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Abstract

Economic theory provides the econometrician with substantial structure and re-

strictions necessary to give economic interpretation to empirical findings. In many

settings, such as those in consumer demand and production studies, these restrictions

often take the form of monotonicity and curvature constraints. Although such restric-

tions may be imposed in certain parametric empirical settings in a relatively straight-

forward fashion by utilizing parametric restrictions or particular parametric functional

forms (Cobb-Douglas, CES, etc.), imposing such restrictions in semiparametric models

is often problematic. Our paper provides one solution to this problem by incorporating

penalized splines, where monotonicity and curvature constraints are maintained via in-

tegral transformations of spline basis expansions. We derive the estimator, algorithms

for its solution, and its large sample properties. Inferential procedures are discussed as

well as methods for selecting the smoothing parameter. We also consider multiple re-

gressions under the framework of additive models. We conduct a series of Monte Carlo

simulations to illustrate the finite sample properties of the estimator. We apply the

proposed methods to estimate two canonical relationships, one in consumer behavior

and one in producer behavior. These two empirical settings examine the relationship

between individuals’ degree of optimism and risk tolerance and a production function

with multiple inputs.
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†Department of Economics, Rice University; email: rsickles@rice.edu

1



Keywords: monotonicity, shape constraints, semiparametric econometrics, smoothing splines,

willingness to pay, production functions

JEL Classification numbers: C14, C15, D4, D6

1 Introduction

Economic theories can provide useful guidance on the modeling of real world data. Utility

functions associated with rational preferences are monotone; furthermore, convex preference

implies quasi-concave utility functions. Demand functions of normal goods are downward

sloping (Matzkin, 1991; Lewbel, 2010; Blundell et al., 2012). According to duality theory,

profit functions are concave in output price and cost functions are monotonically increasing

and concave in input price. Convex function estimation is also used extensively in derivative

asset pricing models (Broadie et al, 2000; Aı̈tSahalia and Duarte, 2003; Yatchew and Härdle,

2006). Researchers, when trying to model economic relationships, often face at least two

challenges. One is fidelity to economic theory. Another is flexibility in functional forms

(Guilkey, Lovell, and Sickles, 1983, Diewert and Wales, 1987). In addition, these two goals

are often at odds: conformity to theories often dictates relatively rigid functional forms,

while flexible parameterizations sometimes lead to implausible predictions.

One fruitful approach to tackle this dilemma is to use nonparametric or semiparametric

methods subject to the restrictions suggested by economic theory. This is a well-developed

literature and has had a number of contributors. Matzkin (1994) and Yatchew (2003, Chapter

6) provide general reviews of this literature. For relatively recent developments, see Hall and

Huang (2001), Groeneboom et al. (2001), Mammen and Horowitz (2004), Carroll et al.

(2011), Shively et al. (2011), and Blundell et al. (2012), Pya and Wood (2014), among

others. We follow in this line of research and present a flexible semiparametric estimator

with shape constraints. We focus on functional relationships with two shape constraints:

monotonicity and concavity (convexity) as this is a class of functions that are frequently

modeled in applied economic studies. Functional relationships with either one of these two

constraints are special cases of our estimator.

We base our work on Ramsay’s (1998) monotone smooth estimator and utilize integral

transformations defined by some differential equations to impose shape restrictions. A key
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advantage of this transformation approach is that it transforms a constrained problem into an

unconstrained one. We subsequently model the unconstrained problem using penalized spline

methods, resulting in a nonlinear semiparametric estimator. We show that careful choice of

the transformation and of the model-based penalty can simplify estimation considerably.

We propose an iterative algorithm to calculate the proposed estimator. We establish the

consistency of the estimator and present approximate methods for inference and for selecting

the smoothing parameter. We then extend our estimator to an additive model. We illustrate

the finite sample performance and usefulness of our methods with Monte Carlo simulations

and two empirical applications.

The remainder of the paper is organized as follows. Section 2 briefly reviews the rel-

evant literature and then presents our transformation-based model to accommodate shape

restrictions. Section 3 proposes a Gauss-Jordan algorithm to solve the estimator. Sections

4 and 5 discuss methods of inferences and model specification. Section 6 extends the model

to multiple regressions. Sections 7 and 8 report Monte Carlo simulations and two empirical

examples. The last section concludes. A technical appendix gathers all proofs.

2 Model and Estimator

Several approaches have been used to impose restrictions in statistical and econometric

models. A simple approach is the transformation of variables. For instance, the logarith-

mic transformation is commonly used to assure positiveness of predicted outcomes and the

Box-Cox transformation can offer an even more flexible alternative. In the estimation of

production functions, the Cobb-Douglas, constant elasticity of substitution (CES), translog,

and generalized Leontief specifications are commonly employed. These functional forms are

often chosen because they satisfy certain theoretical properties and also due to their simplic-

ity, as they are either linear in parameters after a simple log transformation or are linear to

begin with. Simple parametric forms, however, can sometimes entail nontrivial restrictions.

For example, a logarithm transformation of the dependent variable implies multiplicative

errors rather than the usual additive ones.

To avoid rigid functional forms, semiparametric and nonparametric methods have been

used to accommodate shape restrictions. An early example is Brunk’s (1955) isotonic es-
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timator, which essentially produces a monotone step function. Mukerjee (1988) and Mam-

men (1991) developed kernel-based isotonic regression techniques which consist of a kernel

smoothing step and an isotonization step to maintain monotonicity. Instead of isotonization,

Hall and Huang (2001) suggested a penalized kernel method to obtain monotonicity. Their

method is employed by Henderson et al. (2012), Blundell et al. (2012), Ma and Racine

(2013) and Du et al. (2013) for various applications or further generalizations. Another

popular family of smoothers, the spline-based methods, has been used by Ramsay (1988),

Kelly and Rice (1990), and Mammen and Thomas-Agnam (1999), who proposed monotone

estimators based on shape preserving spline basis functions. Pya and Wood (2014) propose

a family of shape constrained additive models. The technique of rearrangement or data

sharpening (cf. Braun and Hall (2001) and Chernozhukov, et al. (2009)) can also be used.

Shively et al. (2009) consider a Bayesian approach for nonparametric monotone function

estimation of Gaussian regressions, which is generalized to log-concave likelihood functions

by Shively et al. (2011). See also Groeneboom, et al. (2001) for a theoretical analysis of

convex function estimation using least squares and maximum likelihood methods.

Our proposed estimator is inspired by the smooth monotone estimator of Ramsay (1998).

Suppose y = f(x) is a smooth monotone function of x. For simplicity, we assume that

x ∈ [0, 1]. Ramsay (1998) proposed to model a strictly monotone function via the following

integral transformation:

f(x) =

∫ x

0

exp(r(s))ds, (1)

where r is a square integrable function on [0, 1]. Since f ′(x) = exp(r(x)) > 0 for all x,

the monotone restriction is satisfied. Unlike some penalty-based monotone estimators that

impose observation-specific monotonicity, (1) is globally monotone thanks to the positive

exponential functional embedded in the integral transformation.

Since f ′′(x) = f ′(x)r′(x) and f ′(x) > 0, f(x) is concave if r′(x) ≤ 0 for all x. Our

strategy is to use the integration transformation (1) as well to further impose the condition

that r′(x) ≤ 0. In particular, we consider the following parameterization

f(x) =

∫ x

0

exp(−
∫ s

0

g(t)dt)ds. (2)
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It follows that f ′(x) = exp(−
∫ x
0
g(t)dt) > 0 and f ′′(x) = −f ′(x)g(x), implying that f ′′(·) ≤ 0

if g(·) ≥ 0. Thus under (2), the monotonicity and concavity constraints are reduced to a

simple non-negativity constraint that g(x) ≥ 0 for all x. Natural candidates of g include

g(x) = x2 and g(x) = exp(x); other choices are certainly possible. Below we will show that

g(x) = x2 is particularly appealing for the proposed method on theoretical and practical

grounds.

