large because of such scale economies for at least three reasons. First, some of the  

econometric work on economies of scale for banking, as in Hughes and Mester (1998), 

Hughes, Mester and Moon (2001), etc. find such benefits at all sizes of banks. Hughes 

and Mester (2008) summarize the extensive research findings in this regard. Second, 

we may simply not yet know very much about the presence of scale economies for 

today’s unprecedentedly large banks. DeYoung (2010) emphasizes this point by 

arguing that the unique nature of today’s large banks makes it difficult to apply 

statistical techniques to historical data to divine the extent of scale economies. It is 

clear that the financial sector has grown enormously in recent years. The question is 

why. Banks indeed contribute to economic output through intermediation and have 

performed this economically useful function in many countries for hundreds of years, 

but value-added intermediation does not necessarily justify a large banking sector or 

banks whose current size is enormous by any historical standards.  There are reasons 

to think that this sector may have become too big in the sense that too many of 

society’s resources are allocated to it and may continue to contribute to a distortion in 

rents paid to those employed in the financial sector.  Perceptions by creditors of banks 

that the government will protect them can lead the sector to grow inefficiently large as 

TBTF guarantees attract excessive funding to banks. These creditors understand that 

                                                               
2 Feldman argued that “…I am skeptical that reforms focused on size per se will achieve their stated 

purpose of addressing TBTF; I have more confidence in reforms that identify and address features that 

produce spillovers in the first place…” 
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their bank investments are implicitly subsidized by the assurance of government 

bailouts should the bank begin to fail. For example, Tracey and Davies (2012) argues 

that there exists an “implicit funding subsidy” for TBTF banks3. Another point about 

the limits of our knowledge concerning the scale economies of large banks is that 

analysts face real challenges in measuring the “output” produced by banks. Since the 

banking sector provides loans deposit and liquidity services it is a challenge to ensure 

that cross-firm comparisons are made controlling for these various service provisions, 

when economies of scale for the multi-output banking services technology is analyzed. 

Still another point is that the debate about TBTF and scale economies often presents 

the two in contradiction, when in fact they may complement one another. Some 

activities of a bank such may rely heavily on automation and thus may benefit from 

scale economies that enhance that bank’s TBTF status.4 The average cost of the large 

investments on these automated systems could be driven down by the increasing in 

the volume of goods and services produced. Such automation-dependent products and 

services can generate a substantial portion banking revenues. Hence, greater scale 

activity could come with higher TBTF cost. The presence of economies of scale, from 

this perspective, suggests that policymakers sharpen their focus on fixing TBTF, see 

Feldman (2010). 

The question of bank efficiency amongst the leading banking organizations in the 

US is important as the banks must too comply with the stress test and capital plan 

requirements outlined by the Federal Reserve’s Comprehensive Capital Analysis and 

Review (CCAR)5.   For estimating the impact of given stress testing scenarios, large 

banks have been relying statistical models in order to quantify potential losses.  The 

problem with this paradigm is that although it captures the social cost element it fails 

                                                               
3 They conclude that scale economies appear to increase with bank size for large banks from a standard 

model of bank production that does not control for any TBTF funding cost advantage, while using an 

adjustment for the price of debt using the implicit funding subsidy they find evidence of constant 

returns to scale and possible scale diseconomies for large banks. 
4 Note that greater automation could imply greater operational risk, which is an implicit element of cost, 

but that is beyond the scope of the current empirical treatment. 
5
 Also see BCBS 2009b. 
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to capture the potential social benefits of bank scale and scope economies, as banks 

generally cannot incorporate these potential gains into their risk models.  Our research 

contributes to a balanced analysis of this by considering efficiency measures. 

Our paper analyzes the provision of banking services—the multi-output/multi-

input technology that is utilized by banks in their role in the provision of banking 

services, including both balance-sheet financial intermediation businesses and off-

balance-sheet activities. We focus on large banks, in particular the largest 50 financial 

institutions in the U. S. banking industry. The combined total assets of the largest 50 

U.S. banks is close to 80% of the total assets of U.S. banking system6. We examine 

the extent to which scale efficiencies exist in this subset of banks in part to address the 

issue of whether or not there are economic justifications for the notion that these 

banks may be “too-big-to-fail”. Our empirical study is based on a newly developed 

dataset based on Call Reports from the FDIC for the period 1994-2013. We contribute 

to the post-financial crisis "too-big-to-fail" debate concerning whether or not 

governments should bail-out large institutions under any circumstances, risking moral 

hazard, competitive imbalances and systemic risk.  Restrictions on the size and scope 

of banks may mitigate these problems, but may do so at the cost of reducing banks' 

scale efficiencies and international competitiveness. Our study also utilizes a suite of 

econometric models and assesses the empirical results by looking at consensus among 

the findings from our various econometric treatments and models in order to provide a 

robust set of inferences on large scale banking performance and the extent to which 

scale economies have been exhausted by these large financial institutions. The 

analyses point to a number of conclusions.  First, despite rapid growth over the last 20 

years, the largest surviving banks in the U.S. have decreased in their level of 

efficiency.  Second, we find no measurable returns to scale across our host of models 

and econometric treatments and in fact find negative correlation between bank size 

and the efficiency with which the banks take advantage of their scale of operations. In 

addition to the broad policy implications of our analysis our paper also provides an 

                                                               
6 As of 3Q2013, the total assets of all U.S. Insured Commercial banks is $13.5 trillion. 
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array of econometric techniques, findings from which can be combined to provide a 

set of robust consensus-based conclusions that can be a valuable analytical tool for 

supervisors and others involved in the regulatory oversight of financial institutions. 

The preceding section has provided a short discussion addressing previous studies 

related to our work. Section 2 describes the econometric models that will be estimated.  

In section 3 we provide a description of our data-set. A discussion of our empirical 

findings is presented in section 4. Section 5 concludes. 

 

2. Econometric Models 

In this section, we review our estimating framework. We will estimate second 

order approximations in logs (translog) to a multi-output/multi-input distance function, 

(see Caves, Christensen and Diewert (1982) and Coelli and Perelman (1996)). The 

models we consider are linear in parameters. As our banking data constitute a 

balanced panel of banks and we are interested in a set of robust and consistent 

inferences from a wide variety of modeling approaches, we consider a number of 

different panel data estimators and assess the comparability of inferences from them. 

Our many treatments for various forms of unobserved heterogeneity can be motivated 

with the following classical model for a single output banking technology estimated 

with panel data assuming unobserved bank effects: 

 
      1,..., ; 1,...,it it i ity x u i N t T     

   (0.0) 

Here ity  is the response variable (e.g. some measure of bank output), i  represents a 

bank specific fixed effect, xit is a vector of exogenous variables and itu  is the error 

term. 

In the classical Fixed Effects (FE) model for panel data, individual unobserved 

effects i  are assumed to be correlated with the regressors itx , while in the classical 

Random Effects (RE) model individual unobserved effects i  are assumed to be 
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uncorrelated with the regressors itx . We also consider the Hausman and Taylor (H-T) 

(1981) panel estimator. The H-T estimator distinguishes between regressors that are 

uncorrelated with the individual effects (
1
itx ) and regressors that are correlated with 

the effects (
2
itx ).  As we have no time-invariant regressors in our study, the model 

becomes: 

 1 2
1 2      1,..., ; 1,...,it it it i ity x x u i N t T         (0.0) 

We may interpret  (0.0) or (0.0) as log-linear regressions, transformed from a Cobb-

Douglas or translog function that is linear in parameters.  In what follows, we do not 

distinguish between the x’s that are or are not allowed to be correlated with the effects 

in order to reduce notational complexity.  We do, however, make clear what these 

variables are in the empirical section.  In order to move from a single to the multi-

output technology considered in our empirical work we specify the multi-output 

distance function in the following way. Let the m outputs be exp( )it itY y  and the n 

inputs exp( )is isX x . Then express the m-output, n-input deterministic distance function 

( , )OD Y X  as a Young index, described in Balk (2008): 

 1

1

( , ) 1

j

k

m

it
j

O n

it
k

Y

D Y X
X









 



 (0.0) 

The output-distance function ( , )OD Y X  is non-decreasing, homogeneous, and convex 

in Y and non-increasing and quasi-convex in X. After taking logs and rearranging 

terms we have: 

 *
1,

2 1

, 1,..., ; 1,...,
m n

it i j jit k kit it
j k

y y x u i N t T  
 

         (0.0) 

where *
, 2,..., 1ln( / )jit j m jit ity Y Y  .  After redefining a few variables, the distance function 

can be written as 
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 y X Z u     (0.0) 

Here NTy R stacks the response variables across banks and time, the matrix 

NT N
N TZ I i R    distributes the bank specific fixed effects (or the "incidence matrix" 

that identifies N distinct entities in a sample) that are stacked in the vector

1 2( , ,..., ) N
N R     , while *

( 1)[ , ]NT n NT mX x y    contains both exogenous and 

endogenous variables and ( )T NT
itU u R  is the stacked vector of error terms itu . 

However, the Cobb-Douglas specification of the distance function (Klein, 1953) 

has been criticized for its assumption of separability of outputs and inputs and for 

incorrect curvature as the production possibility frontier is convex instead of concave. 

On the other hand, as pointed out by Coelli (2000), the Cobb-Douglas remains a 

reasonable and parsimonious first-order local approximation to the true function7. We 

also consider the translog output distance function, where the second-order terms 

allow for greater flexibility, proper local curvature, and lift the assumed separability 

of outputs and inputs. If the translog technology is applied, the distance function takes 

the form: 

* * *
1

2 2 2 1 1 1

*

2 1

1 / 2 1/ 2

,    1,..., ; 1,...,

m m m n n n

it i j jit jl jit lit k kit kp kit pit
j j l k k p

m n

jk jit kit it
j k

y y y y x x x

y x u i N t T

    



     

 

     

   

   


 (0.0) 

This can be written in the form of Eq. (0.0). Here X contains the cross-product 

terms as well as the own n input m-1 normalized output terms.  

* * * *
( 1) ( ( 1)/2) (( 1) /2) ( 1) )[ , , , , ]NT n NT m NT n n NT m m NT m nX x y xx y y xy            , the latter of which 

appear in their normalized form owing to the homogeneity of the output distance 

function.
  

In the translog specification, our focus should be on the following key derivatives, 

which correspond to the input and output elasticities.  The derivatives are expressed as 

                                                               
7 Therefore, we estimate the distance function under both Cobb-Douglas and translog specifications. 
We will discuss only for the translog distance function, as those for the Cobb-Douglas are qualitatively 
comparable.  These results are available on request. 
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follows in Eq. (0.0) and Eq. (0.0). 

