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chapter 17

........................................................................................................

PANEL DATA AND PRODUCTIVITY
MEASUREMENT

........................................................................................................

robin c. sickles, jiaqi hao and chenjun shang

17.1 Introduction
.............................................................................................................................................................................

The chapter first discusses how productivity growth typically has been measured in
classical productivity studies. We then briefly discuss how innovation and catch-up
can be distinguished empirically. We next outline methods that have been proposed to
measure productivity growth and its two main factors, innovation and catch-up. These
approaches can be represented by a canonical form of the linear panel data model.
A number of competing specifications are presented and model averaging is used to
combine estimates from these competing specifications in order to ascertain the con-
tributions of technical change and catch-up in world productivity growth. The chapter
ends with concluding remarks and suggestions for the direction of future analysis.

The literature on productivity and its sources is vast in terms of empirical and theo-
retical contributions at the aggregate, industry, and firm level. The pioneering work of
Dale Jorgenson and his associates1 and Zvi Griliches and his associates,2 the National
Bureau of Economic Research,3 the many research contributions made in U.S uni-
versities and research institutions, the World Bank and research institutes in Europe
and other countries are not discussed here as our goal is by necessity rather narrow.
We focus on work directly related to panel data methods that have been developed
to address specific issues in specifying the production process and in measuring the
sources of productivity growth in terms of its two main components of innovation
(technical progress) and catch-up (efficiency growth), with emphasis given to one of
the more important measures of the latter component and that is technical efficiency.
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17.2 Productivity Growth and
Its Measurement

.............................................................................................................................................................................

17.2.1 Classical Residual based Partial and
Total Factor Productivity Measurement

Total factor productivity (TFP) is measured by a ratio of a weighted average of outputs
(Yi) to a weighted average of inputs (Xi). For a single output the ratio is:

TFP = Y∑
aiXi

. (1)

Historically, there are two common ways of assigning weights for this index. They
are to use either an arithmetic or geometric weighted average of inputs. The arith-
metic weighted average, due to Kendrick (1961), uses input prices as the weights while
the geometric weighted average of the inputs, attributable to Solow (1957), uses input
expenditure shares as the weights. The predominant TFP measure currently in use by
the central governments in most countries is a variant of Solow’s measure based on the
Cobb-Douglas production function with constant returns to scale, Y = AXα

L X1−α
K , and

leads to the TFP measure:

TFP = Y

Xα
L X1−α

K

. (2)

At cost minimizing levels of inputs, the parameter α describes the input expenditure
share for labor. The TFP growth rate is the simple time derivative of TFP and is given
by:

TḞP = dY

Y
−

[
α

dXL

XL
+ (1 −α)

dXK

XK

]
.

TFP is simply a ratio of index numbers. Fisher (1927) discussed the optimal prop-
erties for index numbers and these are also explored in depth by Good, Nadiri, and
Sickles (1997). Jorgenson and Griliches (1972) pointed out that the TFP index could
be expressed as the difference between the log output and log input indices.

17.2.2 Modifications of the Neoclassical Model:
The New Growth Theory

Endogenous growth models (Romer, 1986) were proposed to address the inflexibil-
ity and simplicity of exogenously driven (“manna from heaven”) technical change
(Scherer, 1971). This was of course not new as Griliches (1957) and Edwin Mansfield
(1961), among others, addressed these issues using endogenous rates of penetration
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and endogenous rates of imitation to explain technical change. In the endogenous
growth theory capital was allowed to have non-diminishing rates of return due to
external effects that spillover for a variety of reasons. The level of technology A can
vary depending on the stock of some privately provided input R (such as knowledge)
and the production function is formulated as

Y = A(R)f (K , L, R)

As for potential sources of spillovers that could shift the production function there
are many explanations. Learning-by-doing was Arrow’s (1962) explanation, while for
Romer (1986) it was the stock of research and development, for Lucas (1988) it was
human capital, for Coe and Helpman (1995) and Coe, Helpman, and Hoffmaister
(1997) it was trade spillovers, and for Diao, Rattsø, and Stokke (2005) it was trade
openness. However, efficiency is another explanation if one simply attaches another
reason for the spillover, such as a loosening of constraints on the utilization of the
technology.

Another comment about endogenous growth models and the need to address endo-
geneity issues in productivity analyses needs to be made here. The literature on
structural modeling of productivity models is quite dense and, again, it is not within
the scope of this chapter to discuss this very important literature. However, there is
a particular literature within the broader structural modeling of static and dynamic
productivity model (see, e.g., Olley and Pakes 1996) that speaks to the focused issues
addressed in this chapter and that is the role of errors-in-variables, weak instrument
bias, and stability in panel data modeling of production processes. These issues have
been taken up by a number of researchers, especially those from the NBER and include
studies by Griliches and Hausman (1986), Stoker et al. (2005), Griliches and Mairesse
(1990, 1998), and Griliches and Pakes (1984), to name but a few.

17.2.3 Technical Efficiency in Production

Nontransitory production inefficiencies can be attributed to a number of factors, such
as random mistakes, the existence of market power (Kutlu and Sickles 2012), and
historical precedent (Alam and Sickles, 2000). Technical inefficiency concepts were
developed by Debreu (1951), Farrell (1957), Shephard (1970), and Afriat (1972).
Measuring the intrinsically unobservable phenomena of efficiency has proven to be
quite challenging. Aigner, Lovell, and Schmidt (1977), Battese and Corra (1977), and
Meeusen and Van den Broeck (1977) developed the econometric methods to mea-
sure efficiency in production, while linear programming methods were initially made
feasible to utilize in the classic study by Charnes, Cooper, and Rhodes (1978). As rel-
ative efficiency is usually constructed from a normalized residual and such a residual
is generated from an econometric model, theoretical consideration from the economic
theory of the firm and assumptions of weak exogeneity are needed in order to identify
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it as a factor that is distinct from innovation. Both efficiency and technology change
are the main drivers of productivity growth, along with scale economies. Scale effects
may have an important role at the firm level but not necessarily at the aggregate econ-
omy level we will consider in the empirical analysis we summarize towards the end
of this Chapter. As efficiency estimators differ on which identifying restrictions are
imposed, it should surprise no one that results from alternative estimators differ as
well. Kumbhakar and Lovell (2000) and Fried, Lovell, and Schmidt (2008) provide
excellent treatments of this literature and how various modeling assumptions utilized
in the early panel productivity literature by Pitt and Lee (1981), Schmidt and Sick-
les (1984), and others provide substantial leverage in determining measured levels of
efficiency.