Parameterization (2) can be characterized by the following differential equation

g(x) = −f
′′(x)

f ′(x)
.1

The solution is given by

f(x) = β0 + β1

∫ x

0

exp(−
∫ s

0

g(t)dt)ds,

where β0 and β1 are generic constants.

Given an iid random sample {Yi, Xi}ni=1 with Xi ∈ [0, 1], we can consider the following

statistical model for a strictly monotone and concave functional relationship

Yi = f(Xi) + ei = β0 + β1

∫ Xi

0

exp(−
∫ s

0

g(t)dt)ds+ ei, (3)

where ei, for simplicity, are assumed to be iid error terms with mean zero and a finite

variance σ2. Let h(t), t ∈ [0, 1] be a square integrable function free of constraints. We shall

parametrize g(t) by g(h(t)) with a g being a non-negative function.

One major advantage of the transformation-based approach to incorporate constraints

is that we can transform a constrained problem into an unconstrained one. In our case,

this reduces to the modeling of h. Lacking theoretical guidance or a priori information on

h, we opt to model h using a flexible nonparametric estimator. Specifically, we use the

spline method, in which it is relatively straightforward to embed smoothers for nonlinear

functionals or to implement additive structures in multiple regressions using splines. Since

the spline is a piecewise polynomial that is smoothly connected at its joints (knots), then

1The quantity g reflects the relative curvature of f . Interestingly, we note that this is also the parame-
terization used to derive Arrow-Pratt utility.
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due to their local nature splines do not suffer from the oscillations associated with global

polynomials such as the power series.

There exist many types of splines, such as the truncated power series, B-splines, radial

splines, periodic splines and thin-plate splines (cf. de Boor (2001) for a general treatment of

splines). Let 0 < k1 < · · · < kM < 1 be a series of knots of the spline basis functions. The

popular truncated power series splines are given by

Φ(x) = (1, x, . . . , xp, (x− k1)p+, · · · , (x− kM)p+)T ,

where (x)+ = max(x, 0), and p is a positive integer. Define h(x) = cTΦ(x) with c being a

vector of coefficients with compatible dimension. This construction, a linear combination of

spline basis functions, is a flexible tool for curve fitting. The degree of smoothness of the

spline approximation is controlled by p: a linear combination of spline basis functions of

degree p is a pth degree polynomial on each subinterval [km, km+1] and has p− 1 continuous

derivatives on its entire domain. The global polynomials control the overall shape of the

curve, while the spline basis functions reflect local features. For flexibility and numerical

stability, a common practice in spline approximation is to employ a large number of low

order spline basis functions (i.e., large M , small p).

In practice, truncated power series are often transformed to B-splines, which are the

maximally differentiable interpolative basis functions. The B-splines are generalizations

of the Bézier curve and can be constructed recursively (cf. Eilers and Marx (1996)). B-

splines sometimes facilitate theoretical analysis and usually produce better finite sample

performance.

Let P = 1 + p+M and Φ be a P -dimensional basis function. We consider the following

model

Yi = f(Xi; β, c) + ei = β0 + β1

∫ Xi

0

exp

(
−
∫ s

0

g(cTΦ(t))dt

)
ds+ ei. (4)

The intercept β0 and a slope-type parameter β1 are required for identification as the pa-

rameterization of f does not allow for free location and scale parameters. To see this,

consider the simplest case g(x) = a, where a is a non-zero constant. It follows that

f(x) = (1− exp(−ax))/a, whose location and scale can not independently vary.
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Model (4) is a semiparametric model with two parametric coefficients and a nonparamet-

ric smoother g. To balance fidelity to the data and smoothness of the estimator, we adopt

the approach of penalized spline estimation.2 This method uses a relatively generous spline

basis and shrinks all coefficients towards zero to avoid overfitting. We choose this approach

because the delicate balance between goodness-of-fit and smoothness is governed by a single

smoothing parameter and therefore is easier to implement.3

To implement this estimator for model (4) we use penalized least squares, minimizing

the sum of squared residuals plus a penalty on the roughness of f . The objective function

is given by

Qλ(β, c) =
1

n

n∑
i=1

(Yi − f(Xi; β, c))
2 + λD(f), (5)

where D(f) > 0 reflects the roughness of f . For the pth degree splines, a popular choice of

the penalty is the integrated squared qth derivative of f , q ≤ p. For example, the integrated

quadratic penalty with q = 2 is commonly used, which leads to the natural cubic spline in

smoothing splines.

In penalized spline estimation, we can in principle select the basis functions and the

penalty separately. Nonetheless, for nonlinear models, careful choice of penalty with respect

to the form of f can sometimes improve the estimation considerably. For instance, Heckman

and Ramsay (2000) showed that proper model-based penalties can reduce the number of

spline basis functions and the approximation bias at the same time, resulting in smaller

mean square errors. In our case a natural choice of the penalty is the integrated relative

curvature, D(f) = −
∫ 1

0
f ′′(x)/f ′(x)dx =

∫ 1

0
g(x)dx, which is a valid roughness penalty due

to the fact that g(x) ≥ 0 by construction. This penalty on the relative curvature penalizes not

only the curvature of f but also small values of f ′. Consequently, it prevents the ‘boundary’

solutions where f ′(x) = 0.

2Kneip, Sickles, and Song (2012) used such penalized splines in their general treatment of nonparametric
time varying and cross-sectionally heterogeneous panel estimator.

3An alternative to the penalized spline method is the regression spline method, which balances goodness-
of-fit and smoothness through judicious selection of spline basis functions. The selection of basis functions
for regression splines can be a daunting task, especially in multiple regressions. Consider a candidate set
of P basis functions. A complete subset selection, which exhausts all possible combinations of the basis
functions, entails 2P evaluations of candidate models.
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3 Estimation Algorithm

Denote the solution to the proposed nonlinear estimation of (5) by β̂ = (β̂0, β̂1)
T and ĉ.

Let m(x; c) =
∫ x
0

exp(−
∫ s
0
g(cTΦ(t))dt)ds. It follows that D(f) = D(m). Define m̂(Xi) =

m(Xi; ĉ) and g′(x) = dg(x)/dx. Replacing β with β̂ and applying a Taylor expansion to m

in (5) with respect to c around ĉ yields

1

n

n∑
i=1

(
Yi − β̂0 − β̂1m(Xi; ĉ)− β̂1Ẑi(c− ĉ)

)2
+ λD, (6)

where

Ẑi =
∂m̂(Xi; ĉ)

∂c
= −

∫ Xi

0

{∫ s

0

(Φ(t)g′(ĉTΦ(t))dt) exp(

∫ s

0

−g(ĉTΦ(t))dt)

}
ds.

The first order condition of (6) with respect to c is given by

− 1

n

n∑
i=1

β̂1Ẑ
T
i (Yi − β̂0 − β̂1m̂(Xi)− β̂1Ẑi(c− ĉ)) + λD′ = 0, (7)

where

D′ =
∂D

∂c
=

∫ 1

0

Φ(x)g′(cTΦ(x))dx.