 *

1 2

,   1,2,...,
n m

p p kp k pj j
k j

s x y p n  
 

      (0.0) 

 *

2 1

,    2,...,
m n

j j jl j kj k
l k

r y x j m  
 

      (0.0) 

2.1 Frontier Estimation Methodology 

In this subsection, we describe our estimation methodology utilizing the 

semiparametric efficiency estimators summarized in Sickles (2005). We utilize Eq. 

(0.0) and consider cases in which u and 
1 2( , , )x x  are independent but there is a level 

of dependency among the effects and the regressors. Eq. (0.0) can be reinterpreted as 

a stochastic panel production frontier model introduced by Pitt and Lee (1981) and 

Schmidt and Sickles (1984). Although we may be on somewhat solid footing by 

invoking a central limit argument to justify a Gaussian assumption on the disturbance 

term itu , we may be far less justified in making specific parametric assumptions 

concerning the distribution of the i  term, which in the stochastic frontier efficiency 

literature is interpreted as a normalized radial shortfall in a bank’s performance 

relative to the best-practice performance it could feasibly attain. While we can be 

confident in restricting the class of distributions of the inefficiency term to those that 

are one-sided (see the inequality in Eq. (0.0), the heterogeneity terms are intrinsically 

latent and unobservable components and we encounter problems regarding 

identifiably of these parameters (Ritter and Simar, 1997). The additional model we 

use in our analyses is a semi-parametric efficient (SPE) estimator and is well-suited to 

provide us with robust point estimates and minimum standard errors when we are 

unwilling to use parametric assumptions for the distribution of the heterogeneity 

terms and their dependency with either all or some of the regressors. The general 

approaches to deriving such semiparametric efficient estimators is discussed at length 

in Newey (1990) and Pagan and Ullah (1999), as well as in a series of papers by Park, 

Sickles and Simar (1998, 2003, 2007). Interested readers can find the derivations for 
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the SPE panel stochastic frontier estimators we utilize in our empirical work below in 

the cited papers. The framework for deriving all of the estimators is somewhat 

straightforward and has much in common across the different stochastic assumptions 

on which the different SPE estimators are based.  

We utilize a particular SPE estimator in our analyses.  This estimator is detailed in 

Park et al. (1998).  We refer to this as the PSS1 estimator and it is an extension of the 

estimator introduced in Park and Simar (1994), which assumed that the effects were 

assumed to be independent of all of the regressors. We assume in the specification 

(0.0) that the set of regressors 1,itx  is conditionally independent of the individual 

unobserved random effects i  given the set of correlated regressors 2,itx : 

 1 2 2 1 2( , , ) ( , ) ( | )f x x h x g x x   (0.0) 

Furthermore, it is assumed that i depends on 2,itx  only through its long-run 

movement: 

 2, 2, 2,h( , x )=h ( , ) ( )i it M i it itx p x   (0.0) 

Here 2,h ( , )M i itx  is a nonparametric multivariate density specified using kernel 

smoothers.  We will discuss our strategy for selection of the variables that are 

portioned into 1,itx  and 2,itx . 

In addition to the PSS1 SPE estimator, we consider an alternative approach that 

allows for time-varying heterogeneity, interpreted in the stochastic frontier literature 

as a normalized level of technical efficiency.  The approach is parametric.    Battese 

and Coelli (1992), henceforth BC, consider a panel stochastic frontier production 

function with an exponential specification of time-varying firm effects: 

 
( , ) exp( )

{exp[ ( )]}
it it it it

it i

Y f X u

t T

 
  

 
  

 (0.0) 

where 
2 2~ (0, ) and ~ (0, )it u i vu NID NID  

are normal i.i.d. and non-negative 

truncated normal i.i.d., respectively.  Maximum likelihood estimators of the model 
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parameters can be derived and mean technical efficiency can be constructed. 8   

2.2 Quantile Regression 

A final class of estimator we consider in our empirical analyses of banking 

performance is the panel quantile regression model. The th conditional quantile 

function of the response ity , the analog to Eq.(0.0), can be written as: 

 
( | , ) ( )yQ Z X X Z u     

 (0.0)
 

Note that in model (0.0) the effects β(τ) of the covariates X are allowed to depend 

upon the quantile τ. The vector η is intended to capture individual specific sources of 

unobserved heterogeneity that are not adequately controlled for by other covariates. 

The estimates of the individual specific effects (η’s) are restricted to be invariant with 

respect to the quantile but are allowed to be correlated with the x’s as they are 

modeled as fixed effects.  As pointed out in Galvao (2011), in settings in which the 

time series dimension  is relatively large allowing quantile specific fixed effects is not 

feasible. 

 

Koenker (1984) considered the case in which only the intercept parameter was 

permitted to depend upon the quantile and the slope parameters were constrained to 

be identical over selected quantiles. The slope parameters are estimated as regression 

L-statistics and the individual effects are estimated as discretely weighted L-statistics. 

The model we apply in this paper is the quantile regression fixed effects model for 

panel data developed in Koenker (2004), which solves the following convex 

minimization problem: 

  
, 1 1 1

( , ) argmin{ ( ( ) )}
K N T

T
k it it k i it

k i t

v y x z
 

     
  

    (0.0) 

where k indexes the K quantiles 1 2{ , ,..., }k   , 0( ) ( )uu u I     is a piecewise linear 

quantile loss function as defined in Koenker and Bassett Jr (1978), and kv are weights 

                                                               
8 Alternatives to the BC specification of time varying heterogeneity, which has the same pattern but 

different intercepts for different firms, such as the Cornwell et al. (1990) estimator, required too much 

temporal variation in efficiency scores than the sample contained and we were unable to implement this 

estimator in our translog specification.   
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that control the influence of the quantiles on the parameter estimates. The choice of 

the latter are analogous to discreetly weighed L-statistics (Mosteller, 1946), a 

common choice of which is Tukey's trimean (Koenker, 1984). 

3. Data 

   The bank sample is from the top 50 U.S. banks by total book value of assets 

(TBVA), as of the third quarter of the year 2013, from quarterly Call Reports.  More 

precisely, we have quarterly data from 1Q1994 to 3Q2013, obtained from the 

“Consolidated Reports of Condition and Income for a Bank with Domestic and 

Foreign Offices - FFIEC 031” regulatory reports, expressed on a pro-forma basis that 

go back in time to account for mergers.  In order to illustrate, if a bank in 2008 is the 

result of a merger in 2008, pre-2008 data is merged on a pro-forma basis (i.e., the 

other non-surviving bank’s data will be represented as part of the surviving bank 

going back in time). The rationale behind this methodology is to create a long 

historical data-set that controls for survival bias, and also that does not exhibit a 

distorted measure of Banks' growth. U.S. bank regulators use this data in order to 

estimate risk measurement models, such as the Bank Charge-off at Risk Model (Frye 

and Peltz, 2008), which is the basis of risk dashboards used for centralized bank 

supervision.  While this sample design is not a common practice amongst academics, 

this does reflect methodologies used by banks in calibrating credit risk models, such 

as those used for Basel III and for CCAR.9 

 

Although we intended to analyze the top 50 U. S. commercial banks, due to missing 

and questionable data entry, we ended up using 44 of these banks in our analyses. The 

five output and six input variables used to estimate the distance function using both 

stochastic frontier analysis and quantile regression are: 

 

                                                               
9  For more discussion of this issue the use of similar data in models for risk aggregation see Inanoglu 

and Jacobs (2009). 
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Real Estate Loans (REL) 

Commercial and Industrial Loans (CIL) 

Consumer Loans (CL) 

Securities (SC) 

Off-Balance-Sheet Activities (OFF) 

Premises & Fixed Assets (PFA) 

Number of Employees (NOE) 

Purchased Funds (PF) 

Savings Accounts (SA) 

Certificates of Deposit (CD) 

Demand Deposits (DD). 

 

The risk proxies are: 

CREDIT RISK: Gross Charge-off Ratio (CR) 

LIQUIDITY RISK: Liquidity Ratio (LR) 

MARKET RISK: Trading Revenue Deviation to Trading Book Ratio (MR) 

 

Before further providing the descriptive statistics on our variables, we would like to 

draw the attention to our contribution to the banking efficiency in terms of a control 

variable, i.e. Market Risk (MR) proxy, which we have used in our analyses. Market 

risk results from holding or taking positions in interest rates, foreign exchange, 

equities, commodities, and credit spreads. While the core function of traditional 

banking is to accept deposits and make loans, large banks also take market risk on 

their trading books and make trading revenues. Loosely speaking, the banking book 

comprises lending activities, whereas the trading book comprises trading securities, 

over-the-counter (OTC) derivatives10 and market making activities. Notwithstanding 

                                                               
10
 OTC derivatives are financial contracts which derive their values from underlying assets and market 

conditions. OTC derivatives create counterparty credit risk due to the risk of insolvency of one party 

before the settlement of the transactions. It is very difficult –if not impossible- to incorporate 

counterparty credit risk measures in an efficiency framework as counterparty credit risk measures are 
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the fact that, the 2007-08 financial crisis was initiated by a U.S. housing crisis, OTC 

derivatives which are mainly reported on banks’ trading books contributed to 

amplifying various problems and provided channels for systemic risk to propagate 

(Gregory, 2014 p.3). The key differences between the trading and banking book relate 

to holding intent, liquidity and mark-to-market valuation. It has been evidenced that 

traditional banking business of accepting deposits and making loans has declined 

significantly in the U.S. (Allen and Santomero, 2001). The evidence continues to 

prevail in the ratio of the size of the trading book to total loans (i.e. traditional lending 

business) for top U.S. banks even after the 2007-08 financial crisis (Fig. 1).  

 

Regulatory capital requirements for the banking and trading books differ significantly. 

As trading book positions are daily marked-to-market and actively hedged by the 

banks, they are not intended to be held for an extended period of time. Hence, the 

regulatory capital charges for such positions have been based on the price volatility. 

The first market risk regulatory capital requirements to recognize this fact were 

introduced in 1996 (Basel I Amendment). 1996 Amendment required banks to 

estimate a risk measure so called Value-at-Risk (VaR) for the trading book assets over 

a ten-day time horizon. However, during the 2007-08 financial crisis, losses in many 

banks' trading books have been significantly higher than the minimum capital 

requirements under the market risk rules (BCBS 2009a). Across global banks, trading 

book losses totaled over $900 billion over 2007-2009 (Haldane 2009). The 

explanation was straightforward; when markets remain liquid and asset prices rose, 

banks gained from mark-to-market trading book valuations, but when asset prices fell 

during a financial crisis, market maker banks lost billion dollar losses on their trading 

books. This was clearly the case for major U.S. banks. Before the crisis, top five U.S. 

banks rarely reported quarterly trading losses but incurred multiple billion dollar 

losses during the crisis quarters (Fig. 2).  