17.2.4 The Panel Stochastic Frontier Model

Introducing efficiency into the dynamic of productivity growth requires that we intro-
duce a frontier production process relative to which efficiency can be measured. In
order for cross-sectional methods to be useful in such a setting, identification of
the efficiency term often requires a parametric assumption about its distribution, an
assumption not needed when using panel data. Panel data methods for time invariant
efficiency measurement introduced by Pitt and Lee (1981) and Schmidt and Sickles
(1984) were soon followed up by Cornwell, Schmidt, and Sickles (1990) and Kumb-
hakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993) who introduced
methods that allowed the efficiency effects to vary over time and between cross-
sectional units. Kim and Lee (2006) generalized the Lee and Schmidt (1993) model
by considering different patterns for different groups, while Hultberg, Nadiri, and
Sickles (1999, 2004) modified the neoclassical country growth convergence model to
allow for heterogeneities in the efficiency catch-up rates. The Hultberg, Nadiri, and
Sickles (1999, 2004) studies also are instructive as they relate a set of environmental
factors, such as a country’s political and social institutions, to the rate of catch-up, a
factor which they found to determine up to 60% of the variation in efficiency. The
firm level study by Bloom and Van Reeden (2007) found that productivity differences
among firms (efficiency differences) were best explained by such arcane factors as
shop floor operations, monitoring, targets, and incentives, factors typically overseen
by management and also typically viewed as related to managerial efficiency.

17.2.5 Index Number Approaches to Calculate
Innovation and Efficiency Change

Identifying the sources of TFP growth while imposing minimal parametric structure
has obvious appeal on grounds of robustness. Sharpness of inferences may, however,
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be comprised vis-à-vis parametric structural econometric models. There has been a
long-standing tradition to utilize index number procedures as well as reduced form
or structural econometric estimation to quantify TFP growth and its determinants.
Space limits the coverage that this chapter can provide to such important index number
approaches. The interested reader is directed to the panel data literature on productiv-
ity index numbers and to surveys (e.g., Good, Nadiri, and Sickles 1997; Fried, Lovell,
and Schmidt 2008), particular advances in decomposing productivity change into tech-
nical and efficiency growth via the Malmquist index introduced into the literature by
Caves, Christensen, and Diewert (1982) (Färe et al. 1994; Grifell-Tatjé and Lovell 1995;
Färe et al. 1997), problems with such index number approaches and decompositions
(Førsund and Hjalmarsson 2008), and numerical approaches via bootstrapping to con-
struct inferential procedures to assess such measures (Simar and Wilson 2000; Jeon and
Sickles 2004).

17.3 Decomposition of Economic
Growth-Innovation and Efficiency

Change Identified by Regression
.............................................................................................................................................................................

A relatively transparent way to see how a linear regression can be used to estimate
technical change and efficiency change is based on the following derivation. Let the
multiple output/multiple input technology be represented by a parametric output dis-
tance function (Caves, Christensen and Diewert 1982; Coelli and Perelman 1996).
Consider an output distance function or single output production function that is lin-
ear in parameters. Standard parametric functional forms widely used in empirical work
that are linear in parameters are the Cobb-Douglas, translog, generalized-Leontief and
quadratic. The many different specifications we consider here and the way in which
various forms of unobserved heterogeneity can be modeled can be motivated using the
following model for a single output technology estimated with panel data assuming
unobserved country (firm) effects:

yit = xitβ + ηi(t) + vit (3)

where ηi(t) represents the country-specific fixed effect that may be time varying, xit is
a vector of regressors, some of which may be endogenous and correlated with the error
vit or the effects ηi(t).

The regression model (3) can be derived by a relatively straightforward transfor-
mation and re-parameterization of the output distance function. A parsimonious
representation of the m-output, n-input deterministic distance function Do(Y , X) is
given by the Young index (Balk 2008):
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Do(Y , X) =
∏m

j=1 Y
γj

it∏n
k=1 Xδk

it

≤ 1.

The output-distance function Do(Y , X) is non-decreasing, linear homogeneous in out-
puts, and concave in Y and non-increasing and quasi-concave in X . If we take the
natural logarithm of the inequality, add a symmetric disturbance term vit to address
the standard random error in a regression and a technical efficiency term ηi(t) to rep-
resent inefficiency then the observed value of the distance function for country i at
time t can be written as:

−y1,it =
m∑

j=2

γjy
∗
jit +

n∑
k=1

δkx∗
kit + ηi(t) + uit ,

where y∗
jit ,j=2,...,m = ln(Yjit/Y1it ) and x∗

kit = ln (Xkit ). After redefining a few variables the
distance function can be written as

yit = xitβ + ηi(t) + vit .

The Cobb-Douglas distance function introduced by Klein (1953) not only assumes
strong separability of outputs and inputs but also has a production possibility frontier
that is convex instead of concave. This last drawback may not be as important as it
seems, as pointed out by Coelli (2000), and the Cobb-Douglas remains a reasonable
and parsimonious first-order local approximation to the true function. The Cobb-
Douglas can be extended to the translog output distance function by adding second
order terms to provide for flexibility in curvature possibilities and by allowing inter-
actions among the output and inputs, thus avoiding the strong separability implied by
the Cobb-Douglas output distance function. This functional form also can be trans-
formed and re-parameterized to fit into the form of the linear panel data model given
in equation (3). The translog output distance function is given by:

−y1it =
m∑

j=2

γjy
∗
jit + 1

2

m∑
j=2

m∑
l=1

γjly
∗
jit y∗

lit +
n∑

k=1

δkx∗
kit + 1

2

n∑
k=1

n∑
p=1

δkpx∗
kit x∗

pit

+
m∑

j=2

n∑
k=1

θjky∗
jit x∗

lit + ηit + uit .

Since the model is linear in parameters, then after redefining a few variables the
translog distance function also can be written as

yit = xitβ + ηi(t) + vit .

Transformations and re-parameterizations such as these can be used to put any output
distance function that is linear in parameters into the canonical form of equation (3).
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When there are multiple outputs then those that appear on the right hand side must
be instrumented.

We will use this equation as the generic model for estimating efficiency change using
frontier methods we will detail below. We will assume that technical innovations are
available to all countries and interpret any country-specific error left over when we con-
trol for factor inputs as inefficiency. In so doing we can then decompose TFP growth
into its two main components, innovation and catch-up. Innovation could be directly
measured, for example using a distributed lag of R&D expenditures, patents, or any
other direct measure of innovation. Baltagi and Griffin (1988) use time dummies to
construct an innovation index. Exogenous or stochastic linear time trends have also
been used (Bai, Kao, and Ng, 2009).

Below we examine a number of regression-based methods introduced into the lit-
erature to measure productivity growth and its decomposition into innovation and
efficiency change using,

yit = xitβ + ηi(t) + vi,

which nests all multi-output/multi-input panel models that are linear in parameters
and can be used to estimate productivity growth and decompose it into innovation
and efficiency change. We will also assume that we have a balanced panel although
this is done more for notational convenience than for substantive reasons. The meth-
ods we discuss also are appropriate when technical efficiency effects are not changing
over time. After discussing the methods and how they are implemented we will discuss
model averaging and how it can be used to evaluate world productivity growth from
1970 to 2000.

