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Abstract

Various structural and non-structural models of productivity growth have been pro-
posed in the literature. In either class of models, predictive measurements of productiv-
ity and efficiency are obtained. This paper examines the model averaging approaches 
of Hansen and Racine (2012), which can provide a vehicle to weight predictions (in the 
form of productivity and efficiency measurements) from different non-structural meth-
ods. We first describe the jackknife model averaging estimator proposed by Hansen and 
Racine (2012) and illustrate how to apply the technique to a set of competing stochas-
tic frontier estimators. The derived method is then used to analyze productivity and 
efficiency dynamics in 25 highly-industrialized countries over the period 1990 to 2014. 
Through the empirical application, we show that the model averaging method provides 
relatively stable estimates, in comparison to standard model selection methods that 
simply select one model with the highest measure of goodness of fit.
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1 Introduction

Understanding how productivity is evolving is crucial for an informed understanding of
the health of an economy. It is also crucial that policy makers, industry, and firms have
accurate infromation about productivity growth to gauge how stronly they should react
to it various cycles, upticks, and downturns. Due to the importance of productivity as a
metric to measure economic performance and the growth in the wealth of an economy,
numerous approaches to productivity measurement have emerged in the literature.
Often, different approaches are not used in concert to assess the range of possible
levels and changes in productivity and what is reported is one result based on one
chosen method. This paper offers a different and more robust approach that considers
different approaches used in concert and which assesses the range of possible levels and
changes in productivity.

For example, various structural and non-structural models of productivity growth
have been proposed in the literature. The classical structural models, particularly those
of Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, Caves, and
Frazer (2015), have focused on identifying innovation and efficiency within a structural
model of the firm. These models typically are estimated using disaggregated plant-level
or firm level data and then aggregated up to the country or sector level. Petrin and
Levinsohn (2012) and Kim (2018) are but two examples of this approach. Aggregation
of the productivity growth measures from these structural models and its decomposition
into such factors as efficiency and reallocation effects provides the link between such
models and the aggregate measures we will examine in our paper. Such aggregation of
productivity measures and its decomposition, but based on non-structural approaches
rather than structural models, is discussed extensively in Sickles and Zelenyuk (2018,
Chapter 5), building on the work of Blackorby and Russell (1999), Kumar and Russell
(2002), and Mayer and Zelenyuk (2014). We do not in this paper pursue such an
aggregation exercise but rather focus on the aggregate economy itself.

Non-structural approaches, often stochastic frontier methods, focus on the asym-
metry of productivity shocks implied by the presence of a best practice technology. It
is well-known that such stochastic frontier approaches may suffer from endogeneity of
the inputs that are correlated with unobserved technical inefficiency or productivity.
Endogeneity can arise because input choices are determined by some factors that are
unobserved to the econometrician but observed by the firm, such as the firm’s beliefs
about its productivity and efficiency. This in part led Schmidt and Sickles (1984) to
utilize fixed effects treatments to address the potential endogeneity issue in produc-
tion function estimation. In addition to fixed-effects-type estimators that require the
assumption that the productivity terms are constant across time, extensions to time
varying effects models can be found in Cornwell, Schmidt, and Sickles, (1990) and more
recently in general factor model approaches (Kneip, Sickles, and Song, 2012).

Another set of two-step techniques, advocated by Olley and Pakes (1996), used
observed investment to control for unobserved productivity shocks (efficiency). Levin-
sohn and Petrin (2003) expanded on this idea and used intermediate inputs instead
of investment to solve the endogeneity issue, which they point out is a data-driven
solution owing to issues that often surface when there are many observations with zero
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investment. This often occurs in data sets at levels of disaggregation that are estab-
lishment specific. Ackerberg et al. (2015) also have noted that both approaches suffer
from collinearity problems in such two-stage IV-type estimators. Amsler, Prokhorov,
and Schmidt (2016) reviewed two-stage IV-type procedures (2SLS) for the stochastic
frontier model and pointed out the advantages of their corrected 2SLS (C2SLS) to solve
a general endogeneity problem in stochastic frontier analysis wherein the productivity
shock may also be correlated with the idiosyncratic disturbance. A somewhat similar
two-step procedure was developed by Guan, Kumbhakar, Myers, and Lansink (2009).

In this paper we consider a number of competing models to estimate productivity
that deal in various ways with endogeneity of inputs as well as potential endogeneity of
unobserved productivity and efficiency effects that may change over time. These meth-
ods do not rely on the assumed monotonicity of investment and productivity on which
the aforementioned structural models are based. We concentrate on robust methods
to identify productivity and its constituent parts of innovation and technical efficiency,
without the benefit of the overidentifying restrictions implied by structural approaches
in the Olley and Pakes-class of structural models. In either class of models, Olley-Pakes
or stochastic frontiers, we typically estimate what amounts to a reduced form-type of
measure of productivity and efficiency. For structural models these are based on the
implicit restricted reduced form, which is familiar to many productivity researchers as
a linear equation with latent unobserved productivity (technical efficiency) assumed
to follow a first-order Markov process that is correlated with the variable inputs, usu-
ally labor and materials, and typically not correlated with the quasi-fixed capital that
provides production services that are assumed to be proportional to its level. It is
this maintained structural assumption that motivates the use of investment as a valid
instrument.