 
                                                                                                                                                                                   
forward looking and constructed from “exposure profiles”. See Jacobs (2014) for regulatory 

requirements for counterparty credit risk measurement. 
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In response to the financial crisis, the Basel Committee on Banking Supervision 

(BCBS) introduced incremental changes to the current VaR based trading book 

framework in 2009 (also known as Basel 2.5, BCBS 2009a)11. The short term fix was 

to recognize the credit risk in the trading book with an incremental risk capital charge 

(IRC) for unsecuritied credit products, and comprehensive risk measure (CRM) for 

tranched credit products. Additionally, BCBS required banks to calculate a stressed 

VaR taking into account a one-year observation period relating to significant losses, 

which must be calculated in addition to the Value-at-Risk based on the most recent 

one-year observation period. The additional stressed value-at-risk requirement was 

incorporated to help reduce the procyclicality of the minimum capital requirements 

for market risk.  

 

While these additional measures were meant to capture the real risk exposures of 

trading books, BCBS had agreed that the additional measures were not sufficient and 

planned to carry out a more fundamental review of the market risk framework, 

including the use of VaR estimates as the basis for the minimum capital requirement. 

The initial proposal12 was released in May 2012 (BCBS 2012) which focused on key 

areas such as the trading book/banking book boundary, expected shortfall (ES) 

measure as an alternative to VaR, and a comprehensive incorporation of the risk of 

market illiquidity among other things. The importance of incorporating the risk of 

market illiquidity is a key consideration in banks’ regulatory capital requirements for 

trading portfolios. Before the introduction of the Basel 2.5 changes, the entire market 

risk framework was based on an assumption that trading book risk positions were 

liquid, i.e. that banks could liquidate these positions over a 10-day horizon. The recent 

crisis proved this assumption to be false. That is, during the financial crisis, banks 

experienced significant illiquidity in a wide range of credit products held in the 

                                                               
11
 See Inanoglu, H., Jacobs, Jr.,M., and A.K., Karagozoglu, (2014) for an impact analysis of Basel 2.5 

on banks’ regulatory capital for trading portfolios. 
12 A second consultative document was published in October 2013. 

http://www.bis.org/publ/bcbs265.htm 
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trading book, hence, they were forced to retain exposures for prolonged periods of 

time. 

 

Having stated the problems encountered for banks’ trading portfolios during the crisis 

and the recent regulatory responses to the trading book related issues, we included a 

market risk proxy in our efficiency models in order to recognize the risk exposure of 

banks’ trading books. To the best of our knowledge, this is the first paper which uses 

the variability of unexpected trading revenue as the market risk proxy in the banking 

efficiency literature. Ideally, one should use the quarterly Value at Risk (VaR)13 which 

is an average of daily reported VaR’s in a given quarter to proxy a bank’s market risk 

exposure, however, as daily VaR’s are not available to us, we follow Jorion (2002) 

who demonstrated that a bank’s expected absolute value of “unexpected trading 

revenue” is proportional to the dispersion of Value at Risk (VaR) if the trading 

revenue is distributed symmetrically around zero. Following Jorion, we remove an 

estimate of the mean of the trading revenue (i.e. moving average of the last 4 quarters) 

in order to calculate the variability of trading revenue which is proxied as the absolute 

value of unexpected trading revenue. We then divide the absolute value of unexpected 

trading revenue by the gross sum of trading assets and trading liabilities to calculate 

the market risk proxy. That is;  

 

 
|Deviation from the moving average of last 4 quarters of trading revenue|

MR=
Trading Assets+Trading Liabilities

 

 

Returning to descriptive statistics, Table 1 summarizes key variables as of 

3Q2013, from the Call Reports for the top nationally chartered banks in the U.S. by 

total book value of assets (TBVA) at this time. We display details on the Top 10 out of 

50 by TBVA in descending order (JP Morgan Chase, Bank of America, Wells Fargo, 

                                                               
13
 We note the deficiency of VaR measure especially after the crisis, but VaR is still the industry 

standard in measuring market risk. 
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Citigroup, US Bank, Capital One, Bank of N.Y. - Mellon, PNC, State Street and 

HSBC) and distributional statistics on the Top 50. The data is extremely skewed in 

terms of size as measured by TBVA, with the average of the top 4 in TBVA each in 

excess of the 95th percentile of $1.45 Trillion, and the Top 10 comprising $8.14 

Trillion (or 79.27%) out of the 10.27$ Trillion total, as compared to median (average) 

TBVA of $81.35 ($233.47) Billion. There is similar extreme skew by the value of 

Total Loans (TL), with the average of the top 4 in TBVA in excess of the $751.44 

Billion 95th percentile of TL, and the Top 10 comprising $3.81 Trillion or (74.08%) 

out of the $5.14 Trillion total, as compared to median (average) TL of $40.64 

($116.80) Billion. We observe more extreme skew than even TBVA in the value of 

trading revenue deviation, with the average of top 4 in significant excess of the 

$242.05 Million 95th percentile of trading revenue deviation, and the Top 10 

comprising $1.84 Billion or (90.12%) out of the $2.04 Billion total, as compared to 

median (average) trading revenue deviation of $46.33 Million ($3.16 Million). 

Similarly, total gross charge-offs are skewed toward the largest banks, with the 

average of top 4 in TBVA each in excess of the $1.81 Billion 95th percentile of gross 

charge-offs, and the Top 10 comprising $9.93 Billion (or 83.99%) out of the $11.82 

Billion total, as compared to median (average) gross charge-offs of $48.74 Million 

($268.69 Million). Finally for the dollar measures, total cash balances are very 

concentrated in the largest banks, with the average of top 4 in TBVA in excess of the 

$244.53 Billion 95th percentile of total cash balances, and the Top 10 comprising 

$ 1.66 Trillion (or 87.53%) out of the $ 1.89 Trillion total, as compared to median 

(average) total cash balances of $5.45 ($42.99) Billion. Gross Charge-off ratios (CR) 

for many of the top 10 are on the high side relative to the center of the distribution, 8 

of them above (ranging in 0.11%-0.67%) the median (average) in the broader sample 

of 0.12% (0.16%). There is a similar pattern with respect to liquidity ratios (LR), with 

many of the top 10 on the high side relative to the center of the distribution, 8 of them 

above (ranging in 10.19%-49.73%) the median (average) in the broader sample of 

7.41% 13.04%.) Figures 3 through 7 represent several of these measures in time series 

on from the 1st quarter of 1994 until the 3th quarter of 2013. 
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Table 1:  Characteristics of Top 50 Banks by Total Book Value of Assets as of 3Q2013                               

(Call Report Data 1994Q1-2013Q3) 

 

 

Fig. 1 shows the ratio of the trading book to total loans across the US top 44 out 

of 50 banks from 1994Q1 to 2013Q3. This ratio fluctuates from 5% to 8% in the 

1990’s, and sharply surge up to 15% in early 2000’s. It reaches the peak of around 25% 

in 2007 and drops to 17% in less than 2 years. The ratio continues decreasing in most 

recent years.  Fig. 2 displays the trading revenue trend for the top 5 banks. These 

banks show similar fluctuations in time trend though some banks have greater 

variations than others do. These banks rarely experience negative trading revenues but 

incurred significant amount of dollar losses during the crisis quarters.  Fig. 3 shows 

the TBVA across the U.S. 44 out of 50 largest banks over time, reflecting the growth 

in the banking industry overall as well as of the largest banks, with TBVA increasing 

smoothly from around just under $4 Trillion in the early 1990's, to about $10 Trillion 

during the recent financial crisis and declining about 1 Trillion until 2010 and then 

bouncing over $10 Trillion recently. Fig. 4 shows the quarterly TL from over this 

Book Value of 
Assets 

Banking Book 
Loans

Gross Charge-
offs

Cash Balances
Trading Revenue 

Deviation 
Trading Book 

Charge-
off Ratio 

Liquidity 
Ratio

Trading Revenue 
Deviation  Ratio

J.P. Morgan Chase 2,122,287,068 725,503,268 1,642,129 642,077,208 1,120,000 371,149,000 0.23% 30.25% 0.30%

Bank of America 1,621,455,000 925,878,000 2,205,000 165,301,000 298,395 113,693,000 0.24% 10.19% 0.26%

Wells Fargo & Co. 1,380,697,455 811,970,656 1,323,356 211,042,671 128,750 48,215,000 0.16% 15.29% 0.27%

Citigroup 1,346,413,607 603,523,317 2,594,637 322,674,064 217,909 186,016,138 0.43% 23.97% 0.12%

U.S. Bancorp 356,590,456 233,535,765 450,397 15,085,200 19,259 1,319,346 0.19% 4.23% 1.46%

Capital One Financial Corp 313,154,981 192,463,829 1,296,423 30,757,816 12,205 790,465 0.67% 9.82% 1.54%

Bank of New York Mellon 309,488,944 38,396,960 2,457 153,895,620 5,000 13,514,000 0.01% 49.73% 0.04%

PNC Financial 298,485,621 195,566,120 340,744 15,712,887 19,478 4,643,815 0.17% 5.26% 0.42%

State Street 212,689,010 15,636,947 1 47,486,430 12,903 10,728,408 0.00% 22.33% 0.12%

HSBC 181,762,250 64,552,314 73,301 51,422,421 3,159 37,506,127 0.11% 28.29% 0.01%

Minimum 19,301,507 9,305,195 1 283,329 0 1 0.00% 1.38% 0.00%
5th Percentile 20,889,429 10,523,202 1 766,956 5 1,401 0.00% 1.63% 0.01%

25th Percentile 25,174,400 15,707,171 12,304 1,756,586 775 114,623 0.08% 4.29% 0.20%

Median 81,348,361 40,637,447 48,741 5,446,157 3,160 577,647 0.12% 7.41% 0.41%

Average 233,465,451 116,801,277 268,668 42,985,668 46,327 18,400,566 0.16% 13.04% 1.56%

75th Percentile 171,570,765 74,088,496 148,414 20,443,619 13,257 1,934,628 0.18% 16.77% 1.08%