Next denote D̂ = D(m̂) and D̂′ and D̂′′ its first and second derivatives with respect to c

evaluated at ĉ. Taking a Taylor expansion of D′ with respect to c around ĉ yields

− 1

n

n∑
i=1

β̂1Ẑ
T
i (Yi − β̂0 − β̂1m̂(Xi)− β̂1Ẑi(c− ĉ)) + λD̂′ + λD̂′′(c− ĉ) ≈ 0. (8)

Define êi = Yi − β̂0 − β̂1m̂(Xi). Substituting êi into (7) and rearranging terms yield

(
1

n

n∑
i=1

β̂2
1Ẑ

T
i Ẑi + λD̂′′)(c− ĉ) ≈ 1

n

n∑
i=1

β̂1Ẑ
T
1 êi − λD̂′. (9)

Expression (9) suggests a Gauss-Jordan iterative algorithm to solve for the proposed

estimator. Let ĉ− be the current estimate of c and m̂(Xi), Ẑi, D̂
′, D̂′′ and êi be evaluated at
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c = ĉ−. Denote Y = (Y1, . . . , Yn)T and m̂ = (m̂(X1), . . . , m̂(Xn))T . Taking m̂ as given, we

calculate β̂ via the ordinary least squares by regressing Y on m̂ and a constant one. Next

holding β̂ constant, we update c according to the following formula:

ĉ = ĉ− +

{
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′
}−1{

1

n
β̂1Ẑ

T ê− λD̂′
}
, (10)

where ê = (ê1, . . . , ên)T and Ẑ =
(
ẐT

1 , . . . , Ẑ
T
n

)T
. β̂ and ĉ are updated alternatively in this

fashion until convergence.4

Remark 1. The penalty D(m̂) and its derivatives D̂′ and D̂′′ generally depend on the

current estimate ĉ− and therefore needs to be recalculated at each stage of the updating.

This updating process is simplified when g(x) = 1
2
x2. Recall that h(x) = cTΦ(x). Define

K =
∫ 1

0
Φ(x)ΦT (x)dx. It follows that D(m) = 1

2
cTKc and the updating formula (8) simpli-

fies to

ĉ = ĉ− +

{
1

n
β̂2
1Ẑ

T Ẑ + λK

}−1{
1

n
β̂1Ẑ

T ê− λKĉ−
}
.

Thus with a quadratic g, the penalty weight matrix remains a constant that does not depend

on unknown parameters. Moreover, the Taylor expansion given by (8) is exact.

Remark 2. Another advantage of setting g(x) = 1
2
x2 is that its integral admits a simple

analytical expression. Consequently, the double integral in (4) can be written into a single

integral, greatly reducing the computational burden.

4 Large Sample Properties and Inferences

Despite the popularity of penalized spline methods, their theoretical properties are less well

understood. Early results were provided in Wand (1999), Aerts et al. (2002) and Yu and

Ruppert (2002) under the framework that the dimension of the spline basis is sufficiently

large and fixed. Hall and Opsomer (2005) investigated the problem using a white noise rep-

resentation. Claeskens et al. (2008) showed that if the number of knots increases as sample

4Convergence of the estimation is usually quite speedy. To assure that each step improves the penalized
objective function, we also implement a step-halving procedure. Whenever an updating step in c fails to
improve the objective function (6), we divide it by two to mitigate overshooting. This adjustment further
improves the numerical stability of the proposed algorithm.
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size increases, then the asymptotic properties of penalized splines share many characteristics

with the asymptotic distributions of regression splines and smoothing splines.5 Kauermann

et al. (2009) studied the asymptotic properties of penalized splines for generalized linear

models under the regression splines scenario. Li and Ruppert (2008) also used the device of

equivalent kernels to study smoothing splines.

Following Wand (1999), Aerts et al. (2002) and Yu and Ruppert (2002), we study the

asymptotic behavior of the proposed methods under the premise that the number of spline

basis functions is sufficiently large that the approximation error is o(1). As in nonparametric

modeling, the model is flexible enough to adapt to regression functions of unknown form;

at the same time, as in parametric modeling, the number of parameters is fixed and they

are estimated at
√
n rates. This type of fixed-knot asymptotics converge to a known normal

distribution and thus provides standard inferential benchmarks.

To facilitate the derivation, we first present an alternative representation of solution (10).

Given current estimates β̂ and ĉ−, define the ‘pseudo regressand’ Ỹi = Yi − β̂0 − β̂1m̂(Xi) +

β̂1Ẑiĉ−. Substituting Ỹi into (7) and rearranging terms yield

(
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′)ĉ ≈ 1

n
β̂1Ẑ

T Ỹ + λ(D̂′ − D̂′′ĉ−),

where Ỹ = (Ỹ1, . . . , Ỹn)T . Holding β̂ constant, we can update c using the following alternative

formula:

ĉ = (
1

n
β̂2
1Ẑ

T Ẑ + λD̂′′)−1
(

1

n
β̂1Ẑ

T Ỹ + λ(D̂′ − D̂′′ĉ−)

)
. (11)

Remark 3. When g = 1
2
x2, we have D(m) = 1

2
cTKc and D′ − D′′c = 0, resulting in a

simpler updating process

ĉ = (
1

n
β̂2
1Ẑ

T Ẑ + λK)−1
(

1

n
β̂1Ẑ

T Ỹ

)
.

Since β̂, Ẑ and Ỹ all depend on the current estimate ĉ−, iterations are still called for.

Remark 4. We present the alternative representation (11) to facilitate the asymptotic anal-

ysis. Our numerical experiments indicate that the Gauss-Jordan algorithm given in the pre-

5Smoothing splines are a special case of penalized splines when the number of basis functions equals the
number of unique observations. For a general treatment of smoothing splines, cf. Wahba (1990) .
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vious section is usually more robust and converges faster than the updating scheme given in

equation (11), especially when a non-quadratic g is used. We recommend the Gauss-Jordan

algorithm for the calculation of our estimator.

This representation (11) of c as a linear function of Ỹ allows us to use known results on

linear smoothers for inferences. Denote θ(λ) = (β(λ), c(λ)). We emphasize the dependence

of the estimator on the smoothing parameter in this section as the asymptotics depend on

whether λ is fixed or goes to zero asymptotically. In particular, we shall denote by λ a fixed

smoothing parameter and by λn one dependent on the sample size.

We need the following assumptions to obtain consistency.

Assumption 1. {Xi, Yi} are iid random samples such that

Yi = f(Xi; θ) + ei = β0 + β1

∫ Xi

0

exp

(
−
∫ s

0

g(cTΦ(t))dt

)
ds+ ei, (12)

where ei’s are iid random errors with mean zero and finite variance σ2 > 0.

Assumption 2. For all x, the conditional mean function f(x; θ) is continuous in θ ∈ Θ, which

is compact.

Assumption 3. (a) 1
n

∑n
i=1{f(xi; θ

∗)− f(xi; θ)}2 converges to some limit function uniformly

in θ∗, θ ∈ Θ; (b)

Q(θ) = lim
n→∞

1

n

n∑
i=1

(f(Xi; θ)− f(Xi; θ
0))2.

has a unique minimum at θ = θ0 ∈ Θ.

Theorem 1. Under assumptions 1-3, if the smooth parameter λn = o(1), then a sequence

of penalized least estimators minimizing the objective function (5) exists and θ̂(λn)
p→ θ0 as

n→∞.

Remark 5. The variance of θ̂(λn) goes to 0 as n tends to ∞ whether or not λn tends to

0. However, if λn → 0 as n → ∞, then the bias also tends to 0 and consistency can be

established.

Next we derive the asymptotic normality. We first present a result with λ fixed, which is

needed for finite sample inference. We choose to start with this intermediate result, based
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on which the limiting case (with λn → 0) readily follows. Let W (λ) be a n× 2 matrix with

the ith row Wi = (1,m(Xi; c(λ))), i = 1, . . . , n. Define

PW (λ) = W (λ)(W (λ)TW (λ))−1W (λ)T ,

PZ(λ) = (β1(λ)Z(λ))(β2
1(λ)Z(λ)TZ(λ) + nλD′′)−1(β1(λ)ZT (λ)), (13)

and Ŵ (λ), P̂W (λ) and P̂Z(λ) their sample analogs evaluated at θ̂(λ), the penalized least

squares estimators.