The specification of the estimating equation for productivity differs marginally from
the specification of the estimation equations used in the stochastic frontier literature
that began with the works of Aigner, Lovell, and Schmidt (1977) and van den Broeck
and Meussen (1977). In that class of models the production function is also a linear
equation with latent unobserved productivity (technical efficiency). However, in the
stochastic frontier literature the latent technical efficiency term is introduced as a
consequence of the implications of classical economic principles first pointed in Debreu
(1951) and Farrell (1957). The one-sided nature of latent technical efficiency is based
on the definition of production as a maximization operation. This class of stochastic
frontier models are used by regulators in Europe and Latin America to establish tariff
structures that incentivize enhanced performances of lagging firms while still rewarding
frontier firms based on their historical high levels of performance (Agrell and Bogetoft,
2018). Thus we have two rather comparable estimating equations from which to extract
technical efficiency measures for the Olley-Pakes and stochastic frontier paradigms.
They differ in terms of structural assumptions but they lead to quite similar forms of
estimating equations. In one class of models latent technical efficiency is specified as
first-order Markov and in the other class is specified simply as nonsymmetric, owing
to the implications of economic theory. While these approaches all have their merits,
they are also based on various assumptions, which may or may not be supported by the
true underlying data generating process (DGP). Thus, selecting an approach over all
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the alternatives may be fraught with great risk and lead to the wrong policy response.
As the DGP process cannot be observed, we consider the model averaging approaches
in the stochastic frontier setting, trying to reduce model selection risk and obtain more
stable and reliable estimates of efficiency and productivity. We focus in this paper only
on model averaging estimates from the stochastic frontier class of productivity model.
Although this paper does not pursue model averaging using these two approaches for
predicting productivity, such a model averaging exercise in principle can also be carried
out.

In the remainder of the paper we first describe how the stochastic frontier model is
developed to model productivity and then introduce a set of competing specifications
that are widely used in empirical applications. Section 3 then explains the details
of the jackknife model averaging technique. Section 4 describes the empirical setting
we use for productivity analysis. Section 5 introduces the data and explains different
measurements of the variables. Results are discussed in section 6. Section 7 concludes
our paper.

2 Productivity Measurement and Stochastic Fron-

tier Models

Productivity is usually measured as a ratio of an output index to an input index, where
a higher ratio means more outputs can be produced from a given certain combination
of inputs. In a simple one-output production process, total factor productivity (TFP)
can be expressed as

TFP =
Y∑
aiXi

(1)

where Y is the output, and Xi’s are the inputs. When multiple outputs exist, TFP
can be measured as a ratio of an index of aggregated outputs to an index of aggregated
inputs. The value and properties of such a TFP measure will then depend on the
methods of aggregation and index construction. Taking the log of (1), we can construct
a total factor productivity index as the difference between the logged output and logged
input indexes (Jorgenson and Griliches, (1972)).

TFP can be decomposed into technical efficiency (TE) and technical innovation. In
a specific period, the technology may be regarded as fixed, while firms, or countries,
might experience different technical efficiency levels. Denote 0 < TEi ≤ 1 to be the
technical efficiency level for individual i, and let f(·) be the production function that
defines the frontier. The production process for each production unit can be modeled
as

yi = f(Xi, β) · TEi (2)

where β is the coefficients vector of inputs Xi. Taking the log of (2) gives the following
form,

ln yi = ln f(Xi, β) + lnTEi = ln f(Xi, β) + ui (3)

where ui is the logged efficiency level for each unit. Adding the usual disturbance term
vi to (3) to account for random production shocks completes the standard stochastic
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frontier model proposed by Aigner, Lovell and Schmidt (1977) and Meeusen and Van
den Broeck (1977). To identify the efficiency term, the stochastic frontier model with
cross-sectional data required a distributional assumption on ui. With panel data,
however, one can allow for a non-parametric form of the efficiency term. As shown
by Park, Sickles, and Simar (1998) the estimator of efficiency based on the within
estimator can be shown to be semi-parametric efficient. In this section, we will focus
on panel data models and consider several competing stochastic frontier settings in
our study of productivity growth. After introducing each candidate model, we will
show how to apply the model averaging technique to compute the optimal weights and
obtain the jackknife averaging estimator.

We start with the most standard stochastic frontier models with panel data, which
were first proposed in Pitt and Lee (1981) and Schmidt and Sickles (1984):

yit = α+X ′
itβ + ui + vit t = 1, . . . , T ; i = 1, . . . , N (4)

Here Xit is a vector of input variables, yit is the output variable, vit is the usual distur-
bance term and is assumed to be independently and identically distributed, possibly
with a parameterized distribution such as N(0, σ2

v), and ui represents the efficiency
level of each individual. If we denote αi = α+ ui, the model can be written as

yit = αi +X ′
itβ + vit (5)

which is just the standard form of the panel data model. The coefficients can be
obtained using the within or GLS estimators, depending on whether the error terms
are assumed to be correlated with regressors. It is typical in such models to allow for
a technology shifter that either is identified by a set of time dummies or by some time
trend that is common to all firms or countries. Such a time trend proxies the innovation
that shifts the frontier as new technologies diffuse across industries and countries.