95th Percentile 1,452,924,719 751,443,484 1,810,990 244,532,089 242,054 135,389,941 0.50% 47.13% 10.93%

Maximum 2,122,287,068 925,878,000 2,594,637 642,077,208 1,120,000 371,149,000 0.76% 49.73% 17.67%

Standard Deviation 461,032,705 217,045,601 592,341 112,345,609 175,235 63,699,072 0.16% 12.92% 3.52%

Skewness 10.4004 9.1999 9.5389 20.3433 33.6645 23.6458 8.7609 4.4204 14.4414

Kurtosis 2.9058 2.7271 2.7461 4.0299 5.4930 4.4868 2.2786 1.5191 3.4713

8,143,024,392 3,807,027,176 9,928,445 1,655,455,317 1,837,056 787,575,299 0.26% 20.33% 0.23%
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period, which shows a similar trend to TBVA, a secular upward trend of growth (from 

about $2.5 to nearly $5.5 Trillion in 2008), as well the financial crisis, reflected dips 

of about $1Trillion in the period 2008 to 2009, and increased slowly since then.  In 

Fig. 5, the time series of CRs clearly reflects the credit cycle, with previous peaks of 

0.4% around early 2000s, and alarmingly near 1% by the end of 2009. On the other 

hand, in Fig. 6, LRs display a markedly different pattern over time as compared to 

CRs, a secular decline from around 10% at the beginning of the sample period to 

around 6% from 1997 to 2001, and reaching up to about 16% after 2007 and 

fluctuating since then to 17% the end of the sample period. Finally, in Fig. 7, we see 

the ratio of deviation of trading revenue from the moving average of the previous 4 

quarters to the trading book displaying yet another different pattern to the other risk 

measures; it shows one mode around year 2000 and another peak at the year 2007 and 

sharp decline since then). In Fig. 8 through Fig. 12 we show the distributions of the 5 

measures analyzed in Table 1 across the largest banks as of 3Q2013. The right 

skewness in all of these variables is evident.  
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Fig. 1: Ratio of Trading Book to Total Loans as of 2013Q3 

 

 

Fig. 2: Trading Book Revenue for Top 5 US Banks as of 2013Q3 (in Thousand $) 
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Fig. 3: Total Book Value of Assets (in Million $) 

 

Fig. 4: Total Loans (in Million $) 
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Fig. 5: Average Ratio of Total Charge-off to Total Loans 

 

Fig. 6: Average Liquidity Ratios  
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Fig. 7: Average Trading Revenue Deviation to Trading Book 

 

 

Fig. 8: Distribution of Total Book Value of Assets as of 2013Q3 
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Fig. 9: Distribution of Total Loans as of 2013Q3 

 

Fig. 10: Distribution of Total Charge-off to Total Loan Ratios as of 2013Q3 
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Fig. 11: Distribution of Liquidity Ratios as of 2013Q3 

 

Fig. 12: Distribution of Trading Revenue Deviation to Trading Book as of 2013Q3 
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4. Estimation Results 

Our specifications of the translog output distance functions are based on the 

intermediation interpretation of banking services wherein banks utilize deposits and 

other input factors to provide loan services as their outputs, see Sealey and Lindley 

(1977). The alternative production approach views deposits as outputs as opposed to 

inputs proposed by Baltensperger (1980).   

 

Anticipating the discussion to follow, the overall conclusion of our empirical 

analyses is that the largest surviving banks - in spite of tremendous growth in the last 

20 years - have experienced a diminished capacity to provide loan services as they 

took on increasing levels of risk. This is reflected in a decline in efficiency as implied 

by the econometric models that allow efficiency levels to vary temporally. In addition, 

larger banks have lower scale efficiency levels. There is no evidence of scope 

economies.  Finally, there is no evidence of economies of scale for the large banks in 

our sample. 

   The elasticities of six inputs and three outputs are evaluated at the sample mean 

of the data points, in Table 2, where the standard errors are reported in parentheses. 

We utilize a non-parametric bootstrap following Efron and Tibshirani (1986) , which 

is implemented through 1,000 iterations where in each run, 44 banks are chosen with 

replacement and 79 quarters are chosen with replacement, and the model is re-

estimated. Since our dataset is mean deflated prior to estimating the distance function, 

the first derivatives expressed in Eq.(0.0) and Eq.(0.0) will simply be equal to the first 

order coefficients when evaluated at the sample mean. 
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Table 2: The Elasticity Estimates Evaluated at Sample Mean 

 

The elasticity estimates shown in Table 2 are consistent with the monotonicity 

assumption. The six inputs’ elasticities have negative signs, and the three outputs’ 

elasticities have positive signs. Alternatively, all of the input variables (Premises and 

Fixed Assets, Number of Employees, Purchased Funds, Savings Accounts, 

Certificates of Deposit and Demand Deposits) contribute positively to the output, 

albeit varying in magnitude. Compared with the other inputs, SA and DD have the 

greatest impact. NOE is also an important input source albeit it has less impact than 

SA and DD; while the estimates of PFA and CD are similar in magnitude.  PF has the 

smallest impact in all the inputs.  

 

FE RE FEIV REIV HT PSS1 BC QR(50%)
PFA -0.0486 -0.0519 -0.0903 -0.0875 -0.0500 -0.0437 -0.0253 -0.0640

(0.0501) (0.0506) (0.0490) (0.0809) (0.0485) (0.0433) (0.0562) (0.0405)

NOE -0.1745 -0.2121 -0.0978 -0.1571 -0.1839 -0.1601 -0.2116 -0.1204

(0.0637) (0.0595) (0.0614) (0.0728) (0.0650) (0.0858) (0.0749) (0.0603)

PF -0.0215 -0.0202 -0.0224 -0.0206 -0.0212 -0.0224 -0.0141 -0.0195

(0.0039) (0.0030) (0.0049) (0.0049) (0.0051) (0.0051) (0.0033) (0.0029)

SA -0.5519 -0.5582 -0.5453 -0.5529 -0.5532 -0.5611 -0.5526 -0.5905

(0.0400) (0.0489) (0.0401) (0.0576) (0.0440) (0.0376) (0.0644) (0.0415)

CD -0.0586 -0.0569 -0.0443 -0.0423 -0.0583 -0.0606 -0.0712 -0.0778

(0.0135) (0.0136) (0.0119) (0.0170) (0.0127) (0.0132) (0.0192) (0.0120)

DD -0.0828 -0.0984 -0.0894 -0.1197 -0.0861 -0.0971 -0.1553 -0.1086

(0.0286) (0.0363) (0.0327) (0.0487) (0.0314) (0.0277) (0.0468) (0.0242)
REL 0.4028 0.3793 0.4247 0.3878 0.3982 0.4125 0.3029 0.4823

(0.0495) (0.0480) (0.0548) (0.0348) (0.0595) (0.0635) (0.0606) (0.0348)

CIL 0.2105 0.2172 0.2254 0.2283 0.2117 0.2139 0.2266 0.1810

(0.0400) (0.0366) (0.0471) (0.0333) (0.0360) (0.0446) (0.0228) (0.0287)

CL 0.0817 0.0814 0.0495 0.0581 0.0819 0.0737 0.0707 0.0719

(0.0253) (0.0186) (0.0206) (0.0208) (0.0237) (0.0303) (0.0183) (0.0217)

SC 0.2604 0.2700 0.2704 0.2829 0.2622 0.2678 0.3242 0.2462

(0.0270) (0.0307) (0.0309) (0.0201) (0.0291) (0.0366) (0.0497) (0.0220)

OFF 0.0446 0.0521 0.0299 0.0428 0.0461 0.0320 0.0757 0.0185

(0.0140) (0.0203) (0.0109) (0.0128) (0.0122) (0.0125) (0.0240) (0.0103)

RST 0.9379 0.9978 0.8895 0.9801 0.9527 0.9451 1.0301 0.9809
(0.0661) (0.0281) (0.0826) (0.0400) (0.0545) (0.0690) (0.0247) (0.0457)
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Across most models, our estimates suggest no evidence of increasing returns to 

scale since the numbers are varying closely around 1.  

Turning our attention to the controls for risk, which are displayed in the last three 

rows in Table 4 and  

Table 5 in the Appendix, we observe that in all have generally positive signs on 

coefficient estimates, which have the interpretation that all else equal, risk taking 

activities decrease output, as more risk is detrimental and reduces the capacity of the 

banks to make loans. The magnitudes of the coefficient estimates of Credit Risk (CR) 

are around 10 times smaller than Liquidity Risk (LR).  As LR is proxied by the 

liquidity ratio (cash balance/total assets) one might first expect a negative sign on the 

coefficient since the positive signs indicated by all of the estimators indicates that 

increases in the LR reduce the level of intermediation services provided by the bank.  

It is clear from our estimates that these banks are not managing their liquidity 

optimally, controlling for market and credit risk. The positive sign for coefficient 

estimates of Market Risk (MR) suggest that as banks move from traditional banking 

(i.e. lending business) to trading book activities, banks have become less efficient in 

lending.      

Coefficient estimates on all of the three risk proxies are generally the same across 

models using both stochastic frontier analysis and quantile regression. The positive 

signs on the coefficient estimates indicate that greater LR, CR or MR inhibits output. 

The estimates on MR are generally much less substantial across models; the estimates 

on LR consistently have more substantial across models than the other two risk 

proxies. These results regarding LR and MR support the policy argument that banks 

should be restricted from engaging in highly risky activities, such as proprietary 

trading, and encouraged to maintain an appropriate liquidity ratio. More generally, our 

results taken in totality lead to the sensible implication that banks which stray from 

their core competencies will provide less intermediation services and should shrink 

over time. 
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In Fig. 13 and  

Table 5, we summarize the estimation results of the quantile regression fixed 

effects model for panel data. We estimate these models in the R statistical 

programming language (R Core Development Team, 2010) using the quantreg 

package by Koenker (2009), which the authors adapt and extend in order to produce 

longitudinal data results as well as to produce more reliable statistical inference. From 

the figure below, we can see that the quantile regression estimates on the elasticities, 

represented in black lines, are compatible with those from Fixed Effect model, which 

are denoted in the red lines. The elasticity estimates are not varying significantly 

across quantiles, but the estimates on Credit Risks and Liquidity Risks have displayed 

a distinctive increasing pattern.14  

                                                               
14  The linearity of covariate effects across different quantiles is consistent with the standard 

interpretation of technical efficiency in the stochastic frontier paradigm as a radial measure.  
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Fig. 13: Panel Data Quantile Regression Elasticity Estimates 

Economies of scope, displayed in Table 3 below, are constructed following 

Hajargasht, Coelli and Rao (2008), who derive the expression for economies of scope 

in terms of the derivative of the distance functions utilizing the duality between the 

cost and input distance functions. The economies of scope between outputs i and j can 

be calculated using the derivatives of the output distance function as follows. 