Under the assumption of iid errors, the variance σ2 is estimated by the sum of squared

residuals divided by proper degrees of freedom. Our semiparametric estimator has two

parametric parameters β0 and β1, and a nonparametric smoother m(X; c). The degrees of

freedom of the smoother, which can be viewed as its equivalent number of coefficients to

that of a power series approximation, are calculated as tr(P̂Z(λ)). Therefore we estimate σ2

with

s2 =

∑n
i=1 ê

2
i

n− tr(P̂Z(λ))− 2
.

Alternatively, we can use the degrees of freedom of the residuals in the calculation of variance.

For linear smoothers, the residual degrees of freedom are given by 2tr(P̂Z(λ)) − tr(P̂ 2
Z(λ)),

cf. Ruppert et al. (2003) and references therein. In practice, these two specifications often

give similar results.

The following conditions are needed to ensure the asymptotic normality of the proposed

estimator.

Assumption 4. The penalized objective function

Qλ(θ) = Q(θ) + λD(f(θ))

has a unique minimum at θ(λ) in the interior of Θ, where λ is positive and finite.

Assumption 5. The conditional mean function f(·; θ) is twice continuously differentiable in

a neighborhood of θ(λ), and PW (λ) and PZ(λ) converge uniformly in θ in a neighborhood of

θ(λ).

Below we present an asymptotic normality result of the estimator. We focus on the pre-
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dicted values because the coefficients of spline basis functions usually are not of direct inter-

est. We can construct confidence intervals for quantities of interest, for instance the marginal

value of productivity in the estimation of production functions, based on the asymptotic

properties of the estimators.

Theorem 2. Suppose that λ is a fixed smoothing parameter. Under assumptions 1, 2,

3(a), 4 and 5, a sequence of penalized spline estimators θ̂(λ)
p→ θ(λ) as n → ∞. Denote

Y (λ) = f(X; θ(λ)) and Ŷ (λ) = f(X; θ̂(λ)). Then
√
n(Ŷ (λ) − Y (λ))

d→ N (0, V (λ)) as

n→∞, where

V (λ) = σ2(PW (λ) + P 2
Z(λ)). (14)

Define V̂ (λ) = s2(P̂W (λ) + P̂ 2
Z(λ)). V̂ (λ)

p→ V (λ) as n→∞.

Denote by V̂i(λ) the ith diagonal element of V̂ (λ). We construct the asymptotic (1−α)%

confidence interval of Ŷi by

Ŷi ± z1−α/2
√
V̂i(λ), (15)

where z1−α/2 is the critical value from the standard normal distribution at the confidence

level α.

Remark 6. The confidence interval (15) is about Y (λ) = E[f(·; θ̂(λ)], the best projection,

rather than f(·; θ0). This is a well-known issue with series-based nonparametric estimation,

of which the bias terms are generally not available. Although bias is inherent in nonpara-

metric regression, approximate unbiasedness is often assumed and (15) can be interpreted

as approximate confidence interval. Since this approximate confidence interval is oftentimes

over optimistic, Hastie and Tibshirani (1990) suggested replacing z1−α/2 in (15) with t1−α/2,df ,

where df is the proper degrees of freedom for nonparametric regressions. Eubank (1999) sug-

gested Bonferroni methods to calculate confidence bands. Ruppert et al. (2003) discussed

bias-corrected confidence intervals.

Remark 7. Our estimator is semiparametric with two parametric coefficients. Taking m̂ as

nuisance parameters, the estimator can be viewed as a two-step estimator with nonparametric

first step estimates. Newey (1994) and Ai and Chen (2007) discussed the estimation of the

asymptotic semiparametric variance of the second stage estimates. Recently Ackerberg et al.
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(2012) showed that the asymptotic parametric variance that ignores the nonparametric nature

of the first stage (for instance, the method of Newey (1984)) is numerically identical to the

semiparametric variance. In particular, Ackerberg et al. (2012) provided several examples

that use sieve estimators in the first step. The penalized spline estimator investigated in this

study fits into their framework naturally.

Lastly, we derive the asymptotics with λn → 0, corresponding to the limiting case where

the shrinkage bias is asymptotically negligible. Define P 0
W = PW (θ0) and P 0

Z = PZ(θ0)

evaluated at λ = 0. We can then establish the following result.

Theorem 3. Suppose that Assumptions 1, 2, 3 hold and Assumptions 4 and 5 hold with λ =

0. If the smoothing parameter λn = o(n−1/2), then a sequence of penalized spline estimator

θ̂(λn)
p→ θ0 as n→∞. Denote Ŷ (λn) = f(X; θ̂(λn)). Then

√
n(Ŷ (λn)− Y )

d→ N (0, V 0) as

n→∞, where

V 0 = σ2(P 0
W + P 0

Z). (16)

Remark 8. The limiting PZ(λn), defined in (13), is obtained by setting λn = 0, yielding

P 0
Z = Z(ZTZ)−1ZT .

Since P 0
z is now idempotent, we have P 0

Z instead of (P 0
Z)2 as in (14). For finite sample

inference, one would expect V 0 to overestimate the variance of θ̂(λn) for a given λn > 0.

5 Specification of Spline Basis and Smoothing Param-

eter

Implementation of the penalized spline estimators entails the specification of spline basis

functions and smoothing parameters. The former includes the type of splines, number and

location of knots. Commonly used splines include the truncated power series, B-splines and

radial basis splines. The spline literature indicates that the practical differences among these

splines are oftentimes quite small.

Because penalized spline estimation normally uses a relatively generous spline basis, the

number and location of knots play a relatively minor role in the estimation. We follow the
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automatic knot selection rule of Ruppert (2002), where the number of knots is given by

M = min(
1

4
× number of uniqueX, 35), (17)

and the knots are placed at the m/(M + 1)-th sample quantile of the unique X’s for m =

1, . . . ,M .

It is well known that spline estimators depend crucially on the smoothing parameter

(cf. Ruppert, 2002). A commonly used approach for smoothing parameter selection is the

method of cross validation (CV). Let Ŷ(i) be the prediction of Yi by a given estimator that

uses all but the ith observation. The ‘leave-one-out’ least squares cross validation criterion,

in terms of sum of squared residuals, is given by

CV =
n∑
i=1

(
Yi − Ŷ(i)

)2
.

Direct implementation of the cross validation is straightforward but often costly, espe-

cially for nonlinear nonparametric estimators without analytical solutions. For linear esti-

mators, there exists an exact formula to evaluate the least squares cross validation criterion

function, using only regression results based on the full sample. This exact solution usually

does not exist for nonlinear estimation. Nonetheless, there exist approximate formulations

that have been shown to give rather close results. Below we derive an approximate formula

of the cross validation criterion for the proposed estimator. For i = 1, . . . , n, denote by ĉ(i)

the solution to
1

n

n∑
k=1,k 6=i

(Yk − β0 − β1m(Xk; c))
2 + λD(m(x)),

and Ŷ(i) be the prediction of Yi evaluated at ĉ(i). We establish the following result.

Theorem 4. Let si be the ith diagonal element of PZ given in (13) and ŝi its corresponding

sample analog, i = 1, . . . , n. Under Assumptions 1-3, the Cross Validation (CV) criterion

satisfies

CV =
n∑
i=1

(Yi − Ŷ(i))2 =
n∑
i=1

(
Yi − Ŷi
1− ŝi

)2

+ op(1). (18)

Generalized Cross Validation (GCV) is a widely used and often more robust alternative
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to the CV criterion. It can be obtained by replacing 1 − ŝi in (18) with 1 − 1
n
tr(P̂Z) (cf.