In the original formulation of the Pitt and Lee (1981) and Schmidt and Sickles
(1984) stochastic panel frontier model, the technical efficiencies were assumed to be
fixed over time. However, with changes in possible influencing factors, such as adjust-
ments in input allocation, workers’ education levels, firms’ administrative systems, and
so on, we expect the efficiency levels to also change from period to period. Many re-
searchers have extended the standard setting to model time-varying inefficiencies. One
such extension was introduced by Cornwell, Schmidt and Sickles (1990) (Hereafter
CSS) who considered a model allowing for time-varying individual effects by allowing
for heterogeneous slope coefficients on the model’s common time trend variables (t and
t2) that identify the common innovation factors that shift frontier production:

yit = X ′
itβ +W ′

itδi + vit (6)

where Witδi can be used to model cross-sectional efficiencies, which vary both over time
and across sections. Denote δ0 = E(δi), then δi = δ0 + ui, where ui is a zero-mean
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random variable and is independent of vit. The model can be rewritten as

yit = X ′
itβ +W ′

itδ0 + ϵit (7)

ϵit = W ′
itui + vit (8)

The CSS model can be estimated using extensions of the within and GLS estimators.
If the effects ui are assumed to be correlated with the exogenous regressors (Xit,Wit),
then we can utilize a slight modification of the standard within transformation to
estimate 7 - 8.

Another model we can consider is the one proposed by Battese and Coelli (1992).
The generic setting is

yit = X ′
itβ + uit + vit (9)

where uit represents the efficiency effects that can vary across both time and cross-
section. The time changing path is specified as an exponential function:

uit = −{exp[−η(t− T )]}ui. (10)

With such a specification, the non-negative individual effects can increase, decrease or
remain constant over time, corresponding to η > 0, η < 0 or η = 0. The effects ui
are assumed to be i.i.d. random variables following a non-negative truncation of the
normal distribution N(0, σ2

u).
Denote ϵit = uit + vit as the composite error. As both ui and vit are assumed to

follow specific distributions, we can derive an explicit expression for the distribution
of ϵit. Parametric MLE can then be used to estimate the parameters. One problem
is that the MLE is not linear, while the model averaging method we will employ is
proposed for a set of linear estimators. We will show below how the Battese and Coelli
(BC) model can be nested in a more general model setting, and thus how estimates of
the coefficients from the BC estimator can be approximated with a linear estimator.

The general setting that nests the BC model is the one proposed by Kneip, Sickles,
and Song (2012) (KSS) and is specified as

yit = αt +X ′
itβ + uit + vit (11)

The individual effects uit are assumed to be affected by a set of underlying factors and
are formulated by linear combinations of some basis functions:

uit =
L∑

r=1

δirgr(t) (12)

For identifiability, it is assumed that
∑n

i uit = 0, t = 1, . . . , T . The intercept αt can
be eliminated by transforming the model to the centered form,

yit − ȳt = (Xit − X̄t)
′L
r=1δirgr(t) + vit − v̄t (13)

where ȳt =
1
n

∑
i yit, X̄t =

1
n

∑
iXit and v̄i =

1
nvit. Denote ỹit = yit − ȳt and X̃it =
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Xit − X̄t, we return to the basic stochastic frontier setting

ỹit = X̃ ′
itβ +

L∑
r=1

δirgr(t) + ṽit (14)

We can see that the individual effects uit are assumed to be determined by a fi-
nite number of underlying factors, which are represented by a set of basis functions
(g1(t), . . . , gL(t)). Denote L ≡ span{g1, . . . , gL} to be the space of the underlying
factors. A problem is that the set of basis functions is not unique, and thus a normal-
ization is needed for the estimation problem to be well defined. KSS used the following
normalization.

(a) 1
n

∑n
i=1 δ

2
i1 ≥ 1

n

∑n
i=1 δ

2
i2 ≥ · · · ≥ 1

n

∑n
i=1 δ

2
iL ≥ 0

(b) 1n
∑n

i=1 δir = 0 and 1
n

∑n
i=1 δirδis = 0 for all r, s ∈ 1, . . . , L, r ̸= s.

(c) 1
T

∑T
t=1 gr(t)

2 = 1 and 1
T

∑T
t=1 gr(t)gs(t) = 0 for all r, s ∈ 1, . . . , L, r ̸= s.

Provided that n > L, T > L, conditions (a) - (c) do not impose any restrictions,
and they introduce a suitable normalization, which ensures identifiability of the com-
ponents up to sign changes (instead of δit, gr , one may use −δir, −gr). Note that (a)
- (c) lead to orthogonal vectors gr as well as empirically uncorrelated coefficients δi.
Bai (2003,2009) uses expectations in (a) and (b), which leads to another standardiza-
tion and different basis functions, which are determined from the eigenvectors of the
(conditional) covariance matrix. With such a normalization, the Battese and Coelli
model can be nested after some rescaling. It corresponds to the case that L = 1 and

h(t) = exp(−η(t−T ))/
√

1
T

∑T
s=1 exp(−η(s− T ))2, that is, the BC model is equivalent

to the following specification under the KSS framework:

yit = X ′
itβ + uih(t) + vit (15)

KSS provides a semi-parametric method for estimation. First, it searches for the
dimension of underlying factor space, L, through leave-one-out cross-validation. After
the dimension number is determined, the set of basis function, {g(t)}r are calculated
utilizing the spline theory (Details can be referred to Kneip, Sickles, and Song (2012)
Section 2.2 and 3.1). To estimate the BC model as specified in (15), we first use this
semi-parametric method to get productivity and efficiency estimate, ûit =

∑L
r θ̂rĝr(t),

and then solve for η by numerically minimizing the mean squared error of the difference
between ûit and uih(t). Individual factor u1 is set to 1 for identification.