 1/ ' [ ']yy y y yy yx xx x x xyC C D D D D D D D D     (0.0) 

Our dataset is centered on the geometric mean of all observations.  Results are 

essentially the same when we center at the median time period as well.  This enables 

us to more transparently interpret the translog results.  Economies of scope evaluated 

at the sample geometric means for the median time period can be calculated following 

this formula in Eq.(0.0).  A positive sign represents scope diseconomies. 
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For the standard errors of the scope economy measures, we bootstrapped 1000 

times within our dataset.  Based on sample measures, it is suggested that there is no 

evidence of economies of scope across all models among the three different types of 

loans evaluated at the sample mean point.  Our results are consistent with the findings 

of Hughes and Mester (1993).  They base their analysis on the translog cost dual to 

our primal output distance function.  We both find no evidence of scale economies for 

the largest banks or significant scope economies. It is not clear that alternative 

nonparametric approaches such as the local linear approximations utilized by 

Wheelock and Wilson (2012) are directly comparable to our results given their focus 

on banks of varying sizes and the substantial differences in number of parameters for 

such models.  Constructing tests for the regularity conditions of the dual cost function 

from such innovative nonparametric approaches is a research issue that requires more 

study.     
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Table 3: The Scope Economies Estimates 

 

Fig. 14 below summarizes the results of the stochastic frontier estimation in 

terms of average efficiencies across the different estimators in each quarter. Efficiency 

levels range between about 0.10 to 0.4 using time-invariant estimators and with a 

downward trend using the BC model, whose specification requires that the temporal 

pattern is linear and monotonic and thus the decline in average efficiency over the 

sample period from 75% to 70%. This trend is probably due to the substantial 

downturns in the recent period of the Great Recession and the financial meltdown.  

The relationship between efficiency levels and bank sizes is also explored. From 

Fig. 15, we can see that the largest banks do not necessarily have highest technical 

efficiencies; instead,  the efficiency levels are fluctuating as bank sizes change. 

 

FE RE FEIV REIV HT PSS1 BC QR(50%)

REL-CIL 0.0106 0.0108 0.0399 0.0278 0.0107 0.0212 0.0298 0.0160

(0.0613) (0.0267) (0.0376) (0.0430) (0.0299) (0.0751) (0.0303) (0.1134)

REL-CL 0.0266 0.0273 0.0307 0.0456 0.0267 0.0257 0.0237 0.0267

(0.0400) (0.0161) (0.0292) (0.0516) (0.0144) (0.0137) (0.0147) (0.0289)
REL-SC 0.0354 0.0322 0.0178 0.0037 0.0353 0.0360 0.0125 0.0290

(0.0855) (0.0157) (0.0459) (0.0781) (0.0228) (0.0212) (0.0477) (0.0450)
REL-OFF 0.0083 0.0125 0.0431 0.0601 0.0092 0.0131 0.0192 0.0120

(0.0307) (0.0050) (0.0101) (0.0581) (0.0143) (0.0359) (0.0176) (0.0094)
CIL-CL -0.0030 -0.0034 -0.0368 -0.0502 -0.0030 -0.0094 0.0020 -0.0044

(0.0907) (0.0129) (0.0321) (0.0411) (0.0143) (0.0295) (0.0219) (0.0201)
CIL-SC 0.0514 0.0563 0.0677 0.0872 0.0522 0.0544 0.0625 0.0557

(0.0401) (0.0414) (0.0457) (0.0444) (0.0335) (0.0652) (0.0219) (0.0565)
CIL-OFF 0.0013 0.0020 -0.0391 -0.0533 0.0015 -0.0066 0.0043 -0.0098

(0.0150) (0.0097) (0.0189) (0.0266) (0.0123) (0.0210) (0.0087) (0.0226)

CL-SC 0.0273 0.0283 0.0073 0.0329 0.0277 0.0281 0.0002 0.0349

(0.0268) (0.0167) (0.0395) (0.0528) (0.0214) (0.0261) (0.0293) (0.0292)

CL-OFF 0.0055 0.0078 0.0029 -0.0011 0.0059 0.0066 0.0175 0.0053

(0.0093) (0.0069) (0.0200) (0.0171) (0.0062) (0.0110) (0.0066) (0.0129)

SC-OFF -0.0054 -0.0085 0.0066 0.0161 -0.0061 -0.0063 -0.0157 -0.0017

(0.0233) (0.0088) (0.0211) (0.0157) (0.0107) (0.0171) (0.0233) (0.0039)
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Fig. 14: Estimated Efficiencies using all Stochastic Frontier Models 

 

Fig. 15: Efficiency Levels and Bank Sizes 

We further analyze the relationship between bank sizes and the Output Scale 

Efficiency ("OSE"). The derivation of this estimator follows Balk (2001). 
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is the output efficiency using cone technology (i.e., constant 

returns to scale - "CRS".) As we can see in Fig. 16, which plots this OSE versus size 

ranking, the scale efficiencies estimated using time-invariant estimators are increasing 
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with fluctuations as bank sizes decrease (the ranking numbers increase). The scale 

efficiency level using BC estimator15, although displays a more fluctuating pattern 

than those using time-invariant estimator, still suggests that large banks do not 

necessarily have higher scale efficiency levels.  

 

 

Fig. 16: Scale Efficiency Plots using Time-invariant Estimators 

5. Conclusion and Directions for Future Research 

This study represents a contribution to the recent dialogue that has arisen in the 

wake of the recent financial crisis, a reexamination amongst regulators, practitioners 

and academicians of the conventional wisdom regarding the implications of the 

spectacular growth of the financial sector of the economy. Previously, there was a 

widespread belief the "bigger is better", with arguments underpinning this view 

ranging from potential economies of scale and scope, to a better competitive stance at 

the international level. We have seen this logic reversed in the post-crisis world to 

some degree, as for several reasons large banks have come to be viewed as a source of 

trouble and concern for policy makers and regulators. 

                                                               
15 For the BC estimator, we use the average-over-time scale efficiency level. 
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We have addressed this controversy through an empirical analysis of the 

efficiency of U.S. banks with respect to their size and scope. This study utilized a new 

data-set  of bank history, a panel of financial measures derived from supervisory Call 

Reports in the period 1994-2013, from which we construct the variables used in both 

the frontier estimation and quantile regression analyses (inputs and outputs, as well as 

controls for 3 major risk types - credit, market and liquidity.) In this exercise we have 

been able to develop both policy implications and also evaluate potential analytical 

tools for supervisors. 

The conclusion of the stochastic frontier estimation is that in spite of growing, 

the largest U.S. surviving banks have decreased technical efficiency over the last 20 

years. This has occurred as they took on increasing types of risk, and this is reflected 

in an overall decline in efficiency since early, as implied by the econometric model 

that allow this to vary temporally. The estimation results also revealed no evidence on 

increasing returns to scale or scope across models. According to the time-invariant 

estimators, there is no positive correlation between bank size and technical 

efficiencies, and neither exists such a relationship between size and scale efficiencies. 

We found that credit, liquidity and market risks are deleterious to efficiency, which 

has implications for the argument that banks should be restricted to traditional 

banking activities in their zone of competence. The panel quantile regression results 

were generally consistent with the stochastic frontier estimation, albeit with estimates 

not varying greatly across quantiles. Furthermore, the implied efficiencies here are 

uniformly lower in the quantile regressions, than for the other time-invariant frontier 

estimators. 

This paper has both policy implications and also evaluates various econometric 

techniques as potentially valuable analytical tools for supervisors. First, our results 

highlight the importance of the prudential supervisory role in controlling the level of 

risk in the banking sector (also reducing incentive for regulatory arbitrage between the 

banking and trading books), as we have documented that the elevation in risk 

measures coupled with the growth of the sector has resulted in declining measures of 
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efficiency, a result that is robust to several econometric specifications. The policy 

implication is that we may want a better capitalized and somewhat smaller banking 

system, as this is likely to imply a more efficiently functioning banking industry. 

Second, the finding that market and liquidity risk dominate the influence of credit risk 

implied in the Volcker Rule debate, that regulators may wish not only to consider 

restricting banks from dangerous activities such as speculative proprietary trading, but 

also closely monitor the OTC exposures and their use of hedging some market risks 

instead of market making purposes and consequently encourage insured commercial 

banks to focus on their core competency of making loans. There are several fruitful 

avenues of extension for this research program. We may pursue alternative data-sets, 

such as other financial service types of firms (e.g., insurers, brokers), or data from 

other jurisdictions. We may expand our set of explanatory variables, with alternative 

controls (e.g., size, leverage, capitalization), or an expanded set of inputs (e.g., a 

measure of technological change.) Finally, we may expand our suite of alternative 

models, thereby seeking out further robust tools for the use by supervisors. 
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Appendix: 

Table 4: Stochastic Frontier Estimates for translog Distance Function 

 

 

 Model FE RE FEIV REIV HT PSS1 BC Model FE RE FEIV REIV HT PSS1 BC
CIL 0.210513 0.217183 0.225426 0.228280 0.211691 0.213949 0.226558 OFF*OFF 0.009649 0.010547 0.010252 0.011738 0.009810 0.005204 0.015968

(0.210513) (0.217183) (0.008731) (0.008980) (0.211691) (0.213949) (0.226558) (0.009649) (0.010547) (0.001082) (0.001138) (0.009810) (0.005204) (0.015968)
CL 0.081733 0.081414 0.049541 0.058110 0.081866 0.073736 0.070690 CIL*CL 0.003369 0.004041 0.016325 0.018603 0.003493 0.000263 0.005575

(0.081733) (0.081414) (0.005757) (0.005898) (0.081866) (0.073736) (0.070690) (0.003369) (0.004041) (0.001972) (0.002072) (0.003493) (0.000263) (0.005575)
SC 0.260411 0.270013 0.270424 0.282938 0.262164 0.267831 0.324163 CIL*SC -0.008265 -0.008142 -0.034409 -0.033865 -0.008167 -0.016745 -0.006870

(0.260411) (0.270013) (0.006756) (0.006936) (0.262164) (0.267831) (0.324163) 0.008265 0.008142 (0.002480) (0.002587) 0.008167 0.016745 0.006870
OFF 0.044573 0.052108 0.029874 0.042833 0.046082 0.031973 0.075718 CIL*OFF -0.005712 -0.006469 0.005667 0.005237 -0.005883 0.001587 -0.009611