17.3.1 The Cornwell, Schmidt, and Sickles (1990)
Panel Stochastic Frontier Model

Extensions of the panel data model to allow for heterogeneity in slopes as well as inter-
cepts by Cornwell, Schmidt, and Sickles (CSS) (1990) allowed researchers to estimate
productivity change that was specific to the cross-sectional unit (firms, industries,
countries) that could change over time. A special parameterization of the CSS model
that accomplishes this objective is:

yit = xitβ + ηi(t) + vit ,

where
ηi(t) = Witδi + vit .

The L coefficients of W , δi, depend on different units i, representing heterogeneity
in slopes. In their application to the US commercial airline industry, CSS specified
Wit = (1, t , t2), although this was just a parsimonious parameterization useful for their
application. It does not in general limit the effects to be quadratic in time.



1

524 robin c. sickles, jiaqi hao and chenjun shang

A common construction can relate this model to standard panel data model. Let
δ0 = E[δi], and δi = δ0 + ui. Then the model can be written as:

yit = Xitβ + Witδ0 + εit , (4)

εit = W ′
it ui + vit . (5)

Here ui are assumed to be i.i.d. zero mean random variables with covariance matrix
	. The disturbances vit are taken to be i.i.d. random variable with a zero mean and
constant variance σ 2, and uncorrelated with the regressors and ui. In matrix form, we
have:

y = Xβ + Wδ0 + ε, (6)

ε = Qu + v, (7)

where Q = diag(Wi), i = 1, · · · , N is a NT × NL matrix, and u is the associated NL × 1
coefficients vector.

17.3.1.1 Implementation

Three different estimators can be derived based on differing assumptions made in
regard to the correlation of the efficiency effects and the regressors, specifically, the
correlation between the error term u and regressors X and W . They are the within (FE)
estimator, which allows for correlation between all of the regressors and the effects, the
gls estimator, which is consistent when no correlation exists between the technical effi-
ciency term and the regressors (Pitt and Lee 1981; Kumbhakar 1990), and the efficient
instrumental variables estimator, which can be obtained by assuming orthogonality of
some of the regressors with the technical efficiency effects. The explicit formulas for
deriving each estimator and methods for estimating the δi parameters are provided in
the CSS paper. Relative efficiencies, normalized by the consistent estimate of the order
statistics identifying the most efficient country, are then calculated as:

η̂(t) = max
j

[̂ηj(t)]

and
REi(t) = η̂(t) − η̂i(t),

where REi(t) is the relative efficiency of the ith country at time t . For this class of mod-
els the regressors X contain a time trend interpreted as the overall level of innovation.
When it is combined with the efficiency term η̂j(t), we have a decomposition of TFP
into innovation and catch-up. When the time trend and the efficiency term both enter
the model linearly, then the decomposition is not identified using the within estimator
but is for the gls and for selected variants of the efficient IV model, such as those used
in the Cornwell et al. airline study. In the study of world productivity below we utilize
the gls version of the CSS estimator (labelled CSSG) and the Efficiency IV estimator
(labelled EIV).
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17.3.2 The Kumbhakar (1990) Panel Stochastic Frontier Model

Here we consider a linear in log production function:

yit = xitβ + ηi(t) + vit , (8)

where

ηi(t) = γ (t)τi. (9)

vit is assumed i.i.d. with distribution N(0,σ 2
v ); ηi(t) is the inefficiency term with time-

varying factor γ (t) and time-invariant characteristics τi. τi is assumed to be distributed
as i.i.d. half-normal distributed γ (t) is specified as the logistic function

γ (t) = (1 + exp(bt + ct2))−1

We can see that γ (t) is bounded between (0, 1) and that it accommodates increas-
ing, decreasing, or time-invariant inefficiency behavior as the parameters b and c vary.
Although the Kumbhakar model also estimates allocative efficiency from side condi-
tions implied by cost-minimization (Schmidt and Lovell 1979), we will only examine
the portion of his model that directly pertains to the technical inefficiency/innovation
decomposition of productivity change.

17.3.2.1 Implementation

Parametric maximum likelihood is used for estimation the model. Using the Kumb-
hakar notation let θit = γ (t)τi + vit . Then the joint distribution of the composed error
is f (θi ,τi) and since both τit and vit are i.i.d and are independent of each other, the
joint pdf is f (θi ,τi) = f (τi) · (

∏
t f (vit )) = f (τi)

∏
t f (θit − γ (t)τi).

Marginalizing over τ , one can derive the distribution of θ . The the log-likelihood
function is then defined as

L=
∑

i

lnf (θi)

and the parameters are given by the arg max(L).
Consistent point estimates of the inefficiency term can be based on a method of

moments estimator for the conditional mean of τi|θi. Since

f (τi|θi) = (2πσ 2
∗ )−1/2

exp( − 1
2σ 2∗

(τ −μ∗
i )2


( −μ∗
i /σ∗)

,τi ≤ 0,

where 
 is the distribution function for standard normal then E(τi|θi) = μ∗
i −

σ∗
φ(μ∗

i /σ∗)

(−μ∗

i /σ∗) and ̂E(τi|θi) = τ̂i. σ∗ = σvστ

(σ 2
v +στ

∑
t γ 2(t))1/2 and μ∗

i = σ 2
τ

∑
t γ (t)θit

σ 2
v +σ 2

τ

∑
t γ 2(t)

. The

best predictor of technical efficiency is given by E(exp{γ (t)τi|θi})and efficiency for
each firm by η̂i(t) = γ (t )̂τi.
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17.3.3 The Battese and Coelli Model (1992, 1995)

The production function is given by the generic model

yit = xitβ + ηi(t) + vit , (10)

where the effects are specified as

ηi(t) = −{exp[ − η(t − T)]}ui,

where vit are assumed to be a i.i.d. N(0,σ 2
v ) random variable and the uit are assumed

to follow an i.i.d. non-negative truncated N(μ,σ 2) distribution. η is a scalar and the
temporal movement of the technical efficiency effects depends on the sign of η. Time
invariant technical efficiency corresponds to η = 0. To allow for a richer temporal path
for firm efficiency effects that reflect more possibility of how firm effects change over
time, one can also specify η(t − T) as

ηt (t − T) = 1 + a(t − T) + b(t − T)2,

which permits the temporal pattern of technical efficiency effects to be convex or
concave rather than simply increasing or decreasing at a constant rate.