The KSS model is a very general setting. The CSS specification we described above
can also be nested in the KSS model with L = 3 and polynomial functions being the
basis function for individual effects. Some transformation will be needed for the basis
functions to meet the standardization conditions.
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3 Model Averaging

Facing a list of competing models, one may wish to know which one can best describe
the true data generating process, thus providing a suitable platform on which one can
conduct further analysis. This inquiry leads to a general model selection problem.
On one hand, we wish to have a model that can explain the relation among variables
well, allowing us to identify the influencing factors of certain observed phenomenon
or to make predictions about future changes. On the other hand, we want a model
that is both parsimonious and simple to implement. The literature discussing model
selection is voluminous and various criteria have been proposed, each of which has a
different focus. The well-known Akaike information criterion (AIC; Akaike, 1973) and
the Schwarz-Bayes information criterion (BIC; Schwarz, 1978) aim to reach a balance
between the goodness of fit and the parsimony of the model. A more recent concept,
the focused information criterion (Hjort and Claeskens, 2003), considers the estimating
quality of the parameters of interest instead of the fit of the entire model. The typical
procedure of model selection starts with choosing one such criterion and calculating
it for all the candidate models. The model with the best performance will then be
selected and treated as the “true” model that is assumed to generate the data. Further
analysis, such as making inferences or predictions, will be solely based on this “true”
model. One problem with the model selection procedure is that it ignores model
uncertainty. That is, we assume that the probability that the chosen model is the
“true” data generating process (DGP) is one, while in reality such a procedure leads
to over optimistic inferences and higher prediction error. Another problem is that the
“true” model can be different based on the criterion employed. Though there can be
a general guide directing which criterion to use according to the main interest of the
problem, there is no standard and systematic procedure to follow. It is also difficult to
evaluate how well these criteria perform.

The difficulty of selecting an optimal or “true” model lies in the fact that the true
DGP is unobservable. All that we can do is to approximate the underlying mechanism
as accurately as possible based on the observed data. By assigning a set of weights to all
the candidate models instead of treating a single model as the “best” or “true” model,
model averaging can be seen as an agnostic method. This method has been shown to
be a more favorable approach if the goal of econometric analysis is to approximate the
underlying DGP rather than to discover it.

As all the candidate models can reflect the underlying DGP to some extent, it is
reasonable to assign each one a weight based on its ability to explain the data. The
model selection procedure can be seen as a special case of model averaging in which
the “best” model receives a probability of one while others receive a zero weight. If
reliance on one model is replaced by reliance on many then one must determine how
to weight the predictions from the various models under consideration. Like other sta-
tistical techniques, model averaging methods can be classified into Frequentist Model
Averaging (FMA) and Bayesian Model Averaging (BMA). Early work on model aver-
aging was mainly from the Bayesian perspective, and there has emerged a voluminous
literature on both theoretical extensions and empirical applications of BMA. In general,
the BMA approach first assigns to each candidate model a prior probability, which is
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updated through the observed data, and the updated posterior probability is then used
as the weight.

Choosing the prior probabilities is the first step in the BMA method. This is
problematic because we do not know what priors are the most appropriate, and priors
can be in conflict with each other. The FMA approach, on the other hand, does not
need such ex ante assumptions of probabilities, and thus avoids finite sample problems
associated with the BMA approach. There has been a growing literature discussing
FMA methods. Buckland, Burnham and Augustin (1997) proposed to assign weights
according to an information criterion of each candidate model m:

Im = −2log(Lm) + l (16)

where Lm is the maximized likelihood function of the m-th model, and l is some penalty
function. The weights based on this criterion are calculated as

wI =
exp(12Im)∑

m∈M exp(12Im)
(17)

in which M is the set of all competing models. If l = 2k, where k is the number
of parameters in the model, the information criterion Im is just the AIC score. If
l = k · log(n), and n represents the number of observations, Im becomes the BIC score.
It is straightforward to base the weights on such model evaluating criteria, but we lack
a method to measure the effectiveness of these weighting schemes. It is also difficult to
tell by how much they can improve the quality of the estimators.

Other weighting schemes have been proposed in recent years. Leung and Barron
(2006) considered assigning the weights to a set of least squares estimators based on
their risk characteristics. Hansen (2007) proposed to select the weights by minimizing
a Mallows criterion, which works in a set of nested linear models with homoskedastic
errors. Hansen shows that the Mallows model average estimator can asymptotically
achieve the lowest squared error among a finite number of model averaging estimators.
Based on the work of Hansen (2007), Wan, Zhang and Zou (2010) relaxed the assump-
tions that candidate models should be nested based on certain ordering of regressors.
They also provided a proof of the optimality of Mallows criterion in a continuous
weight set. Wang, Zhang and Zou (2009) also reviewed important developments in
FMA methods.

Hansen and Racine (2012) considered a more general situation in which the candi-
date models can be non-nested and have heteroscedastic errors. The proposed estimator
is termed “jackknife model averaging” (JMA) estimator. It is obtained by minimizing
a leave-one-out cross-validation criterion. This JMA estimator is proved to be asymp-
totically optimal in the sense that it approaches the lowest possible expected squared
errors as the sample size approaches infinity (for a panel data of N individuals and T
time periods, the sample size is equal to N × T ). We employ this JMA technique in
our stochastic frontier analysis as it provides us with a model averaging procedure that
has optimal properties for the class of models we consider.
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3.1 Jackknife Model Averaging

To illustrate the jackknife model averaging method, we begin with a number of com-
peting models that can be written as

yi = µi + ϵi i = 1, . . . , n (18)

where µi = E(yi|Xi), and Xi is the vector of input variables. ϵi is the error term with
zero mean conditional on Xi. The conditional variance of ϵi is allowed to vary across
observations. That is,

E(ϵi|Xi) = 0 (19)

E(ϵ2i |Xi) = σ2
i . (20)

Suppose we have M candidate models, and for each model m, we have a linear
estimator, denoted as µ̂m = Pmy. The estimator is linear in the sense that Pm is
not a function of y. This definition covers a fairly broad class of estimators. As
mentioned in Hansen and Racine (2012), the standard OLS, ridge regression, nearest
neighbor estimators, series estimators, etc. are all in this class. The jackknife averaging
estimator is then calculated as the weighted average of all the candidate models.