(0.044573) (0.052108) (0.004058) (0.004210) (0.046082) (0.031973) (0.075718) 0.005712 0.006469 (0.002227) (0.002348) 0.005883 (0.001587) 0.009611
PFA -0.048591 -0.051928 -0.090291 -0.087498 -0.050028 -0.043731 -0.025343 CL*SC -0.015954 -0.018204 -0.010998 -0.017490 -0.016418 -0.013848 -0.024535

0.048591 0.051928 (0.015723) (0.016022) 0.050028 0.043731 0.025343 0.015954 0.018204 (0.001882) (0.001927) 0.016418 0.013848 0.024535
NOE -0.174543 -0.212133 -0.097825 -0.157074 -0.183900 -0.160083 -0.211568 CL*OFF -0.005802 -0.006189 -0.011282 -0.012292 -0.005876 -0.003394 -0.008236

0.174543 0.212133 (0.018810) (0.018105) 0.183900 0.160083 0.211568 0.005802 0.006189 (0.001487) (0.001565) 0.005876 0.003394 0.008236
PF -0.021459 -0.020166 -0.022382 -0.020632 -0.021222 -0.022423 -0.014052 SC*OFF 0.014502 0.014889 0.022276 0.023005 0.014562 0.013018 0.016309

0.021459 0.020166 (0.001797) (0.001893) 0.021222 0.022423 0.014052 (0.014502) (0.014889) (0.001378) (0.001452) (0.014562) (0.013018) (0.016309)
SA -0.551895 -0.558245 -0.545318 -0.552944 -0.553159 -0.561076 -0.552630 CIL*PFA -0.051631 -0.051014 -0.071044 -0.078912 -0.051729 -0.059480 -0.013790

0.551895 0.558245 (0.009602) (0.010043) 0.553159 0.561076 0.552630 0.051631 0.051014 (0.005866) (0.006128) 0.051729 0.059480 0.013790
CD -0.058643 -0.056920 -0.044286 -0.042250 -0.058266 -0.060594 -0.071194 CIL*NOE -0.013911 -0.010315 0.023763 0.039556 -0.013201 0.000593 -0.036446

0.058643 0.056920 (0.004307) (0.004495) 0.058266 0.060594 0.071194 0.013911 0.010315 (0.010167) (0.010638) 0.013201 (0.000593) 0.036446
DD -0.082796 -0.098362 -0.089356 -0.119685 -0.086103 -0.097145 -0.155330 CIL*PF 0.001301 0.000993 0.005045 0.005771 0.001252 -0.001339 -0.000405

0.082796 0.098362 (0.008378) (0.008589) 0.086103 0.097145 0.155330 (0.001301) (0.000993) (0.000804) (0.000846) (0.001252) 0.001339 0.000405
PFA*PFA 0.038638 0.033627 0.044351 0.025530 0.037510 0.041603 0.033637 CIL*SA 0.010498 0.009667 0.002173 0.003062 0.010466 0.012797 -0.008714

(0.038638) (0.033627) (0.007338) (0.007558) (0.037510) (0.041603) (0.033637) (0.010498) (0.009667) (0.004217) (0.004416) (0.010466) (0.012797) 0.008714
NOE*NOE -0.120394 -0.112475 -0.131007 -0.130757 -0.120410 -0.080091 0.142872 CIL*CD 0.019417 0.019489 0.015627 0.016128 0.019482 0.020563 0.015425

0.120394 0.112475 (0.043828) (0.045817) 0.120410 0.080091 (0.142872) (0.019417) (0.019489) (0.001326) (0.001391) (0.019482) (0.020563) (0.015425)
PF*PF -0.003953 -0.003604 -0.004079 -0.003435 -0.003887 -0.004157 -0.002120 CIL*DD 0.017048 0.017289 0.025161 0.024054 0.017052 0.016695 0.028778

0.003953 0.003604 (0.000398) (0.000418) 0.003887 0.004157 0.002120 (0.017048) (0.017289) (0.002795) (0.002942) (0.017052) (0.016695) (0.028778)
SA*SA -0.064611 -0.062603 -0.064665 -0.062891 -0.064273 -0.065390 -0.035911 CL*PFA 0.006954 0.010037 0.027055 0.025806 0.007448 0.017517 0.034430

0.064611 0.062603 (0.005258) (0.005547) 0.064273 0.065390 0.035911 (0.006954) (0.010037) (0.005348) (0.005593) (0.007448) (0.017517) (0.034430)
CD*CD -0.011441 -0.011021 -0.009875 -0.008825 -0.011356 -0.010620 -0.009391 CL*NOE -0.022980 -0.028653 -0.046901 -0.049442 -0.023873 -0.050973 -0.074770

0.011441 0.011021 (0.000953) (0.001004) 0.011356 0.010620 0.009391 0.022980 0.028653 (0.009816) (0.010261) 0.023873 0.050973 0.074770
DD*DD -0.094605 -0.099422 -0.035313 -0.037091 -0.095586 -0.095532 -0.118533 CL*PF -0.000451 -0.001304 -0.000003 -0.002056 -0.000643 -0.001116 -0.000478

0.094605 0.099422 (0.005776) (0.006087) 0.095586 0.095532 0.118533 0.000451 0.001304 (0.000582) (0.000603) 0.000643 0.001116 0.000478
PFA*NOE -0.135936 -0.128521 -0.140047 -0.099991 -0.134269 -0.142371 -0.154229 CL*SA -0.031540 -0.028394 -0.058729 -0.057030 -0.030886 -0.015085 -0.020246

0.135936 0.128521 (0.020987) (0.021634) 0.134269 0.142371 0.154229 0.031540 0.028394 (0.003044) (0.003203) 0.030886 0.015085 0.020246
PFA*PF -0.003701 -0.004009 -0.005245 -0.006641 -0.003782 -0.002516 -0.002368 CL*CD -0.000740 -0.000835 -0.000290 0.000709 -0.000768 0.000238 -0.001349

0.003701 0.004009 (0.000938) (0.000987) 0.003782 0.002516 0.002368 0.000740 0.000835 (0.000827) (0.000872) 0.000768 (0.000238) 0.001349
PFA*SA 0.038080 0.027303 0.086320 0.058173 0.035773 0.035318 0.012125 CL*DD 0.003457 0.000906 0.030763 0.029668 0.002931 0.003483 -0.009432

(0.038080) (0.027303) (0.011544) (0.012023) (0.035773) (0.035318) (0.012125) (0.003457) (0.000906) (0.003183) (0.003359) (0.002931) (0.003483) 0.009432
PFA*CD 0.002850 0.002147 -0.009586 -0.009082 0.002702 0.008438 0.017078 SC*PFA 0.000425 -0.007533 0.008197 -0.003508 -0.001080 0.008691 -0.051247

(0.002850) (0.002147) (0.004087) (0.004309) (0.002702) (0.008438) (0.017078) (0.000425) 0.007533 (0.005705) (0.005973) 0.001080 (0.008691) 0.051247
PFA*DD 0.029591 0.034528 0.024848 0.039228 0.030696 0.031088 0.007854 SC*NOE 0.075593 0.089250 0.049030 0.060275 0.078081 0.045799 0.178468

(0.029591) (0.034528) (0.011018) (0.011565) (0.030696) (0.031088) (0.007854) (0.075593) (0.089250) (0.010034) (0.010499) (0.078081) (0.045799) (0.178468)
NOE*PF 0.012621 0.012775 0.012865 0.015652 0.012736 0.008392 0.005859 SC*PF -0.000005 0.000169 0.000118 0.000366 0.000029 0.000658 0.000330

(0.012621) (0.012775) (0.002362) (0.002480) (0.012736) (0.008392) (0.005859) 0.000005 (0.000169) (0.000579) (0.000611) (0.000029) (0.000658) (0.000330)
NOE*SA -0.010913 -0.003131 -0.076014 -0.053907 -0.008869 -0.003073 -0.057969 SC*SA 0.008717 0.003191 0.030313 0.023657 0.007587 0.012785 -0.014703

0.010913 0.003131 (0.016498) (0.017279) 0.008869 0.003073 0.057969 (0.008717) (0.003191) (0.003459) (0.003629) (0.007587) (0.012785) 0.014703
NOE*CD 0.043213 0.042967 0.050378 0.043584 0.043351 0.038000 -0.004376 SC*CD -0.017877 -0.017829 -0.019046 -0.018618 -0.017850 -0.016472 -0.018719

(0.043213) (0.042967) (0.007477) (0.007881) (0.043351) (0.038000) 0.004376 0.017877 0.017829 (0.001330) (0.001403) 0.017850 0.016472 0.018719
NOE*DD 0.142434 0.139512 0.075760 0.063166 0.141948 0.119629 0.161181 SC*DD -0.037741 -0.033453 -0.056338 -0.046868 -0.036754 -0.030332 -0.028529

(0.142434) (0.139512) (0.014692) (0.015396) (0.141948) (0.119629) (0.161181) 0.037741 0.033453 (0.003632) (0.003791) 0.036754 0.030332 0.028529
PF*SA -0.000448 -0.001147 -0.000472 -0.002944 -0.000591 -0.000065 -0.001351 OFF*PFA 0.008623 0.008071 0.022027 0.022312 0.008503 0.008531 0.011195

0.000448 0.001147 (0.001387) (0.001458) 0.000591 0.000065 0.001351 (0.008623) (0.008071) (0.003905) (0.004111) (0.008503) (0.008531) (0.011195)
PF*CD -0.000814 -0.000916 0.000260 -0.000244 -0.000842 -0.001108 -0.001098 OFF*NOE -0.047185 -0.045010 -0.084294 -0.081532 -0.046567 -0.031327 -0.062669

0.000814 0.000916 (0.000387) (0.000407) 0.000842 0.001108 0.001098 0.047185 0.045010 (0.007415) (0.007795) 0.046567 0.031327 0.062669
PF*DD -0.001820 -0.001055 -0.001024 0.000747 -0.001703 0.002479 0.002019 OFF*PF -0.002526 -0.002545 -0.003761 -0.004608 -0.002539 -0.001040 -0.002048

0.001820 0.001055 (0.001488) (0.001567) 0.001703 (0.002479) (0.002019) 0.002526 0.002545 (0.000571) (0.000601) 0.002539 0.001040 0.002048
SA*CD 0.014695 0.014271 0.022856 0.024622 0.014472 0.006685 0.031876 OFF*SA 0.044860 0.044592 0.052796 0.052436 0.044826 0.032180 0.047205