Wahba, 1990). One can infer readily from Theorem 4 that in our case

GCV ≈
n∑
i=1

(
Yi − Ŷi

1− 1
n
tr(P̂Z)

)2

=
n∑
i=1

(
Yi − Ŷi

1− 1
n

∑n
i=1 ŝi

)2

.

Remark 9. An alternative criterion for smoothing parameter selection is the estimated risk

criterion (cf. Eubank 1999). Although conceptually simple, this criterion requires a proper

prior estimate of σ2. However, the optimal smoothing parameter for a conditional mean es-

timator generally is not optimal for the variance estimator. Another option is a likelihood

based method that treats the spline coefficients as random coefficients. We model the spline

coefficients as zero mean Gaussian processes and estimate using a mixed effect random coef-

ficient model. Cf. Wand (2006) for an overview of this approach.

6 Multiple regressions

In this section we consider the case where y is a function of J(≥ 2) variables, being monotone

and concave in each regressor. For multiple regressions, we adopt the convention that all

quantities, whenever necessary, are indexed by a subscript to make explicit their dependence

on the specific coordinate j = 1, . . . , J . We focus on the case of the additive model:

Yi = β0 +
J∑
j=1

βjmj(Xj,i) + ei, m
′
j > 0 andm′′j < 0.

For a general treatment of additive models, see Hastie and Tibshirani (1990).

We estimate the additive model using the penalized spline estimator by minimizing the

following objective function:

1

n

n∑
i=1

(
Yi − β0 −

J∑
j=1

βjmj(Xj,i)

)2

+
J∑
j=1

λjDj,

where Dj = D(mj(x)) and λj is the penalty smoothing parameter for j = 1, . . . , J . We

consider two methods of estimation: direct estimation and backfitting. Their details are
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given below.

6.1 Direct estimation

To ease the notational burden, we suppress the dependence of various quantities on λ in this

section. The Gauss-Jordan algorithm described above for the single covariate case can be

extended readily to the multiple covariates case. For j, k ∈ {1, . . . , J}, define

Ŝj =
1

n
β̂jẐ

T
j ê− λjD̂′j,

and

R̂j,k =

 1
n
β̂2
j Ẑ

T
j Ẑj + λjD̂

′′
j , if j = k;

1
n
β̂jβ̂kẐ

T
j Ẑk, if j 6= k,

where Ẑj = (ẐT
j,1, . . . , Ẑ

T
j,n)T with Ẑj,i = ∂mj(Xj,i; ĉj)/∂cj. Further define ĉ = (ĉT1 , . . . , ĉ

T
J )T ,

Ŝ = (ŜT1 , . . . , Ŝ
T
J )T , and

R̂ =


R̂1,1 · · · R̂1,J

...
. . .

...

R̂J,1 · · · R̂J,J

 .

The coefficients ĉ are then updated according to

ĉ = ĉ− − R̂−1Ŝ, (19)

where ĉ− is the current estimate of c and Ŝ and R̂ are evaluated at c = ĉ−. Given the current

estimate ĉ, β̂ = (β̂0, . . . , β̂J)T is calculated using the ordinary least squares estimator. This

process is iterated to update c and β alternatively until convergence.

Next let W be a n by J + 1 matrix with the ith row Wi = (1,m1(X1i), . . . ,mJ(XJi)) and

B = (β1Z
T
1 , . . . , βJZ

T
J )T . Define

PW = W (W TW )−1W T ,

PZ = BTR−1B,
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where R is defined analogously to R̂. The residual variance is estimated by

s2 =

∑n
i=1 ê

2

n− (1 + J + tr(P̂Z))
.

The variance of the predictions of the additive model can then be calculated as

V̂ = s2(P̂W + P̂ 2
Z).

Readers interested in the theoretical properties of spline-based additive models are referred

to Aerts, et al. (2002), which investigate the asymptotic properties of penalized additive

spline models estimated by the direct method in the framework of generalized linear models.

Next we discuss a backfitting approach to estimate the proposed model, which facilitates

approximate inference on individual components of additive models.

6.2 Backfitting

Backfitting offers a flexible and computationally less expensive method to estimate additive

models. Unlike direct estimation, backfitting updates one component of an additive model

at a time, fixing all other components at their current estimates, and cycles through all

components until convergence. Denote the l-stage estimate of mj by m̂
(l)
j , j = 1, . . . , J ,

which is customarily centered such that 1/n
∑
m̂

(l)
j (Xj,i) = 0. Define

Y
(l)
j,i =Yi − β̂(l)

1 m̂
(l)
1 (X1,i)− · · · − β̂(l)

j−1m̂
(l)
j−1(Xj−1,i)

− β̂(l−1)
j+1 m̂

(l−1)
j+1 (Xj=1,i)− · · · − β̂(l−1)

J m̂
(l−1)
J (XJ,i).

The l-stage estimate of mj is then obtained as the result of the following model

min
n∑
i=1

{
Y

(l)
j,i − β̂

(l)
0 − β̂

(l)
j m̂j(Xj,i)

}2

+ λjDj,

which is calculated using the method for single explanatory variable detailed in Section 3.

This updating process is iterated through j = 1, . . . , J until convergence. The final estimate
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is given by

Ŷi = β̂0 +
J∑
j=1

β̂jm̂j(Xj,i),

where β̂0 = 1/n
∑n

i=1 Yi. The backfitting approach facilitates not only the computation of

additive models, but also their inferences especially on the individual components. Ruppoert

et al. (2005) show that asymptotic inference on each additive component can be based on

its corresponding coordinate alone. Denote by Pj,W (λj) and Pj,Z(λj) the analogs of PW (λ)

and PZ(λ), given by (13), based on the j-th coordinate. Define

ŝj =

∑n
i=1 ê

2
i

n− tr(P̂j,Z(λj))− 2
, V̂j(λj) = s2j(P̂j,W (λj) + P̂ 2

j,Z(λj)).

It follows that we can construct the (1 − α)% asymptotic confidence interval of the j-th

component as

β̂jm̂j(Xj,i)± z1−α/2
√
V̂j,i(λj),

where V̂j,i is the i-th diagonal element of V̂j. For detailed investigation of backfitted additive

models using splines, see Yoshida and Naito (2012).

7 Monte Carlo Simulations

In this section we use Monte Carlo simulations to assess the finite sample performance of

our proposed estimator. We consider the following experiments:

• Experiment I:

Yi = f1(Xi) + ei = 1 + log(0.1 +Xi) + ei

• Experiment II:

Yi = f2(Xi) + ei = 5− 5× exp(1−Xi) + ei
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• Experiment III:

Yi = f21(X1i) + f22(X2i) + ei

= 1 + 2× log(0.01 +X1i) + 3× log(0.01 +X2i) + ei

In all three experiments, we set the sample size n = 100, X is assumed to be iid random

variables from the standard uniform distribution, and e is assumed to be iid random errors

from the standard normal distribution. Each experiment is repeated 300 times. Experiments

I and II study univariate monotone and concave functions, while Experiment III examines

an additive function with two components, each being monotone and concave.

In each experiment, we estimate the underlying relationship using our proposed estimator.

We use the cubic B-spline basis and the number and locations of knots are determined

according to the automatic knot selection rule (17). We experiment with the CV, GCV and

the likelihood based method of smoothing parameter selection. The results are quantitatively

similar. To save space, we only report results based on the GCV.