For each model m, the jackknife estimator is denoted as µ̃m = (µ̃m
1 , . . . , µ̃m

n )′, and
µ̃m
i is the estimate of yi with parameters estimated after the ith observation being

deleted (i.e. the leave-one-out cross validation). The jackknife residual is then com-
puted as ẽm = y − µ̃m. Hansen and Racine (2012) provided a simpler method to
calculate the jackknife residual for the standard OLS estimator to avoid n times re-
gressions for each model. However, this particular approach is not applicable for the
stochastic frontier models we consider below.

The weights are assumed to be non-negative and sum to one. The weight vector
lies on the RM unit simplex.

HM =
{
w ∈ RM : wm ≥ 0,

M∑
m=1

wm = 1
}
.

Given a specific weight vector w, the averaged estimator is

µ̃(w) =
M∑

m=1

wmµ̃m = µ̃w (21)

and the averaged residual is

ẽ(w) = y − µ̃(w) = ẽw. (22)

The jackknife or leave-one-out cross-validation criterion can be expressed in terms of
the averaged residuals as

CVn(w) =
1

n
ẽ(w)′ẽ(w). (23)

The jackknife weights can be obtained by minimizing this criterion over the weight
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space HM , i.e.
w∗ = argmin

w∈HM

CVn(w). (24)

The jackknife averaging estimator is thus µ̂(w∗) = µ̂w∗. Depending on different spec-
ifications of the model setting, the applicable weight space might be only a subset of
HM .

4 Model Averaging Estimates of Productivity

Growth

We assume that technology or technical innovations can be accessed by all countries
during the year and thus that technical change is shared by the countries in the sam-
ple. The differences in productivity are assumed to be caused by relative efficiencies.
Technical innovation change could be proxied by differences in R&D expenditure over
time, number of patents appeared, or other similar factors, but such data is not avail-
able. However, R&D expenditures and patents are, at best, proxies for invention and
not necessarily for innovation. The implicit assumption that innovation is a monotone
increasing function of R&D expenditures is simply not empirically valid, especially
across nations or industries (within nations). Many factors affect how and how much
R&D eventually translates into innovation. When building up the empirical model,
we could also use time variables to proxy the technical innovation, such as the time
index method proposed in Baltagi and Griffin (1988). In our estimations below we
use a standard time trend to proxy technical change, which may be endogenous in
that it can be correlated with the efficiency with which different countries utilize it.
Endogenous growth is formally addressed via the stochastic frontier specification of
the dynamic efficiency terms, which complement growth due to innovation to generate
total factor productivity growth, or TFP growth. The technical efficiencies and their
changes are estimated by linearized versions of the stochastic frontier models.

In keeping with the growth literature, we specify a Cobb-Douglas production func-
tion with inputs capital K and labor L, and output Y, measured by GDP. Technical
change that is available to industrialized countries is proxied by t and t2, leading the
basic econometric model

lnYit = αi + β1lnKit + β2lnLit + θ1t+ θ2t
2 + uit + vit. (25)

The candidate estimators are within and GLS estimators from the standard panel data
model with no time-varying efficiencies proposed by Pitt and Lee (1981) and Schmidt
and Sickles (1984) (denoted as ‘Fixed’ and ‘Random’ respectively), the within and GLS
estimators from the CSS model (denoted as ‘CSSW’ and ‘CSSG’ respectively) with
time varying efficiencies, and the BC estimator, whose specification of time varying
efficiency scales a common and potentially nonlinear time path with country specific
shifters. In subsequent work Battese and Coelli (1995) made these shifters functions
of a set of “environmental” factors that not only could change the efficiency level but
also its variance. We do not utilize this extension in this study.
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As with most aggregate country studies, we assume as steady-state equilibrium
for the countries under study and thus that the production function displays constant
returns to scale. Thus the empirical model can be written as

lnYit = αi + β1lnKit + (1− β1)lnLit + θ1t+ θ2t
2 + uit + vit. (26)

Denoting lnỸit = lnYit − lnLit and lnK̃it = lnKit − lnLit, the regression function for
the CRS case is

lnỸit = αi + β1lnK̃it + θ1t+ θ2t
2 + uit + vit. (27)

Recall that the jackknife model averaging method is applied to the class of linear
estimators, which includes, for example, standard linear least-squares, ridge regres-
sion, nearest neighbor estimators, and spline estimators. The optimized weights are
calculated through leave-one-out cross-validation. In our case, with a panel data of N
countries and T periods, the cross-validation means N × T times estimation for each
candidate model, which can be quite time-consuming when the data set gets large.
Hansen and Racine (2012) provided an analytical expression of the jackknife residual
vector ẽ for least-squares estimators, which can greatly reduce computing time but
is not applicable in our case. In our estimation process, we experimented with block
cross-validation (treating observations in the same time period as a block, and leav-
ing out one block a time as the validation set) to see how it would affect the optimal
weights, and found the results from such a “shortcut” are completed different than
those calculated from leave-one-out cross-validation. Zhang, Wan, and Zou (2013)
discussed the problem of block cross-validation: the selection of block length is data
dependent, which leads to µ being a non-linear function of y. This non-linearity contra-
dicts the assumption of the jackknife method, thus the asymptotic properties cannot
be guaranteed. So for all other linear estimators that cannot be expressed in the form
of X(X ′−1X ′y, the computing time for leave-one-out cross-validation is inevitable.