17.3.3.1 Implementation

The model is:

yit = xitβ + ηi(t) + vit (11)

ηi(t) = e−η(t−T)ui, (12)

where the ui’s are assumed to follow the non-negative truncated N(μ,σ 2) distribution
whose density is

fUi (ui) = exp
[− 1

2 (ui −μ)2/σ 2
]

(2π)1/2σ [1 −
(−μ/σ )]
, ui ≥ 0

and where 
 is the cumulative distribution function of the standard normal random
variable. The vit ’s are assumed i.i.d. N(0,σ 2

v ) and are independent of the ui′s. Let yi be
the (Ti × 1) vector of production level of firm i, and denote y = (y ′

1, y′
2, . . . , y′

N ). Then
the density function of yi can be easily derived from the density of εi and log-likelihood
function L(β,σ 2

v ,σ 2,μ,η; y; x) for the model is given in Battese and Coelli (1992).
The minimum-mean-squared-error predictor of the efficiency for country (firm) i

at time t is

E[exp(−uit)|εi] =
{

1 −
[ηitσ
∗
i − (μ∗

i )/σ ∗
i ]

1 −
(−μ∗
i /σ

∗
i )

}
exp

[
−ηitμ

∗
i + 1

2
η2

itσ
∗2
i

]

where μ∗
i = μσ 2

v −η′
ieiσ

2

σ 2
v +n′

iniσ 2 and σ ∗
i = σ 2σ 2

v
σ 2

v +η′
iηiσ 2 . Estimates of technical change due to

innovation would be based on the coefficient of a time trend in the regression. The
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effect of innovation as distinct from catch-up is identified by the non-linear time
effects in the linear technical efficiency term and thus the decomposition of TFP
growth into a technological change and efficiency change component is quite nat-
ural with this estimator. Cuesta (2000) generalized Battese and Coelli (1992) by
allowing each country (firm, etc.) to have its own time path of technical ineffi-
ciency. Extensions of the Battese and Coelli model that allow for technical ineffi-
ciency to be determined by a set of environmental factors that differ from those
that determine the frontier itself are given in Battese and Coelli (1995). These were
also addressed by Reifschneider and Stevenson (1991) and by Good, Roeller, and
Sickles (1995). Environmental factors that were allowed to partially determine the level
of inefficiency and productivity were introduced in Cornwell, Schmidt, and Sickles
(CSS) (1990) and in Good, Nadiri, Roeller, and Sickles (1993).

17.3.4 The Park, Sickles, and Simar (1998, 2003, 2006) Models

Park, Sickles, and Simar (PSS; 1998, 2003, 2007) considered linear stochastic fron-
tier panel models in which the distribution of country-specific technical efficiency
effects is estimated nonparametrically. They used methods developed in the statistics
literature to estimate robust standard errors for semi-nonparametric models based on
adaptive estimation techniques for semiparametric efficient estimators. They first con-
sider models in which various types of correlations exist between the effects and the
regressors (PSS 1998). These minimax-type estimators ensure that the variances of the
estimators are the smallest within the set of variances based on the class of paramet-
ric sub-models built up from the basic parametric assumptions of the model and the
use of nonparametric estimators (they utilize multi-variant kernel-based estimators)
for the remaining portion of the model specified in terms of nuisance parameters. The
nuisance parameters are the effects, the variances of the parametric disturbance terms,
and the bandwidth parameters. In PSS (2003) they extend the basic model to consider
serially correlated errors and in PSS (2006) consider dynamic panel data models. In
our discussion of this class of estimators we will only consider the most basic model set
up in PSS (1998). Details for the semiparametric efficient panel data efficiency model
with serially correlated errors or with a dynamic structure can be referred to PSS (2003,
2006). In the empirical application to estimate world productivity growth we utilize
three of the estimators discussed by PSS. PSS1 is the estimator outlined above. PSS2W
is the within version of the semiparametric efficient estimator with serially correlated
errors to control for potential misspecified dynamics while PSS2G is the corresponding
random effects version of the estimator (PSS 2003).

The basic set up of the model is again the canonical linear panel data with cross-
sectionally and time varying efficiency effects given by

yit = X ′
itβ + ηi(t) + vit ,
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where vit ’s are the statistical noise that are independently and identically distributed
with N(0,σ 2), ηi(t) are bounded above (or below for the cost frontier model). The
(ηi(t), Xi)′s are assumed to be independently and identically distributed with some
joint density h(·, ·).

PSS (1998) discuss three different cases for the dependency between the firm
effects, η, and the other regressors, X . Their case 1 assumes no specific pattern of
dependency between η and X , which leads to a semiparametric efficient estimator
similar to the fixed effects estimator of Schmidt and Sickles (1984) and its exten-
sion to time-varying efficiency models of CSS (1990). Their case 2 assumes the firm
effects are correlated with a subset of other explanatory variables, Z ∈ X . Case 3
assumes that α affects Z only through its long run changes (average movements)
Z̄ . The semiparametric efficient estimators of case 2 and 3 are analogous to those
proposed in Hausman and Taylor (1981), and extended to the stochastic frontier
literature in CSS (1990). Derivations of the semiparametric efficiency bound and
of the adaptive estimators for these many specifications are too detailed for this
chapter. The interested reader is referred to the PSS papers referenced above for
details. Once the parameters have been estimated the method utilized in CSS (1990)
can be used to estimate the technical efficiencies and their temporal changes. As
with the CSS estimator, innovation change that is shared by all countries or firms
and modeled using a time trend may be identified separately from technical effi-
ciency based on the orthogonality conditions imposed in cases 2 and 3. In case 1,
which collapses to the CSS within estimator, no such distinction can be made and,
although TFP growth can be calculated, it cannot be decomposed into innovation and
catch-up.

17.3.5 The Latent Class Models of Greene, Kumbhakar,
and Tsionas

In stochastic frontier models the production or cost functional relationship is usually
set uniformly for all countries or firms, implying that the same technology is used as
the benchmark and that relative to that benchmark countries or firms perform with
different levels of efficiency. Although other authors have questioned this assumption
and have provided estimators that address this issue in part, Orea and Kumbhakar
(2004), Tsionas and Kumbhakar (2004), Greene (2005b), were the first to address it in
such a general fashion. Their logic is clear and the arguments compelling and relate
to work on production heterogeneity by Mundlak (1961, 1978) and Griliches (1979),
among others. Countries that have access to the world technology, or firms within a
certain industry, have different sizes, innovation abilities, targeting groups, etc., and
may operate with different technologies that can take advantage of different market
niches. Imposing the same functional form in the model may misidentify differences in
the technology applied as technical inefficiency when it fact in is due to the appropriate
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use of the available technology to a different (or constrained) set of market condi-
tions. We have discussed this issue in earlier sections. Such constrained conditions are
nonetheless suboptimal to the benchmark we establish and estimate and the techni-
cal efficiency component of TFP growth remains silent on the source of the technical
inefficiency. That said, it is important to find a way to empirically parse the sources
of variation into one may regard is or is not technical inefficiency. A straightforward
way to deal with this problem is to group countries or firms into different categories by
some obvious criteria and then analyze their TFP growth separately. We do this below
in our empirical analysis of world productivity growth. In general the grouping crite-
ria can be information about certain characteristics of countries (e.g., region, level of
development, etc., or some combination of these and many other characteristics) or
firms (e.g., size, location etc.), or can be based on some statistical clustering algorithm.
Were these analyses to be done separately, then it is clear that information represented
by correlation between different groups would not be utilized. It may also be the case
that the parameters of such models can not be identified by distinct categories and thus
the suitability of the grouping criteria cannot be established empirically.