(0.014695) (0.014271) (0.002994) (0.003147) (0.014472) (0.006685) (0.031876) (0.044860) (0.044592) (0.003931) (0.004149) (0.044826) (0.032180) (0.047205)
SA*DD 0.011554 0.012161 0.007661 0.009862 0.011659 0.018797 0.013151 OFF*CD -0.000669 -0.000900 0.006146 0.005435 -0.000782 -0.003741 0.007377

(0.011554) (0.012161) (0.005196) (0.005485) (0.011659) (0.018797) (0.013151) 0.000669 0.000900 (0.001278) (0.001342) 0.000782 0.003741 (0.007377)
CD*DD -0.029968 -0.029502 -0.022906 -0.020797 -0.029892 -0.027892 -0.026060 OFF*DD -0.000469 -0.001321 0.016510 0.016127 -0.000727 -0.001279 -0.002952

0.029968 0.029502 (0.002304) (0.002429) 0.029892 0.027892 0.026060 0.000469 0.001321 (0.003088) (0.003250) 0.000727 0.001279 0.002952
CIL*CIL 0.013484 0.013819 0.010828 0.009638 0.013512 0.016347 0.017082 CR -0.006039 -0.007250 -0.000928 -0.000464 -0.006253 -0.006200 -0.010448

(0.013484) (0.013819) (0.002982) (0.003129) (0.013512) (0.016347) (0.017082) 0.006039 0.007250 (0.002382) (0.002508) 0.006253 0.006200 0.010448
CL*CL 0.022843 0.026315 0.002024 0.012490 0.023612 0.023391 0.032332  LR 0.087475 0.087680 0.094706 0.092425 0.087282 0.101854 0.070947

(0.022843) (0.026315) (0.001896) (0.001872) (0.023612) (0.023391) (0.032332) (0.087475) (0.087680) (0.006857) (0.007111) (0.087282) (0.101854) (0.070947)
SC*SC 0.025020 0.023597 0.035500 0.033810 0.024727 0.032809 0.017752 MR 0.001398 0.000934 0.003520 0.002858 0.001295 0.000934 0.001112

(0.025020) (0.023597) (0.002056) (0.002156) (0.024727) (0.032809) (0.017752) (0.001398) (0.000934) (0.001027) (0.001080) (0.001295) (0.000934) (0.001112)
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Table 5 : Panel Data Quantile Regression for translog Distance Function 

 

 

 

 

 

 Quantiles 10% 20% 30% 40% 50% 60% 70% 80% 90% Quantiles 10% 20% 30% 40% 50% 60% 70% 80% 90%

CIL 0.186117 0.188241 0.186001 0.186772 0.181033 0.181395 0.180971 0.184430 0.188001 OFF*OFF -0.000059 0.001693 0.002155 0.002412 0.003502 0.005009 0.005972 0.006503 0.006061

(0.031082) (0.030091) (0.029643) (0.029302) (0.028715) (0.028278) (0.028355) (0.028296) (0.028207) (0.004079) (0.003808) (0.003974) (0.004252) (0.004546) (0.005026) (0.005498) (0.006088) (0.006774)

CL 0.073422 0.072747 0.076757 0.072115 0.071939 0.071637 0.068294 0.066885 0.060639 CIL*CL 0.000443 -0.006342 -0.004294 -0.001453 0.002275 0.004204 0.007200 0.011679 0.017152

(0.022942) (0.022320) (0.022035) (0.021866) (0.021725) (0.021406) (0.021272) (0.021282) (0.021927) (0.019663) (0.019261) (0.019181) (0.019501) (0.019610) (0.019913) (0.019908) (0.019667) (0.018987)

SC 0.244247 0.242886 0.243926 0.247198 0.246216 0.248921 0.258118 0.261793 0.272753 CIL*SC -0.006918 -0.012601 -0.020464 -0.022832 -0.022595 -0.025402 -0.031805 -0.033289 -0.040181

(0.024862) (0.023342) (0.022519) (0.022070) (0.022037) (0.022364) (0.023317) (0.024154) (0.025485) (0.019588) (0.019370) (0.019679) (0.020014) (0.020276) (0.020441) (0.020685) (0.021068) (0.021143)

OFF 0.007393 0.010903 0.011920 0.013627 0.018549 0.024395 0.028563 0.031227 0.031574 CIL*OFF -0.004403 0.001008 0.008307 0.009789 0.007801 0.006278 0.005445 0.001246 -0.003303

(0.009770) (0.009068) (0.009064) (0.009533) (0.010286) (0.011022) (0.011630) (0.012374) (0.013607) (0.008668) (0.008346) (0.008292) (0.008180) (0.008112) (0.008061) (0.008062) (0.008359) (0.008583)

PFA -0.028775 -0.041039 -0.053032 -0.062913 -0.063975 -0.062595 -0.062139 -0.065550 -0.062789 CL*SC -0.012418 -0.005872 -0.010110 -0.013342 -0.016610 -0.018800 -0.027769 -0.033906 -0.043187

(0.047097) (0.042669) (0.041194) (0.040629) (0.040481) (0.040788) (0.042346) (0.043698) (0.046825) (0.016556) (0.016966) (0.017545) (0.018072) (0.018703) (0.019232) (0.019713) (0.020280) (0.021018)

NOE -0.106631 -0.116144 -0.119710 -0.111422 -0.120446 -0.128904 -0.146938 -0.154808 -0.166384 CL*OFF -0.000668 -0.000715 -0.001431 -0.001080 -0.001763 -0.002800 -0.003382 -0.003864 -0.006450

(0.074282) (0.067869) (0.064095) (0.061759) (0.060331) (0.060247) (0.060722) (0.062074) (0.066665) (0.008012) (0.007594) (0.007459) (0.007479) (0.007350) (0.007119) (0.006949) (0.007060) (0.007447)

PF -0.020028 -0.020099 -0.019860 -0.019899 -0.019499 -0.018155 -0.017258 -0.017479 -0.017131 SC*OFF 0.009461 0.009532 0.005067 0.002478 0.004640 0.008444 0.010190 0.010825 0.013126

(0.003180) (0.002944) (0.002840) (0.002844) (0.002902) (0.003023) (0.003108) (0.003227) (0.003644) (0.009530) (0.009285) (0.009200) (0.009330) (0.009436) (0.009538) (0.009718) (0.010129) (0.010498)

SA -0.611272 -0.610463 -0.596040 -0.595692 -0.590527 -0.586778 -0.576617 -0.571867 -0.560169 CIL*PFA -0.043873 -0.059388 -0.059525 -0.056574 -0.043563 -0.051296 -0.050116 -0.050367 -0.055707

(0.041616) (0.039749) (0.040038) (0.040558) (0.041477) (0.041994) (0.043100) (0.045179) (0.047135) (0.043357) (0.041435) (0.041033) (0.040350) (0.039501) (0.040048) (0.040074) (0.041054) (0.042339)

CD -0.084041 -0.078585 -0.080373 -0.080577 -0.077824 -0.076388 -0.071339 -0.069169 -0.067562 CIL*NOE -0.012550 0.009259 0.009773 0.002164 -0.012836 0.003356 0.012006 0.028564 0.052372

(0.011711) (0.011349) (0.011529) (0.011649) (0.012013) (0.012269) (0.012743) (0.013527) (0.014765) (0.046693) (0.043244) (0.042900) (0.042960) (0.043771) (0.045391) (0.045088) (0.045771) (0.045582)

DD -0.120876 -0.110563 -0.109319 -0.107017 -0.108603 -0.110255 -0.110080 -0.106796 -0.108408 CIL*PF -0.003163 -0.001826 -0.001752 -0.001397 -0.001182 -0.000935 -0.001294 -0.000532 -0.000268

(0.024460) (0.022693) (0.022591) (0.023387) (0.024175) (0.024917) (0.025462) (0.026094) (0.027727) (0.002842) (0.002495) (0.002269) (0.002143) (0.002045) (0.002003) (0.001929) (0.001952) (0.002145)

PFA*PFA 0.004240 0.015394 0.009792 0.016539 0.029268 0.028861 0.039438 0.048291 0.055277 CIL*SA 0.028620 0.024623 0.025347 0.021883 0.021027 0.015455 0.006919 0.005040 0.002256

(0.077997) (0.071545) (0.072075) (0.073069) (0.073929) (0.076973) (0.079013) (0.085591) (0.091551) (0.026299) (0.025230) (0.024460) (0.024340) (0.024270) (0.024293) (0.024618) (0.025038) (0.025287)

NOE*NOE -0.277984 -0.214868 -0.202672 -0.154166 -0.096597 -0.052156 -0.009614 0.073097 0.148470 CIL*CD 0.015550 0.015416 0.015467 0.015689 0.016193 0.015152 0.013273 0.009081 0.005077

(0.220373) (0.203961) (0.196646) (0.192185) (0.189366) (0.186824) (0.181178) (0.176364) (0.182179) (0.011954) (0.011244) (0.011282) (0.011403) (0.011391) (0.011451) (0.011253) (0.011042) (0.011149)

PF*PF -0.003993 -0.003895 -0.003824 -0.003768 -0.003566 -0.003233 -0.002999 -0.003012 -0.002943 CIL*DD 0.004990 0.004088 0.006423 0.012573 0.013163 0.012411 0.015027 0.011620 0.007247

(0.000689) (0.000625) (0.000606) (0.000595) (0.000594) (0.000611) (0.000637) (0.000671) (0.000718) (0.025929) (0.023831) (0.023574) (0.023213) (0.023065) (0.022882) (0.022375) (0.022070) (0.023279)

SA*SA -0.131778 -0.120157 -0.114132 -0.105562 -0.097685 -0.069441 -0.062722 -0.065735 -0.069211 CL*PFA -0.019006 -0.013576 -0.007459 0.001497 0.003074 -0.002486 -0.004584 -0.003551 -0.000398

(0.072298) (0.067192) (0.065457) (0.066043) (0.066695) (0.066766) (0.066100) (0.066775) (0.070128) (0.031414) (0.029947) (0.029385) (0.029059) (0.029057) (0.028808) (0.028679) (0.029095) (0.032728)

CD*CD -0.013915 -0.011969 -0.012407 -0.012991 -0.012969 -0.011669 -0.012190 -0.011839 -0.010899 CL*NOE 0.019910 0.006143 -0.019048 -0.039204 -0.048781 -0.044945 -0.037567 -0.038904 -0.039054