5 Data Description

Our calculations are based on data from the United Nation Industrial Development
Organization (UNIDO), which provides information on productivity related variables
and statistics of 112 countries. Since the World Productivity Database (WPD) contains
data only up to year 2000, we have extended the data series to 2014. Different measures
of TFP are included in the database, as well as some partial measurements, such as
labor productivity.

GDP is our output measure and is a chain-weighted real index that is adjusted
for purchasing power parity using constant 1996 prices. When the data for one or
more of the end years are missing, the WPD uses the growth rates of real GDP to
impute the value. Information about the real GDP growth rates is obtained from
World Development Indicators from the World Bank.

The difficulty in measuring capital is largely due to the need to measure the flow
of capital services, which cannot be easily measured for a number of countries covered
in the WPD. Thus, the WPD assumes that the capital services are proportional to
the capital stock and provides several different measurements of capital stock, denoted
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as K06, K13, Ks, and Keff, respectively. The differences in these measurements are
reflected in how the initial capital stock is computed, the depreciation rate, whether
the rate is constant or changes over time, and asset lifetime.

Due to limited data, we use K06, K13, and Ks as different measurements of capital
in separate estimations using the various estimating models. All three variables are
based on the perpetual inventory method and assume a constant depreciation rate.
The perpetual inventory method specifies capital stock in any period t as equaling
the remaining capital stock from the previous period after depreciation plus the new
investment made in the last period. Dated back to the starting period, the capital stock
at period t is expressed as a function of the initial capital K0 and the depreciation rate
δ,

Kt = (1− δ)Kt−1 + It−1 = (1− δ)tK0 +

t∑
i=1

(1− δ)t−1Ii (28)

where It is the investment in each period, which is also provided in the WPD. The
three different measures of the capital stock then differ in the methods used to estimate
its initial level and the value assumed for the depreciation rate. Both K06 and K13 use
ten years of investments as the estimate for the initial capital stock K0, for example,
investments from 1980 to 1989 for the capital series to start from 1990. The only
difference between the two is the depreciation rate assumed: 6 percent for K06 and
13.3 percent for K13. The rapid depreciation rate used for K13 means this measure
places more emphasis on recent investments and the initial capital stock has relatively
less impact. The value assumed for δ matches the double-declining balancing method
in accounting, implying an asset lifetime of 15 years. K06, by contrast, is more affected
by the initial capital stock.

The initial capital stock for Ks is computed by assuming the country is at its
steady state capital-output ratio. The steady-state capital-output ratio is related to
the investment ratio, the growth of real GDP, and the rate of depreciation of the capital
stock via:

k =
i

g + δ
(29)

where g is the growth rate of real GDP, and i is the investment ratio (I/Y ). An estimate
of the capital-output ratio of the starting year can be obtained by using equation (29).
The estimate of the initial year’s output is then calculated by multiplying this ratio by
Y0. Compared with K06 and K13, Ks does not require the extra ten years of data for
the calculation of K0.

For the labor input, the WPD provides five measurements for the labor inputs:
labor force, employment (EMP), derived employment (EDMP), hours worked based
on employment (HEMP) and hours worked based on derived employment (HDEMP).
Employment is obtained by adjusting the labor force for the population that is em-
ployed. A direct measure of employment leads to EMP, and the derived value, which
is obtained by applying the unemployment rate to labor force data, leads to DEMP.
Further adjustment of EMP and DEMP for the numbers in hours worked results in
the last two measurement: HEMP and HDEMP. Among all these measurements, labor
force is a standard proxy used in the empirical study, and the data usually has better
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quality compared to its alternatives. On the other hand, the use of labor force may 
result in underestimation of productivity since not all of the labor force is fully uti-
lized. Considering data quality and accuracy of the measurement, we use labor force 
and employment as the two labor measurements.

An additional important factor is the schooling levels of labor, which are, in general, 
measured in two ways: as a separate input or as an increase to labor input. We adopt 
the latter method in this paper, and the final measurements of labor are schooling-
adjusted labor force and schooling-adjusted employment.

The data we use consist of 25 highly-industrialized countries over the period 
1990 to 2014. According to World Bank 2016 statistic, this group contributes over 
50% of world GDP. The countries are:

Australia, Austria, Belgium, Canada, Cyprus, Denmark, Finland, France, Ger-
many, Greece, Iceland, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New 
Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and United 
States.

6 Results

The coefficient estimates of each model are shown in Table 1 and 2. Coefficients of 
log capital range between 0.3 to 0.7. The estimates obtained from the CSS model 
are generally lower, around 0.3 to 0.45, and the estimates from the KSS model are 
higher with all different combinations of input measurements. We see from the tables 
that, with the same capital measurement, the estimated returns to labor is lower when 
we use labor force rather than employment as the labor measure, which reflects the 
general belief that use of labor force may inflate the level of labor input and leads to 
underestimation of returns to labor. We will see below that productivity estimates 
obtained using labor force are also lower than those generated using employment.