In the latent class stochastic frontier model there exist J unobserved classes in the
panel data giving rise to a specification of the production (or distance) function as:

yit = x′
itβj + ηi(t)|j.

The observed dependent variable is characterized by a conditional density function:

g(yit |xit , classj) = f (�j , yit , xit ).

The functional form f ( ·) is the same over the entire sample, while the parameter vector
�j is class-specified and contains all of the parameters of the class specific parameteri-
zation of the function. The inefficiency terms are latent class-specific and take the form
of ηi(t)|j and are assumed to distributed as half normal. The likelihood coming from
country or firm i at time period t is

P(i, t |j) = f (yit |xit ;βj ,σj ,λj) = 
(λjηi(t)|j)

(0)

1

σj
φ

(
ηi(t)|j

σj

)
,

where ηi(t)|j = yit − x′
itβj . Assuming the inefficiency terms to be i.i.d. draws over time

the conditional likelihood for country or firm i is

P(i|j) =
T∏

t=1

P(i, t |j)

and the unconditional likelihood function is

P(i) =
J∑

j=1

�(i, j)P(i|j) =
J∑

j=1

�(i, j)
T∏

t=1

P(i, t |j).
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Here �(i, j) is a prior probability that establishes the distribution of firms in different
classes. A relatively simple and noninformative prior is the uniform where �(i, j) =
�(j), for i = 1, . . . , N . In order to allow for heterogeneity in the mixing probabilities
one can adopt the multinomial logit form,

�(i, j) = exp(θ ′
i πj)∑J

m=1 exp(θ ′
i πm)

, πJ = 0.

The parametric log likelihood is

log L =
N∑

i=1

logP(i),

Although the specification outlined by Greene (2005b) assumed that inefficiency was
independent over time, the latent class model proposed by Orea and Kumbhakar
(2004) allows technical efficiency change over time by following a path given by an
exponential function reminiscent of earlier estimators by Battese and Coelli (1992)
and Kumbhakar (1990)

ηi(t)|j = γit (ηj) · ζi|j = exp(z′
itζj) · ζi|j .

where zit = (z1it , . . . , zHit )′ is a vector of time-varying variables and ζj = (ζ1j , . . . ,ζHj)′
the associated parameters. With such a changing path, the individual likelihood in their
model is defined directly over all time periods.

17.3.5.1 Implementation

The parametric log likelihood function is maximized to solve for parameter vector
�j and probability πj simultaneously. Greene (2005b) employed an Expectation-
Maximization (EM) algorithm. Alternatively, the model can also be estimated using
Bayesian methods (see Tsionas and Greene, 2003b). Explicit derivations can be found
in Greene (2005). After classifying firms into different groups, firm-specific parame-
ters can be estimated. After the parameters of the underlying production or distance
function are estimated and the time varying effects ηi(t)|j are identifed for class j
the decomposition of TFP into an innovation change component and catch-up or
technical efficiency component is complete.

17.3.6 The Kneip, Sickles, and Song (2012) Model

Here we assume a linear semiparametric model panel data model that allows for an
arbitrary pattern of technical change ηi(t) based on a factor model. The model takes
the form

yit = β0(t) +
p∑

j=1

βjxitj + ηi(t) + vit .



1

panel data and productivity measurement 531

Here the ηi(t)’s are assumed to be smooth time-varying individual effects and identifi-
ability requires that

∑
i ηi(t) = 0. β0(t) is some average function (or common factor)

shared by all of the cross-sectional units, such as countries or firms. For purposes of
developing the estimator of ηi(t) we eliminate the common factor. However, once we
have estimated the β ′

j s and the ηi(t) terms, we can recover the common factor. For pur-
poses of using this model as a vehicle for estimating TFP growth, the common factor
will identify the common innovation that changes over time, while the ηi(t) term will,
after the suitable normalization developed above for the CSS counterpart, provide us
with relative efficiency levels and thus their growth rates to allow for TFP growth to be
decomposed into its two constituent parts, innovation change and technical efficiency
change. The centered form of the model is

yit − ȳt =
p∑

j=1

βj(xitj − x̄t j) + ηi(t) + vit − _
vi,

where ȳt = 1
n

∑
i yit , x̄tj = 1

n

∑
i xitj and

_
vi = 1

n

∑
i vit . Here ηi(t) is assumed to be a

linear combination of a finite number of basis functions

ηi(t) =
L∑

r=1

θir gr(t).

This construction is more flexible and realistic than parametric methods, which
presume the change of individual effects follow some specified functional form, and
the multiplicative effects models of Lee and Schmidt (1993), Ahn, Lee, and Schmidt
(2007), Bai (2009), and Bai and Ng (2011). The model can be rewritten as

yit − ȳt =
p∑

j=1

βj(xitj − x̄tj) +
L∑

r=1

θir gr(t) + vit − _
vi.

The authors introduce a suitable standardization to identify a specific basis they use
in their model which results in a set of gr ’s that are orthogonal and θir ’s that are empiri-
cal uncorrelated. Letting η1 = (η1(1), . . . ,η1(T))′, . . . ,ηn = (ηn(1), . . . ,ηn(T))′, then the
empirical covariance matrix of η1, . . . ,ηn is �n,T = 1

n

∑
i ηiη

′
i. Let λ1 ≥ λ2 ≥ ·· · ≥ λT

be the eigenvalues of the matrix, and γ1,γ2, · · · ,γT be the corresponding eigenvectors.
Then the basis functions will be

gr(t) =
√

T · γrt for all r = 1, . . . ; t = 1, . . . , T (13)

θir = 1

T

∑
t

vi(t)gr(t) for all r = 1, . . . ; i = 1, . . . , n (14)

γr = T

n

∑
i

θ2
ir for all r = 1, . . . (15)
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And for all l = 1, 2, . . .