For comparison, we consider three alternative estimators: the cubic smoothing spline

estimator, the cubic polynomial estimator, and the recent shape constrained B-spline esti-

mator of Pya and Wood (2014). The smoothing spline estimator is the most flexible and

does not impose any shape constraints. The cubic polynomial estimator represents the

other extremum, which is the limiting case of the cubic smoothing spline estimator when its

smoothing parameter approaches infinity. Pya and Wood’s (2014) estimator is a B-spline

estimator that imposes shape constraints via restrictions on the spline coefficients. We use

the R packages ‘gam’ and ‘scam’ to implement the smoothing spline and shape-constrained

B-spline estimators and employ the default methods of smoothing parameter selection of

these two packages.

We employ two criteria to gauge the performance of these competing estimators. We

use the Mean Squared Errors (MSE) of prediction, given by 1/n
∑n

i=1(Yi − Ŷi)2, to measure

the goodness-of-fit. For each estimator, we calculate the mean and median MSE across

all repetitions. To check their compliances with shape restrictions, we evaluate the first

and second derivatives of the fitted curves for each observation and report the percentage
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of observation-specific monotonicity and concavity of the fitted curves evaluated at sample

values.

Denote by ‘T-Spline’ the transformation-based spline estimator of this study, ‘R-Spline’

the restricted coefficient spline estimator of Pya and Wood (2014), ‘Polynomial’ the cubic

polynomial estimator, and ‘S-Spline’ the smoothing spline estimator. In the experiment on

additive models, we calculate the T-Spline estimator using both direct estimation and back-

fitting, with the latter denoted by T-Splineb. Table 1 reports the simulation results. The

shape-constrained estimators outperform the unconstrained estimators in all three experi-

ments in terms of mean MSE and median MSE. The overall performance of the two shape-

constrained estimators is essentially identical for the two univariate models. For the additive

model, the backfitted T-spline estimator provides the best performance, followed by the

R-Spline estimator and then the directly estimated T-spline estimator, however, differences

among them are rather small compared to the edge they have over the two non-constrained

estimators.

Table 1: Simulation Results

Estimator Experiment I Experiment II Experiment III

Mean MSE
Polynomial .035 .032 .268
Spline .038 .034 .190
R-Spline .025 .026 .102
T-Spline .025 .027 .123
T-Splineb .090

Median MSE
Polynomial .040 .038 .264
Spline .048 .047 .183
R-Spline .031 .032 .093
T-Spline .029 .033 .117
T-Splineb .083

Monotonicity (%)
Polynomial 93 96 99 99
Spline 95 98 92 94

Concavity (%)
Polynomial 70 66 69 68
Spline 51 51 66 65

T-spline: directly estimated T-Spline estimator
T-splineb: backfitted T-Spline estimator for additive models

By construction, monotonicity and concavity are satisfied globally under the shape-

constrained estimators. For the two unconstrained estimators, we calculate their first and
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second order derivatives numerically on each data point. In Experiment III, the mono-

tonicity and concavity percentages are reported separately for the two additive components.

The results are reported in the bottom panel of Table 1. Monotonicity is satisfied in most

cases, while the rate of compliance with concavity ranges from 50 to 70 percent. This is not

unexpected considering that higher order derivatives are generally more difficult to estimate.

We next examine the suggested asymptotic inferences of our proposed estimators. Figure

1 plots examples of estimated curves (in black) with pointwise 95% asymptotic confidence

intervals together with those obtained from bootstraps (based on 100 re-sampled estimates).

The left panel reports the results for Model I, and the right panel for the first component of

the additive Model III. (Similar patterns are observed for Model II and the second component

of Model III and therefore are not reported.) The asymptotic confidence intervals (in red)

closely track those produced by the bootstrap procedure (in blue), which is computationally

more expensive, supporting the validity of the proposed asymptotic inferences.
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Figure 1: Pointwise 95% confidence intervals (red: asymptotic; blue: simulated). Left:
Model I; Right: component one of Model III
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8 Empirical applications

In this section, we present two illustrative applications of the proposed method. The first

application investigates the relationship between revealed risk attitude and optimism. The

data come from a survey conducted by Mansour et al. (2008). In this survey, participants

were offered the opportunity to enter a heads-and-tails game. A coin is flipped ten times;

each time a head appears, the participant receives 10 euros. The participant is then asked

to estimate the number of times heads will occur. The participant is also asked to reveal the

maximum amount she is willing to pay (WTP) in order to take part in this game. The aim

of this experiment is to obtain measures of individual levels of optimism and risk aversion.

The sample has n = 1, 536 observations. Summary statistics of the data are reported in the

top panel of Table 2. On average, the participants are pessimistic (the average expectation

3.9 is less than 5, the unbiased expectation) and risk averse (the average WTP 16.3 is below

the fair expectation 50 and also below 39, which is the expected risk neutral WTP given the

average expectation of 3.9).

Table 2: Summary statistics

Mean S.D. Min. Max.
Risk and Optimism Data
Optimism 3.9 1.8 0 10
WTP 12.0 13.6 0 100
Production Data
Output 16.3 8.3 1.7 37.1
Capital 4.8 2.8 9.6 0.3
Labor 57.7 27.2 1.1 98.9

For i = 1, . . . , n, let Yi be individual i’s estimation of the number of heads, and Xi her

maximum willingness to pay. We are interested in estimating the relationship between these

two measures. According to preference and utility function theories, there exists a monotone

relationship between risk aversion and optimism (see Mansour et al. (2008) and references

therein). Taking the WTP as a proxy for degree of risk aversion or risk loving, one expects

a monotone increasing relationship between Yi and Xi. Since measures of optimism are

naturally bounded from above by 10, we expect the Yi as a function of Xi to level off as
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Xi gets large (there is no upper bound for Xi; but as expected, no participants were offered

more than 100 euros). Therefore, it is plausible that Y = f(X) is monotone increasing and

concave.
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Figure 2: Risk tolerance vs optimism: data and estimates (shaded areas represent pointwise
95% confidence intervals)

The left plot of Figure 2 shows the participants’ answers to the two questions, clearly

implying a monotone and possibly concave relationship between these two measures. Thus

in our illustration, we apply the proposed method to the following model:

Yi = f(Xi) + ei, i = 1, . . . , n,

where f ′ > 0 , f ′′ < 0, and ei are iid errors with mean zero and finite variance. The estimation

results are reported in the right panel of Figure 2. The estimated curve is monotone and

concave, capturing the general patterns of the data. Also plotted are the 95% pointwise

asymptotic confidence intervals. The confidence intervals are tighter for small values of

WTP and gradually increase with WTP, largely due to the number of observations falling

rapidly as WTP rises.

The second example concerns the estimation of a production function. According to
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economic theory, production functions are monotone increasing and concave with respect to

inputs (cf. Diewert and Wales (1987)). We use the benchmark data in Coelli (1996), which

contains information on the level of output and capital and labor inputs of 60 firms. The

bottom panel of Table 2 reports summary statistics of the data set.

We assume that the production function takes the following additive form:

Qi = f1(Ci) + f2(Li) + ei, i = 1, . . . , n,

where Q,C and L denote output, capital and labor respectively, ei are iid errors with mean

zero and finite variance, and n = 60. We also assume that f ′j > 0 and f ′′j < 0 for j =

1, 2. We estimate the model using the backfitted transformation spline estimator. The

top panel of Figure 3 shows the surface and contour plots of the estimated production

function and displays the positive and marginally decreasing contribution of capital and

labor. The bottom panel illustrates the additive component associated with capital and

labor respectively. The results suggest that the marginal productivity of capital in the firms

levels off gradually while that of labor persistently increases. Similar to the previous example,

larger confidence intervals are observed in regions with smaller number of observations.