The weights obtained using the jackknife criterion are reported in Tables 3. For all 
measurement combinations, most of the weight falls on the CSSW estimator. The BC 
estimator gets a small weight of around 0.1, and the weights on the standard within 
estimator, random effects GLS and the extended time varying random effects CSSG 
estimators are negligible. Based on the weights assigned to within and to the GLS 
estimators (both standard ones and the extended in CSS setting), the assumptions of 
the within estimators appear to be consistent with the data as the existence of con-
siderable correlation between the regressors and the effects appears clear. Besides the 
comparison between the within and GLS estimators, we expect the CSS and BC speci-
fications of cross-sectional and temporal changes differences in productivity to allow for 
a richer parameterization of heterogeneities in unexplained production dynamics while 
in a standard panel data setting in which the effects are time invariant the efficiency 
terms are fixed over time. We can see that the CSSW estimator does receive most 
of the weight. The BC estimator’s performance might be constrained somewhat by 
the linearized approximation of the exponential function of the efficiency term that we 
have used. There would be some loss of accuracy when we numerically minimized the
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difference between the estimated efficiency ûit and BC specification uih(t), especially
with our small dataset. We would expect that the data-driven approach used in imple-
menting the BC estimator should perform better on a larger data set that can provide
more information about underlying patterns. Among the five candidate estimators,
standard within and GLS estimators are relatively more simplified specifications, re-
sulting in less explanatory power. We would expect the weights to be more evenly
spread out as we increase the number of competing models.

Technical innovations are proxied by the time variables, t and t2, and technical
efficiencies are estimated using stochastic frontier methods. Combining the two effects,
we have the estimates of total factor productivity. Based on the beginning- and ending-
period productivity levels, we can calculate the annualized productivity growth rates.
The group annualized TFP growth rates are aggregated from each individual country
by using 1) equal weights, 2) GDP weights. The results are shown in Table 4 and
5 correspondingly. We can see that, with the same capital measure, productivity
estimates are lower when we use labor force. The average annual growth rates of TFP
are between 0.7% and 0.8% when we use simple average, and are around 0.4% to 0.55%
when we use GDP as weights, which is as expected. Countries with large GDP, like
United States and Japan, are highly developed, and are relatively slow in productivity
growth.

The estimates of total factor productivity for the entire studied period are plotted
in Figures 1 to 3 for simple averaged results, and Figure 4 to 6 for GDP weighted
numbers. As we specify a quadratic function to approximate technical changes, most
of the plots show concave quadratic curves. We have standardized the productivity
estimates so that the series all begin at zero in order to track the relative changes of
different countries over the sample period.

As we pointed above, in addition to the stochastic frontier models we discussed
here, structural models are an alternative approach that researchers employ in produc-
tivity study. One may be able to modify the class of structural models introduced by
Olley and Pakes (1996) to describe the country-level productivity growth based on a
linearized version of the derived reduced form and thus use it as an additional model
in the model averaging exercise. We will leave this for future research.

7 Conclusion

This paper introduces the model averaging method to the analysis of productivity
using stochastic frontier models. The optimal weights are calculated by minimizing the
jackknife model averaging criterion, which is a leave-one-out cross-validation method.
Though each candidate model needs to be estimated N ×T times, the procedure is not
complex and the computational burden is moderate in our application.

The SFA methods we have discussed and utilized have been adopted in Europe and
Latin America as one of several approaches that must be considered in establishing
efficiency benchmarks when setting tariffs in regulated industries (Agrell and Bogetoft,
2018) and such methods as we consider are already used in an ad hoc way by industry
regulators. Also, it should not be lost on the policy maker the importance of un-
derstanding and accepting that these different methods are fraught with uncertainty
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and that model averaging allows us to provide an estimate with upper/lower bands (of
uncertainty), thus providing a more robust and credible set of statistics that can be
developed by the analyst.

In general, the model averaging technique provides us with more stable and reliable
estimates of efficiencies and productivities. In our paper, we only analyze a highly
industrialized country group. As we have pointed out, model averaging method reduces
the risk of wrong specification or wrong assumptions based on only one model. The
choice of the frequentist model averaging method in our study avoids the difficulty in
choosing proper priors that are required in Bayesian model averaging, and the jackknife
model averaging estimator achieves optimality in the sense that it can asymptotically
approaches the lowest possible expected squared errors.

Our methods for constructing ‘consensus’ estimates of productivity growth could/
should be used by for example policymakers and international organizations in their
analytical work to lower the impact and risk of using a single approachs assumptions
that may not be supported by the true DGP. In addition, international organizations
should not take ‘academic’ positions for methods and thus would be better off aver-
aging across several ‘widely acceptable and used’ approaches. As such, the proposed
averaging method may be viewed as a risk-reducing strategy, which helps avoiding
placing too much weight on a certain policy response because of some implicit (strong)
assumption in a single measurement method. Likewise, for international organizations
assisting countries, putting together a properly weighted package to address challenges
is of the essence and to this end productivity is a crucial indicator informing of the
proper mix. Again, as accurate as possible measurement of productivity is significantly
important to make the best use of scarce resources.
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Tatjè, E., Lovell, C. A. K., and Sickles, R. C. eds. New York: Oxford University
Press, forthcoming.

Aigner, D., Lovell, C., and Schmidt, P. 1977. “Formulation and Estimation of Stochas-
tic Frontier Production Function Models.” Journal of Econometrics, 6(1):21–37.