T∑
r=l+1

γr =
∑

i,t

(ηi(t) −
l∑

r=1

θir gr(t))2

= min
g̃1,...,g̃l

∑
i

min
ϑ̃i1,...,ϑ̃il

∑
t

(ηi(t) −
l∑

r=1

ϑir g̃r(t))2. (16)

ηi(t) ≈ ∑l
r=1 θir gr(t) will be the best l-dimensional linear estimate, and the dimen-

sion L naturally equals to rank(�n,T ). It can be shown that for selected values of L the
normalizations imply basis functions that correspond to the standard fixed effect esti-
mator, the CSS (1990) estimator and the Battese and Coelli (1992) estimator. Kneip,
Sickles, and Song (2012) provide asymptotic results for large N and large T .

17.3.6.1 Implementation

Since the ηi’s are assumed to be smooth trends, we can always find m-times con-
tinuously differentiable auxiliary functional variable νi ’s with domain [1, T] that can
interpolate the T different values of ηi. Their method first estimates β and obtains the
approximations νi by smoothing splines (Eubank 1988). This then determines the esti-
mates of the basis functions ĝr through the empirical covariance matrix �̂n,T , which
is estimated by the (η̂1, . . . , η̂n) = (ν̂1, . . . , ν̂n). The corresponding coefficients of the
basis functions will be obtained by least squares. In the last step, they update the
estimate of ηi by

∑L
r=1 θ̂ir ĝr , which is proved to be more efficient than the approxi-

mations νi. Returning to the non-centered model, the general average function β0(t)
is left unestimated. A non-parametric method similar to step 1 can be applied to get
an approximation. An alternative is to assume β0(t) also lies in the space spanned
by the set of basis functions, that is, β0(t) = ∑L

r=1 θ̄rgr(t). The coefficients can then
be estimated by a similar minimization problem as step 3 with objective function∑

t (ȳt − ∑p
j=1 β̂j x̄tj − ∑L

r=1 ϑr ĝr(t))2. The common factor β0(t) is interpreted as
the shared technological innovation component and the ηi(t) the technical efficiency
component whose growth constitute TFP growth.

17.3.7 Ahn, Lee, and Schmidt (2013)

17.3.7.1 Model

Ahn, Lee, and Schmidt (2013) generalize Ahn, Lee, and Schmidt (2007) and consider
a panel data model with multiple individual effects that also change over time:

yit = x′
itβ +

p∑
j=1

ξtjαij + εit . (17)
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They focus on large N and finite T asymptotics. They develop a consistent estimator
for the slope coefficients β when there is correlation between individual effects and the
regressors. To emphasize this feature, the model interprets ξtj as “macro shocks,”and αij

as “random coefficients” instead of “factors” and “factor loadings,”though the model
itself resembles the factor models. This model takes the form of the canonical model
considered above by other researchers as it can be written as

yit = X ′
itβ + ηi(t) + vit .

The model for individual i in matrix form is:

yi = Xiβ + ui, ui = ηi + εi = �αi + εi, (18)

where yi = (yi1, . . . , yiT )′ is the dependent variable vector, Xi = (xi1, . . . , xiT )′ is the T ×
K matrix of regressors, and β is the dimension-comformable coefficients vector. The
error term ui is composed of the random noise εi and individual effects ηi =�αi. � is a
T ×p (T > p) matrix containing p macro shocks that vary over time. The random noise
εit is usually assumed to be white noise to assure consistent estimates of coefficients in
the case of large N and small T . This model relaxes this assumption in that it allows any
kind of autocorrelation of εi and only assumes that εi is uncorrelated with regressors
xit while α might be correlated with xit . Then for identification, it is assumed there
exist instrument variables that are correlated with αij but not with εit .

17.3.7.2 Implementation

Due to the need for a particular rotation, it is not possible to separate the effects of
� and α. For identification, � is normalized such that � = (�′

1,−Ip)′ with �1 a
(T − p) × p matrix. With instruments, the GMM method proposed in Ahn et al.
(2001)is extended to incorporate multiple time-varying effects and two methods are
proposed to estimate the true number of individual effects. They first obtain consistent
estimators of β and � assuming the true number of effects p0 is known, and then esti-
mate p using their new test statistic. Detailed assumptions and discussion can be found
in the paper as well as how to extract the efficiency and innovation change measures
for productivity measures.

17.3.8 Additional Panel Data Estimators of in the Stochastic
Frontier Literature

Space limits the possibility of dealing with the many other approaches that have been
proposed to estimate the panel stochastic frontier and provide a decomposition of TFP
growth into innovation and catch-up, or technical efficiency. Additional estimators
that have been proposed for panel stochastic frontiers and that are also quite appro-
priate for general panel data problems are the Bayesian Stochastic Frontier Model (Liu,
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Sickles, and Tsionas 2013), which builds on earlier work by Van den Broeck et al. (1994)
and Tsionas (2006), the Bounded Inefficiency Model of Almanidis, Qian, and Sickles
(2013) and related models of Lee (1996), Lee and Lee (2012), and Orea and Steinbuks
(2012), and the “True” Fixed Effects Model of Greene (2005a,b). Kumbhakar, Parme-
ter, and Tsionas (2013) have recently considered a semiparametric smooth coefficient
model to estimate the TFP growth of certain production technologies that addresses
the Skewness Problem in classical SFA modeling considered by Feng, Horrace and Wu
(2012), Almanidis and Sickles (2012) and Almanidis, Qian, and Sickles (2013). Recent
work on spatial heterogeneity in SFA models has focused on new interpretations and
measurement of spillovers in substitution possibilities, returns to scale, productivity
change, and efficiency change that is spatially dimensioned instead of simply varying
over time for particular firms, industries, or countries. The Spatial Stochastic Frontier
shows great promise and has been pursued in recent work by Glass, Kenjegalieva, and
Sickles (2013 a, b) based on the original contribution by Druska and Horrace (2004).
Work on productivity measurement in the presence of spatial heterogeneity has also
recently been pursued by Mastromarco and Shin (2013), Entur and Musolesi (2013),
and Demetrescu and Homm (2013). Such spatial methods are alternatives to less struc-
tured approaches to address cross-sectional dependence in panel data models using
methods such as those developed by Pesaran (2007). Factor Models continue to be pur-
sued in the context of productivity modeling in panel data contexts and the space for
such approaches is getting quite dense as pointed out by Kneip and Sickles (2012).

17.4 Discussion on Combining Estimates
.............................................................................................................................................................................

A solution to model uncertainty is to develop a consensus estimate by weighting or
combining in some fashion estimates from various competing models. Sickles (2005)
pursued this strategy in his examination of semiparametric and nonparametric panel
frontier estimators. Burnham and Anderson (2002) provided a lucid and rather com-
plete discussion of model selection criteria. However, they point out that the model
selection exercise itself introduces uncertainty into the estimation process and any fore-
casts that result, a point also made by Hjorth (1994) and Leeb and Potscher (2005).
As one can view all models as approximations and thus subject to misspecification,
combining results from different models can be viewed as similar to constructing a
diversified portfolio in order to reduce the risk of relying on on particular stock, of in
our case, model.