9 Concluding Remarks

We have proposed a semiparametric estimator that accommodates shape restrictions such

as monotonicity and concavity. Our method employs an integral transformation to achieve

the desired shape constraints. The resulting estimates satisfy the constraints globally. We

use penalized splines to achieve flexibility while maintaining shape constraints. We have

proposed an iterative algorithm and a cross validation criterion for smoothing parameter

selection. We have derived the asymptotic variance of the proposed estimator and have fur-

ther extended the proposed method to multiple regressions under the framework of additive

models. Our Monte Carlo simulations and two empirical examples illustrate the appeal of

the estimator in terms of its finite sample performance and its usefulness in capturing the

shape restrictions while also providing relative flexibility in fitting the nonlinear relationships

we have estimated.
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We conclude by suggesting some possible generalizations of the proposed method. First,

the current model considers continuous outcomes. Generalization to discrete or range-limited

variables in the framework of the generalized linear models, as in Shively et al. (2011), is a

natural extension of the approach we have taken. Second, we envision that our methods can

be generalized to accommodate inter-temporally or spatially correlated errors, or composite

errors as in the case of panel data analysis. Third, we restrict ourselves to additive models

in this study. Relaxations of this restriction to accommodate interactions or more general

non-separable structures while maintaining shape constraints may be of interest for future

research. Lastly, we acknowledge that it is desirable to be able to test the validity of con-

straints implied by economic theories. Heckmam and Ramsay (2000) presented the L-spline

estimators, whose model-based penalties are defined via linear differential functions. Their

method provides a natural framework to test the validity of constraints implied by differ-

ential equations, such as those used in our estimator. One can also use the nonparametric

tests suggested by Dümbgen and Spokoiny (2001).

References

[1] Ackerberg D, Chen X, Hahn J (2012) A practical asymptotic variance estimator for

two-step semiparametric estimators. Review of Economics and Statistics, 94: 481–498.

[2] Aerts M, Claeskens G, Wand M (2002) Some theory for penalized spline additive models.

Journal of Statistical Planning and Inferences 103: 455–470.

[3] Ai C, Chen X (2007) Estimating of possibly misspecified semiparametric conditional

moment restriction models with different conditioning variables. Journal of Economet-

rics 141: 5–43.

[4] Aı̈t-Sahalia Y, Duarte J (2003) Nonparametric option pricing under shape restrictions.

Jouranl of Econometrics 116: 9–47.

[5] Blundell R, Horowitz JL, Parey M (2012) Measuring the price responsiveness of gasoline

demand: economic shape restrictions and nonparametric demand estimation, Quanti-

tative Economics 3: 29–51.

27



[6] Braun WJ, Hall P (2001) Data sharpening for nonparametric inference subject to con-

straints. Journal of Computational and Graphical Statistics 10: 786-806.

[7] Broadie M, Detemple J, Ghysels E, Torrés O (2000) American options with sthochstic

dividends and volatility: a nonparametric investigation. Journal of Econometrics 94:

53–92.

[8] Brunk HD (1955) Maximum likelihood estimates of monotone parameters. Annals of

Mathematical Statistics 26: 607-616.

[9] Carroll R, Delaigle A, Hall P (2011) Testing and estimating shape-constrained nonpara-

metric density and regression in the presence of measurement error. Journal of American

Statistical Association 106: 191–202.

[10] Chernozhukov V, Fernandez-Val I, Galichon A (2009) Improving estimates of monotone

functions by rearrangement. Biometrika 96: 559–575.

[11] Coelli TJ (1996) A Guide to FRONTIER Version 4.1: A Computer Program for Stochas-

tic Frontier Production and Cost Function Estimation. CEPA Working Paper 96/7,

Department of Econometrics, University of New England, Armidale NSW Australia.

[12] de Boor C (2001) A practical guide to splines. Springer.

[13] Diewert WE, Wales TJ (1987) Flexible functional forms and global curvature conditions.

Econometrica 55(1): 43-68.

[14] Du P, Parmeter C, Racine JS (forthcoming) Nonparametric kernel regression with mul-

tiple predictors and multiple shape constraints. Statistica Sinica.
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[22] Härdle W, Sylvie H, Mammen E, Sperlich S (2004) Bootstrap inference in semipara-

metric generalized additive models. Econometric Theory 20(2): 265-300.

[23] Hastie TJ, Tibshirani RJ (1990) Generalized additive models. London: Chapman &

Hall.

[24] Heckman NE, Ramsay JO (2000) Penalized regression with model-based penalties. The

Canadian Journal of Statistics 28(2): 241–258.

[25] Henderson DJ, List JA, Millimet DL, Parmeter CF, Price M (2012) Empirical imple-

mentation of nonparametric first-price auction models. Journal of Econometrics, 168:

17–28.

[26] Kauermann G, Krivobokova T, Fahrmeir L (2009) Some asymptotic results on gener-

alized penalized spline smoothing. Journal of the Royal Statitical Society, Series B 71:

487-503.

[27] Kelly C, Rice J (1990) Monotone smoothing with application to response curves and

the assessment of synergism. Biometrics 46: 1071–1085.

[28] Kneip A, Sickles RC, Song WH (2012) A new panel data treatment for heterogeneity

in time trends. Econometric Theory 28: 590–628.

[29] Lewbel, A (2010) Shape-invariant demand functions. Review of Economics and Statistics

92: 549–556.

29



[30] Li Q, Racine JS (2007) Nonparametric econometrics: Theory and practice. Princeton

University Press.

[31] Li Y, Ruppert D (2008) On the asymptotics of penalized splines. Biometrika 95: 415–

436.

[32] Ma S, Racine JS (2013) Additive regression splines with irrelevant categorical and con-

tinuous regressors. Statistica Sinica 23: 515–541.

[33] Mammen E (1991) Estimating a smooth monotone regression function. Annals of Statis-

tics 19(2): 724-740.

[34] Mammen E, Thomas-Agnam C (1999) Smoothing splines and shape restrictions. Scan-

dinavian Journal of Statistics 26: 239-252.

[35] Matzkin, RL (1991) Semiparametric estimation of monotone and concave utility func-

tions for polychotomous choice models. Econometrica 59(5): 1315–1327.

[36] Matzkin, RL (1994) Restrictions of economic theory in nonparametric methods. in R.

F. Engel and D. L. McFadden (eds.) Handbook of Econometrics, Vol. 4.

[37] Mukerjee H (1988) Monotone nonparametric regression. Annals of Statistics 16: 741-

750.

[38] Newey WK (1984) A method of moment interpretation of sequential estimators. Eco-

nomic Letters 14: 201–206.

[39] Newey WK (1994) The asymptotic variance of semiparametric estimators. Econometrica

62: 1349–1382.

[40] Pya N, Wood S (2014) Shape constrained additive models. Statistics and Computing

forthcoming.

[41] Ramsay JO (1988) Monotone regression splines in action (with comments). Statistical

Science 3: 425-461.

30



[42] Ramsay JO (1998) Estimating smooth monotone functions. Journal of the Royal Sta-

tistical Society Series B 60 (2): 365–375.

[43] Ruppert D (2002) Selecting the number of knots for penalized splines. Journal of Com-

putational Statistics 11: 735–757.

[44] Ruppert D, Wand W, Carroll R (2003) Semiparametric regression. Cambirdge Univer-

sity Press.

[45] Shively TS, Sager TW, Walker SG (2009) A bayesian approach to nonparametric mono-

tone function estimation. Journal of the Royal Statistical Society, Series B 71: 159-175.