Akaike, H. 1973. “Information Theory and an Extension of the Maximum Likelihood
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8 Tables and Figures

Est. Std. Err Est. Std. Err Est. Std. Err
FIX Ks, Ls Ks, ES K06, LS
lnK 0.452640 0.040638 0.397820 0.038534 0.462480 0.040230
lnL 0.547360 0.602180 0.537520
t 0.026084 0.001860 0.025213 0.001759 0.025368 0.001865
t2 -0.000731 0.000066 -0.000666 0.000064 -0.000716 0.000066
FIX K06, ES K13, LS K13, ES
lnK 0.406980 0.038389 0.465840 0.040061 0.409560 0.038491
lnL 0.593020 0.534160 0.590440
t 0.024601 0.001764 0.025349 0.001859 0.024597 0.001763
t2 -0.000654 0.000063 -0.000717 0.000066 -0.000655 0.000063

RND Ks, Ls Ks, ES K06, LS
lnK 0.481620 0.038517 0.419020 0.036708 0.489820 0.038159
lnL 0.518380 0.580980 0.510180
t 0.025686 0.001852 0.024979 0.001755 0.024958 0.001855
t2 -0.000729 0.000066 -0.000667 0.000064 -0.000713 0.000066

RND K06, ES K13, LS K13, ES
lnK 0.426900 0.036575 0.492690 0.038002 0.429310 0.036656
lnL 0.573100 0.507310 0.570690
t 0.024356 0.001759 0.024948 0.001850 0.024355 0.001758
t2 -0.000654 0.000063 -0.000714 0.000066 -0.000655 0.000063

CSSW Ks, Ls Ks, ES K06, LS
lnK 0.368840 0.063058 0.312160 0.050096 0.376060 0.062807
lnL 0.631160 0.687840 0.623940

CSSW K06, ES K13, LS K13, ES
lnK 0.312520 0.050725 0.387660 0.062993 0.320830 0.050787
lnL 0.687480 0.612340 0.679170

Table 1: Coefficients Estimates
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Est. Std. Err Est. Std. Err Est. Std. Err
CSSG Ks, Ls Ks, ES K06, LS
lnK 0.423620 0.048775 0.361800 0.040391 0.428440 0.048599
lnL 0.576380 0.638200 0.571560
t 0.026483 0.003651 0.025611 0.003218 0.025879 0.003649
t2 -0.000733 0.000099 -0.000664 0.000086 -0.000719 0.000099

CSSG K06, ES K13, LS K13, ES
lnK 0.362570 0.040734 0.439440 0.048523 0.370310 0.040857
lnL 0.637430 0.560560 0.629690
t 0.025148 0.003211 0.025743 0.003640 0.025077 0.003221
t2 -0.000653 0.000086 -0.000719 0.000098 -0.000654 0.000086

KSS Ks, Ls Ks, ES K06, LS
lnK 0.591020 0.044351 0.712660 0.037440 0.570910 0.050488
lnL 0.408980 0.287340 0.429090
KSS K06, ES K13, LS K13, ES
lnK 0.741910 0.047111 0.521870 0.050260 0.722030 0.047632
lnL 0.258090 0.478130 0.277970

Table 2: Coefficients Estimates (Cont.)

FIX RND CSSW CSSG BC
Ks, Ls 0.000000 0.000000 0.880577 0.000000 0.119423
Ks, Es 0.000000 0.000000 0.885944 0.000000 0.114056
K06, Ls 0.000000 0.000000 0.877251 0.000000 0.122749
K06, Es 0.000000 0.000000 0.883554 0.000000 0.116446
K13, Ls 0.000000 0.000000 0.922453 0.000000 0.077547
K13, Es 0.000000 0.000000 0.891062 0.000000 0.108938

Table 3: Weights on different estimators
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FIX RND CSSW CSSG BC AVE
Ks, LS 0.006798 0.006464 0.007764 0.007132 0.002260 0.007106
Ks, ES 0.007590 0.007340 0.008600 0.008014 0.001902 0.007836
K06, LS 0.006480 0.006153 0.007514 0.006888 0.002518 0.006901
K06, ES 0.007302 0.007058 0.008457 0.007845 0.001087 0.007599
K13, LS 0.006442 0.006122 0.007378 0.006758 0.002210 0.006977
K13, ES 0.007272 0.007031 0.008358 0.007752 0.001391 0.007598

Table 4: Annualized simple average TFP growth rate

FIX RND CSSW CSSG BC AVE
Ks, LS 0.006798 0.006464 0.004942 0.004237 0.002170 0.004740
Ks, ES 0.007590 0.007340 0.005914 0.005258 0.001855 0.005602
K06, LS 0.006480 0.006153 0.004721 0.004029 0.002442 0.004555
K06, ES 0.007302 0.007058 0.005803 0.005124 0.001025 0.005438
K13, LS 0.006442 0.006122 0.004646 0.003972 0.002100 0.004451
K13, ES 0.007272 0.007031 0.005755 0.005094 0.001340 0.005412

Table 5: Annualized GDP-weighted TFP growth rate
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Figure 1: Total Factor Productivity-I
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Figure 2: Total Factor Productivity-II
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Figure 3: Total Factor Productivity-III
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Figure 4: Total Factor Productivity-GDP Weighted I
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Figure 5: Total Factor Productivity- GDP Weighted II
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Figure 6: Total Factor Productivity- GDP Weighted III
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