Typical model selection from some encompassing supermodel can be viewed as a
special case of weighting models which assigns the entire weight on one model and
none on others. We do not pursue this approach in our empirical work below. Instead
we utilize Insights from economics and from statistics to motivate several canonical
methods to combine estimates and forecasts from a variety of potentially misspeci-
fied models. These insights are discussed in more depth in the cited works. We utilize
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approaches to weighting outcomes from different models and estimators using the eco-
nomic arguments of majority voting from the literature on social choice theory (see
Moulin 1980) as well as the contest function of Tullock (1980); insights from statis-
tics based on model averaging4 in order to assess the proper weights to construct
the weighted average; and the literature on optimal weights used in combining fore-
casts5. These studies provide the rationale for how we combine our many results into
summary measures of weighted means and variances.

17.5 Modeling World Economic Growth
with the UNIDO Data

.............................................................................................................................................................................

The proper measurement of nations’ productivity growth is essential to understand
current and future trends in world income levels, growth in per/capita income, polit-
ical stability, and international trade flows. In measuring such important economic
statistics it is also essential that a method that is robust to misspecification error is used.
This section of the chapter addresses the robustification of productivity growth mea-
surement by utilizing the various economic theories explaining productivity growth
as well as various estimators consistent with those particular theories. We utilize the
World Productivity Database from the UNIDO to analyze productivity during the
period 1970–2000 and combine and consolidate the empirical findings from a num-
ber of the statistical treatments and various economic models of economic growth and
productivity that we have discussed above.

We address the heterogeneity problem in part by grouping countries according to
their geographical and, for the OECD countries, their development characteristics as
well as by the use of various panel data techniques. We construct consensus estimates of
world productivity TFP growth as well as confidence intervals and find that, compared
to efficiency catch-up, innovation plays a much more important factor in generating
TFP growth at this level of country aggregation.

17.5.1 UNIDO Data Description

The World Productivity Database (WPD) provides information on measures of the
level and growth of TFP based on 12 different empirical methods across 112 coun-
tries over the period 1960–2000. Those interested in the data and variable construction
should visit the UNIDO website http://www.unido.org/statistics.html. In our analysis
we utilize two factor (capital and labor) aggregate production function determining a
country’s level of aggregate output.
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17.5.2 Empirical Findings

Comparisons of productivity changes are made among Asian, Latin American, and
OECD regions. The following methods are used to estimate TFP change and its decom-
position into technological and technical efficiency change when possible: CSSG,
EIV, BC, PSS1, PSS2W, PSS2G, two fixed-effect estimators and two random-effect
estimators.

There are 10 different methods to estimate TFP growth and 6 different meth-
ods to estimate the decomposition of TFP growth into innovation and technical
efficiency change. Data limitations forced us to use only three of the four possi-
ble capital measures, K06, Keff, and Ks along with the two labor measures, LF
and EMP as well as data only from 1970 to 2000. The results are based on 60
different sets of estimates. The panel estimators are used to estimate productivity
growth and its decomposition methodologies for countries in Asia (13 countries),
Latin America (12 countries), and the OECD (24 countries). The specific coun-
tries in Asia are: Bangladesh, China, Hong Kong (SAR of China), India, Indone-
sia, Israel, Malaysia, Pakistan, Philippines, Singapore, Sri Lanka, Taiwan (Province
of China), and Thailand. The countries in Latin America are: Argentina, Brazil,
Chile, Colombia, Ecuador, Mexico, Guatemala, Jamaica, Panama, Peru, Trinidad
and Tobago, and Venezuela. Finally, the countries in the OECD are: Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Greece, Iceland, Ireland,
Italy, Japan, Republic of Korea, Luxembourg, Netherlands, New Zealand, Nor-
way, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United
States.

Our approach considers a Cobb-Douglas production function with two explana-
tory variables: Capital and Labor. The various measures we adopt to measure the two
inputs are largely based on data limitations. K06 and K013 utilize a perpetual inven-
tory method to measure capital services and differ based on differing but constant
depreciation rates (6% and 13.3%, respectively, which correspond to about 12 and 6
year asset lives). A different way of measuring capital focuses on the profile of capital
productivity and utilizes a time-varying depreciation rate. As the asset ages, its capital
declines at an increasing rate. This leads to Keff. Labor input measurement involves two
kinds of labor utilization rates for which labor force (LF) can be adjusted, variations
in numbers employed and in hours worked. Again, for reasons of data limitations we
use the second adjustment and also consider employment (EMP). Thus each region
has 6 combinations of inputs. In addition to the 6 we have discussed above, we also
include four simple panel data estimators (FIX1 is a fixed effect model including t as
explanatory variable, FIX2 is a fixed effect model with t and t2 as explanatory vari-
ables. RND1 is a random effect model including t as explanatory variable, RND2 is a
random effect model with t and t2 as explanatory variables). The estimation results
(Table 1) are too numerous to include in this chapter and are available on the Sick-
les website at http://rsickles.blogs.rice.edu/files/2014/04/Figures-and-Tables.pdf as are
summary results in Figures 1–8 referred to below.
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We decompose TFP into technical efficiency change and innovation or technical
change. Technical efficiency for each country is defined as the radial distance from
the (possibly shifting) production frontier in a given period (Debreu 1951; Farrell
1957). The estimation methods for this component have been included in all stan-
dard stochastic frontier literature. Results are presented in Figure 1 for each of the
three regions. We summarize the outcomes of technical efficiency by three differ-
ent averages. The first two methods are simple average and geometric average. Since
countries have different GDP sizes, instead of simply averaging in each period, it
is natural to weigh the results by each country’s GDP. The traditional fixed effect
model and the random effect model do not estimate technical efficiency, there-
fore, there are 6 models for technical efficiency change in each region. From the
figures, it is apparent that Asian countries’ technical efficiency improvements have
been on a decreasing trend since the late 1970s. Latin American countries’ technical
efficiency changes have been very small in magnitude. OECD countries’ techni-
cal efficiency improvements increased until the mid- to late 1980s then started to
decline. In the Asian countries, GDP weighted averages are somewhat larger than
simple averages, which indicates that larger GDP countries (particularly China) have
more technical improvements than smaller GDP countries. For OECD countries we
have the opposite observation, which indicates smaller GDP countries on average
have more technical efficiency improvements than larger GDP countries (such as the
United States).