(0.009021) (0.008061) (0.007827) (0.007836) (0.007761) (0.007617) (0.007437) (0.007287) (0.007473) (0.042309) (0.042427) (0.043281) (0.043549) (0.043710) (0.043103) (0.042444) (0.042487) (0.044688)

DD*DD -0.121485 -0.106573 -0.099866 -0.095124 -0.089777 -0.080274 -0.079112 -0.077630 -0.077686 CL*PF -0.002419 -0.002389 -0.000128 0.000498 0.001072 0.001074 0.000764 0.000163 -0.000535

(0.051855) (0.050767) (0.051501) (0.052472) (0.053469) (0.054828) (0.055517) (0.054908) (0.053177) (0.002844) (0.002468) (0.002300) (0.002172) (0.002074) (0.002035) (0.002035) (0.002009) (0.002124)

PFA*NOE -0.022658 -0.053140 -0.049211 -0.075778 -0.102124 -0.114556 -0.141830 -0.171989 -0.196975 CL*SA -0.005841 -0.001207 0.007162 0.013905 0.015304 0.009243 -0.000491 -0.000983 -0.003212

(0.108605) (0.101312) (0.097419) (0.095836) (0.095918) (0.097020) (0.098647) (0.102838) (0.112356) (0.025980) (0.026606) (0.027167) (0.028088) (0.028291) (0.028290) (0.028721) (0.029184) (0.028938)

PFA*PF -0.004135 -0.004058 -0.002634 -0.002188 -0.002461 -0.002494 -0.002940 -0.003035 -0.003332 CL*CD -0.000894 0.000039 0.000943 0.000498 0.000125 0.001598 0.004394 0.004715 0.003923

(0.005208) (0.004887) (0.004699) (0.004509) (0.004256) (0.004184) (0.004109) (0.004139) (0.004518) (0.006783) (0.006427) (0.006374) (0.006534) (0.006557) (0.006655) (0.006560) (0.006662) (0.007095)

PFA*SA 0.002079 0.019333 0.025385 0.033430 0.044718 0.045205 0.059056 0.064307 0.063630 CL*DD -0.018824 -0.016297 -0.010121 -0.007191 -0.002353 0.001986 0.000306 0.001579 0.000999

(0.053450) (0.049795) (0.049898) (0.050659) (0.051505) (0.052573) (0.054353) (0.055979) (0.060246) (0.019785) (0.019021) (0.018889) (0.018671) (0.019305) (0.020057) (0.021083) (0.022048) (0.022355)

PFA*CD 0.003788 0.004721 0.008706 0.009094 0.012963 0.018661 0.016394 0.015720 0.019363 SC*PFA 0.019211 0.020027 0.015906 0.000680 -0.005457 -0.000743 0.003554 0.008901 0.022205

(0.019769) (0.018817) (0.018625) (0.019118) (0.019477) (0.019891) (0.020404) (0.020557) (0.022216) (0.045221) (0.044078) (0.042227) (0.040501) (0.039057) (0.039341) (0.039082) (0.039709) (0.042169)

PFA*DD 0.008863 0.000462 -0.007166 -0.005463 -0.003192 0.008126 0.018582 0.040539 0.058235 SC*NOE -0.003299 -0.009162 -0.003441 0.022859 0.038688 0.026509 0.010955 -0.001386 -0.029780

(0.048706) (0.046576) (0.046981) (0.048494) (0.050594) (0.052694) (0.055732) (0.059758) (0.066622) (0.056764) (0.052546) (0.050924) (0.049832) (0.049481) (0.050550) (0.051116) (0.053818) (0.058657)

NOE*PF 0.014510 0.013387 0.008623 0.006825 0.006088 0.006221 0.006425 0.009668 0.011091 SC*PF 0.001815 0.001803 0.001172 0.000161 0.000059 0.000404 0.000554 0.000737 0.000773

(0.006977) (0.006311) (0.006091) (0.006086) (0.006078) (0.006345) (0.006469) (0.006772) (0.007302) (0.001925) (0.001869) (0.001837) (0.001824) (0.001798) (0.001741) (0.001730) (0.001754) (0.001867)

NOE*SA 0.078369 0.045897 0.038290 0.024324 0.007162 -0.002470 -0.018505 -0.034500 -0.039404 SC*SA 0.006385 0.007168 0.009345 0.012282 0.008468 0.015464 0.031426 0.031101 0.035015

(0.088053) (0.077467) (0.072146) (0.068662) (0.068247) (0.069024) (0.071582) (0.071743) (0.079383) (0.027109) (0.028519) (0.029486) (0.030086) (0.030539) (0.031121) (0.031172) (0.031623) (0.033265)

NOE*CD 0.019795 0.017011 0.016829 0.022157 0.020355 0.007194 0.005859 -0.001592 -0.015464 SC*CD -0.014223 -0.013682 -0.015866 -0.015984 -0.015563 -0.012504 -0.014253 -0.012262 -0.009196

(0.031795) (0.028458) (0.027934) (0.028245) (0.028801) (0.029313) (0.029492) (0.030700) (0.033346) (0.008641) (0.007885) (0.008067) (0.008206) (0.008540) (0.008938) (0.009246) (0.009819) (0.010974)

NOE*DD 0.123591 0.134359 0.126361 0.123569 0.111481 0.093693 0.084231 0.046737 0.016028 SC*DD -0.012551 -0.003507 -0.003921 -0.013066 -0.020587 -0.023324 -0.018709 -0.020093 -0.021357

(0.080366) (0.081925) (0.085897) (0.089448) (0.092691) (0.095013) (0.096408) (0.097515) (0.101100) (0.028554) (0.027142) (0.025896) (0.025575) (0.026102) (0.027207) (0.027896) (0.028225) (0.027448)

PF*SA 0.000747 0.000178 0.001857 0.001914 0.001519 0.000632 -0.000940 -0.002889 -0.003419 OFF*PFA 0.003294 0.012839 0.007385 0.010693 0.009576 0.013579 0.013325 0.011411 0.008177

(0.004379) (0.004345) (0.004178) (0.004109) (0.004035) (0.004060) (0.004022) (0.004086) (0.004291) (0.018150) (0.016673) (0.016319) (0.016519) (0.016347) (0.016503) (0.016344) (0.017043) (0.019188)

PF*CD -0.001207 -0.001049 -0.001170 -0.001205 -0.001178 -0.001389 -0.001005 -0.001175 -0.001038 OFF*NOE 0.002545 -0.016623 -0.011525 -0.014102 -0.018633 -0.028091 -0.032548 -0.034663 -0.032113

(0.001013) (0.000936) (0.000934) (0.000980) (0.001005) (0.001065) (0.001087) (0.001114) (0.001232) (0.027300) (0.025821) (0.026568) (0.027319) (0.027935) (0.029788) (0.030639) (0.032301) (0.033530)

PF*DD -0.003948 -0.001787 -0.000101 0.001216 0.001898 0.001897 0.002506 0.002107 0.001603 OFF*PF -0.000692 -0.001272 -0.000524 -0.000475 -0.000464 -0.000647 -0.000636 -0.001250 -0.001495

(0.003914) (0.003365) (0.003068) (0.002968) (0.002864) (0.002933) (0.002962) (0.003187) (0.003382) (0.001262) (0.001141) (0.001068) (0.001031) (0.001025) (0.001047) (0.001084) (0.001123) (0.001205)

SA*CD 0.009768 0.011469 0.006873 0.004952 0.003433 0.004085 0.008083 0.013691 0.016800 OFF*SA 0.016207 0.017883 0.013201 0.011523 0.016264 0.021786 0.024548 0.025219 0.024074

(0.014931) (0.014132) (0.013970) (0.014029) (0.014227) (0.014683) (0.015016) (0.015709) (0.017652) (0.013582) (0.013421) (0.014028) (0.015146) (0.015976) (0.016910) (0.018098) (0.018827) (0.019680)

SA*DD 0.042938 0.037763 0.039886 0.036899 0.036608 0.026969 0.026273 0.034153 0.040287 OFF*CD -0.006953 -0.004950 -0.002379 -0.002060 -0.001670 -0.001899 -0.000278 0.001791 0.002455

(0.038620) (0.036002) (0.035775) (0.035673) (0.036016) (0.036479) (0.036929) (0.037907) (0.039262) (0.005829) (0.005325) (0.005301) (0.005625) (0.005956) (0.006152) (0.006302) (0.006353) (0.006809)

CD*DD -0.019018 -0.019829 -0.017269 -0.018403 -0.017216 -0.011542 -0.010104 -0.006105 -0.002901 OFF*DD -0.009685 -0.006710 -0.007389 -0.007009 -0.004731 -0.003444 -0.004073 -0.001233 0.003232

(0.016251) (0.014647) (0.013986) (0.013629) (0.013911) (0.014794) (0.015903) (0.016724) (0.018251) (0.014473) (0.013035) (0.013085) (0.013052) (0.013537) (0.014686) (0.015582) (0.016524) (0.016468)

CIL*CIL 0.023733 0.026440 0.024502 0.022840 0.022976 0.022139 0.019804 0.021462 0.032720 CR 0.000061 -0.000493 0.000201 0.000198 -0.001211 -0.002520 -0.004857 -0.005360 -0.003074

(0.032839) (0.031638) (0.031057) (0.031105) (0.030785) (0.030062) (0.029174) (0.028538) (0.027727) (0.007669) (0.007143) (0.006691) (0.006466) (0.006260) (0.006209) (0.006391) (0.006773) (0.007697)

CL*CL 0.020918 0.020436 0.033350 0.035086 0.037895 0.038761 0.041581 0.043548 0.048366  LR 0.064091 0.062788 0.072054 0.072946 0.082132 0.083271 0.086403 0.083422 0.090649

(0.016586) (0.017614) (0.018079) (0.019014) (0.019929) (0.020698) (0.021746) (0.023207) (0.024633) (0.016852) (0.015036) (0.014705) (0.015034) (0.015327) (0.015670) (0.015807) (0.015993) (0.016445)

SC*SC 0.034174 0.031780 0.040532 0.047459 0.044996 0.044263 0.060456 0.069094 0.085110 MR -0.000035 -0.000015 0.000227 0.000147 -0.000036 -0.000402 -0.000064 -0.000455 -0.000639

(0.036863) (0.038031) (0.039610) (0.040700) (0.041410) (0.041901) (0.042319) (0.043457) (0.044703) (0.001135) (0.001038) (0.001011) (0.000991) (0.000981) (0.000960) (0.000940) (0.000954) (0.001097)
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