[46] Shively TS, Walker SG, Damien P (2011) Nonparametric function estimation subject

to monotonicity, convexity and other shape constraints. Journal of Econometrics 161:

166–181.

[47] Wahba G (1990) Spline models for observational data. SIAM.

[48] Wand M (1999) On the optimal amount of smoothing in penalized spline regression.

Biometrika 86: 936–940.

[49] Wand M (2006) Smoothing and Mixed Models. Computational Statistics 18: 223–249.

[50] Yachew A (2003) Semiparametric regression for the applied econometrician. Cambridge

University Press.
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Appendix

Proof of Theorem 1. We can rewrite the objective function as

Qλn(θ) =
1

n

n∑
i=1

{Yi − f(Xi; θ
0) + f(Xi; θ)− f(Xi; θ

0)}2 + λnD(f(θ))

=
1

n

n∑
i=1

e2i +
2

n

n∑
i=1

{f(Xi; θ
0)− f(Xi; θ)}2ei +

1

n

n∑
i=1

{f(Xi; θ
0)− f(Xi; θ)}2 + λnD(f(θ)).

Under assumptions 1, 2, and 3a, the first and third terms converge to σ2 and Q(θ) respec-

tively, and the second term converges to zero. In addition, the last term vanishes if λn → 0.

It follows that

Qλn(θn)
p→ Q(θ) + σ2

if λn = o(1).

Next let θ̂(λn) be the penalized least square estimators. It follows that

Qλn(θ̂(λn)) ≤ Qλn(θ0).

Under assumption 3.a, the left hand side converges to, say, Q(θ′) + σ2, θ′ ∈ Θ. It follows

that

Q(θ′) + σ2 ≤ Q(θ0) + σ2 = σ2,

implying Q(θ′) = 0. Thus under assumption 3a and 3b, we have θ′ = θ0, which establishes

the consistency of the penalized least square estimator.

Proof of Theorem 2. Rewrite

Ŷ (λ)− Y (λ) = {Ŵ (λ)−W (λ)}β̂(λ) +W (λ)(β̂(λ)− β(λ)).

It follows that

Var(Ŷ (λ)) =Var((Ŵ (λ)−W (λ))β̂(λ)) + Var(W (λ)(β̂(λ)− β(λ)))

+ 2cov((Ŵ (λ)−W (λ))β̂(λ),W (λ)(β̂(λ)− β(λ))). (A.1)

32



First note that the third term vanishes asymptotically. Since β(λ) = (W (λ)TW (λ))−1W (λ)Y (λ),

it follows readily that

Var(W (λ)(β̂(λ)− β(λ))) = σ2PW (λ). (A.2)

From (11), we have under assumption 5 that

Var(
√
n(ĉ(λ)− c(λ)) = Ω(λ),

with

Ω(λ) = σ2(β1(λ)Z(λ)(β2
1(λ)Z(λ)TZ(λ) + nλD′′)−2(β1(λ)ZT (λ)).

Next note that

(Ŵ (λ)−W (λ))β̂(λ) = (Ŵ (λ)−W (λ))β(λ) + op(1)

= β1(λ)(m(X; ĉ(λ))−m(X; c(λ))) + op(1)

= β1(λ)Z(λ)(ĉ(λ)− c(λ)) + op(1).

It follows that

Var((Ŵ (λ)−W (λ))β̂(λ)) = (β1Z
T (λ))Ω(λ)(β1(λ)ZT (λ)) = σ2P 2

Z(λ). (A.3)

Combining (A.2) and (A.3) then yields (14). Under assumptions 1, 2, 3(a), 4 and 5, the

asymptotic normality can be readily established under the central limite theorem.

Lastly the variance of the error terms is estimated by (
∑n

i=1 ê
2
i )/(d.o.f.), where the de-

grees of freedom is given by n subtracted the effective number of parameters. The proposed

semiparametric estimator has two parametric parameters, and the effective number of pa-

rameters (rank of the smoother) for the nonparametric part is calculated as tr(P̂Z)(λ) (Cf.

Ruppert et al. (2003)). It follows that s2
p→ σ2 as n→∞. In addition, it is straightforward

to show that β̂(λ), P̂W (λ) and P̂Z(λ) converge in probability to β(λ), PW (λ) and PZ(λ) as

n→∞. It follows that under assumption 5, V̂ (λ)
p→ V (λ) as n→∞, which completes the

proof of this theorem.
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Proof of Theorem 3. From (11) we have

ĉ(λn) = (
1

n
β̂2
1Ẑ

T Ẑ + λnD̂
′′)−1

(
1

n
β̂1Ẑ

T Ỹ + λn(D̂′ − D̂′′ĉ−)

)
= (

1

n
β̂2
1Ẑ

T Ẑ + λnD̂
′′)−1

(
1

n
β̂1Ẑ

T Ỹ + op(1)

)
≡ (

1

n
BTB + λnD̂

′′)−1(
1

n
BT Ỹ + op(1)).

A Taylor expansion of the above with respect to λn around zero, using that (I + λA)−1 =

I − λA+ o(λA) as λ→ 0 yields

ĉ(λn) = ((
1

n
BTB)−1

1

n
BTB + λnD̂

′′)−1(
1

n
BTB)−1(

1

n
BT Ỹ + op(1))

= (I − λnD̂′′ + o(λnD̂
′′))(

1

n
BTB)−1(

1

n
BT Ỹ + op(1))

= (BTB)−1BT Ỹ + o(λnD̂
′′) + op(1)

= c0 + o(λnD̂
′′) + op(1),

where the last equality is due to the consistency of ĉ(λn) as λn → 0 given in Theorem 1.

Next we can show that the variance of ĉ(λn) is of order σ2/n. It follows that MSE(ĉ(λn)) =

Op(σ
2/n + λ2n) for bounded D̂′′ (which is implied by the compactness of Θ). Thus for the

asymptotic bias to vanish, we need λn = o(n−1/2). The asymptotic normality of the limiting

case can then be established using essentially the same proof as for Theorem 2 and replacing

the fixed λ with zero, the limiting value of λn.

Proof of Theorem 4. Let ĉ(i, w) be the solution to the following optimization

(w − β0 − β1f(Xi))
2 +

n∑
k=1,k 6=i

(Yk − β0 − β1f(Xk))
2 + λD(f(x)). (A.4)

It follows that ĉ(i, Ŷ(i)) = ĉ(i).

Let ∆(i) be an n× 1 vector of zeros except that the ith element equals Ŷ(i) − Yi. We can

then write

ĉ(i) = (β̂2
1Ẑ

T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T (Ỹ + ∆(i)).

34



It follows that

Ỹ(i) =β̂1Ẑ
T
i ĉ(i)

=β̂1Ẑ
T
i (β̂2

1Ẑ
T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T Ỹ

+ β̂1Ẑ
T
i (β̂2

1Ẑ
T Ẑ + λ

∫
X
D′′(x)dx)−1β̂1Ẑ

T∆(i)

=Ỹi + si(Ŷ(i) − Yi). (A.5)

Next we use the Taylor approximation on Ŷ(i) to obtain

Ỹ(i) =Ŷ(i) − β̂0 − β̂1f(Xi; ĉ)− β̂1ẐT
i (ĉ(i) − ĉ) + β̂1Ẑ

T
i ĉ(i) + op(1)

=Ŷ(i) − β̂0 − β̂1f(Xi; ĉ) + β̂1Ẑ
T
i ĉ+ op(1).

It follows that

Ỹ(i) − Ỹi = Ŷ(i) − Ŷi + op(1). (A.6)

Plugging (A.6) into (A.5) and rearranging terms yields

Yi − Ŷ(i) =
Yi − Ŷi
1− si

+ op(1),

which gives (A.4) readily.
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