Technical innovation change is measured as the shift of the frontier between peri-
ods, or the time derivative of each model. In our study, we assume a constant rate of
technological innovation, thus innovational progress is the coefficient of time variable.
We have 60 estimates for each region as presented in Figure 2. Asian countries have the
largest innovation changes among all regions on average, at around 1.56% per year.
Latin American countries display very small magnitudes of innovation change. On
average, the region has 0.3% increase of progress per year. OECD countries’ average
innovation improvement is about 0.73% per year.

TFP change is the sum of technical efficiency change and technical innovation
change. As seen in Figure 3, Asian countries have the highest TFP improvements
through the years, mainly because the innovation progress outperforms the declin-
ing trend of technical efficiency. Latin American countries have almost nonexistent
improvements in productivity in most years. They even have negative TFP growth
rates in a few years at the beginning and end of the sample period. OECD coun-
tries’ TFP performances are between those of Asia and Latin America, although the
trend has been decreasing throughout the periods. The overall TFP growth between
1972 and 2000 is 61.2% for Asian countries, 24.7% for OECD countries, and 7.46%
for Latin American countries. We also used three averaging approaches to aggre-
gate three regions to demonstrate the global trends of TFP growth, which are shown
in Figure 4. These results appear to be comparable to other recent international
studies based on index number approaches (Badunenko, Henderson, and Russell
2013).
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Next we report the Solow Residual (hereinafter SR). The SR results based on
GDP weighted growth rates across all the methods and combinations are pre-
sented in Figure 6. The average of SR is 0.78% for Asian countries, −0.07%
for Latin American, countries and 0.37% for OECD countries. One of the
major shortcomings of SR and growth accounting in general as pointed out by
Chen (1997) is that the SR cannot differentiate disembodied technological change
(similar to our definition of innovational progress) from embodied technological
change (similar to our definition of efficiency change). Failure to separate different
effects in addition to the input measurement problems makes TFP estimates using
growth accounting somewhat difficult to interpret and decompose. We can decom-
pose TFP into efficiency catch-up and innovation and provide a solution to this
problem.

The last results we wish to discuss are the combined estimates (Figure 8). As dis-
cussed above, the motivation of employing a model averaging exercise is to obtain
some consensus results based on all the competing models and data at hand. The sim-
plest averaging is to take the arithmetic mean of all estimates, which implicitly assumes
the equal importance of all models. The annual changes of technical efficiency, tech-
nical innovation, and TFP are −0.07%, 1.63%, and 1.56% for Asian countries, 0.01%,
0.24%, and 0.25% for Latin American countries, and −0.05%, 0.84% and 0.79% for
OECD countries. The most crucial component of all “combining estimates methods”
such as model averaging is how the weights are assigned. Besides simple averaging, we
use four statistical criteria to assign weights. First, we simply assign weights accord-
ing to R-square of each model. Since R-squares in our estimations are all close to each
other, weighted results are very close to simple averaging results: technical efficiency,
technical innovation, and TFP changes are −0.07%, 1.62%, and 1.55% for Asian coun-
tries, 0.02%, 0.22%, and 0.23% for Latin American countries, and −0.05%, 0.84%, and
0.79% for OECD countries. The second way is to set the weights as reciprocals of resid-
ual sum of squares (hereinafter RSS). RSS is a simple measure of how much the data
are not explained by a particular model. Annual technical efficiency, technical inno-
vation, and TFPchanges are −0.04%, 1.52%, and 1.47% for Asia countries, 0.01%,
0.19%, and 0.20% for Latin American countries, and −0.04%, 0.75%, and 0.71% for
OECD countries. The third method is to choose weights according to AIC. Since all
the models in our study use the same variables on the same data set, we would have
a simple expression of AIC, which only depends on RSS. So the results of the third
method should be close to the second one. The annual technical efficiency, techni-
cal innovation, and TFP changes are −0.08%, 1.59%, and 1.52% for Asian countries,
0.02%, 0.18%, and 0.21% for Latin American countries, and −0.06%, 0.81%, and
0.75% for OECD countries. The last method is to use BIC as weights. BIC depends
not only on RSS but also on the estimated variance of the error term. The annual
technical efficiency, technical innovation, and TFP changes are −0.12%, 1.70% and
1.58% for Asian Countries, 0.01%, 0.20%, and 0.20% for Latin American Countries,
and −0.15%, 0.88%, and 0.73% for OECD countries. As shown in the Figure 8, com-
bined estimates of all criteria are rather similar. All of the methods we utilize tell us that
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the during the 29 years span, the improvements of Asian countries and OECD coun-
tries’ technical efficiencies are deteriorating. Even though Latin America countries have
improved technical efficiency (very small in magnitude), because of its slower innova-
tional progress, their TFP improvement has lagged behind not only Asian countries
but also OECD countries. For inference purpose, the variances of combined estimates
can also be calculated (Burnham et al. 2002; Huang and Lai 2012). Our results indicate
significant positive TFP growth in Asian and the OECD while TFP growth in Latin
America is not significantly different than zero.6

17.6 Conclusions and Suggestions for
Future Research

.............................................................................................................................................................................

In this chapter, we have focused on the role that panel data econometrics plays in
formulating and estimating the most important contributors to productivity growth:
innovation and catch-up. We have explained different theories on economic growth
and productivity measurement and the econometric specifications they imply. Various
index numbers and regression-based approaches to measuring productivity growth
and its innovation and catch-up components have been discussed in detail. We have
also discussed methods that can be used to combine results from the many different
perspectives on how economic growth is modeled and estimated, focusing on meth-
ods used in model averaging and in the combination of forecasts. As this chapter is
to provide the reader with an applied perspective, we have utilized these various panel
data and model averaging methods in an analysis of world productivity growth using
the World Productivity Database gathered by the United Nations Industrial Develop-
ment Organization (UNIDO). We study Asian, Latin American, and OECD countries
between 1970 and 2000 and find that Asian countries had the fastest TFP growth
among the three regions, due largely to relatively rapid technical innovation. OECD
countries made more moderate gains in TFP growth, again due largely to technical
innovation as opposed to catch-up. Latin American countries overall had the slowest
growth rate in TFP, although they had consistently managed positive improvements in
both technical and technological efficiencies.

There are a number of research topics that we were not able to cover in this chapter.
Allocative distortions as opposed to the radial technical inefficiency we have posited
in our panel studies was not addressed, nor was the nascent literature on developing
coverage intervals for relative efficiency levels and rankings of countries or firms. The
models are of course linear and thus structural dynamic models that incorporate inef-
ficiency as well as models that address, at a firm or industry level, the impact that
deviations from neoclassical assumptions of perfectly coordinated allocations with no
technical (or cost) inefficiency, may have on firm or industry level productivity has not
been examined. These are areas for future research and we encourage those interested



1

540 robin c. sickles, jiaqi hao and chenjun shang

in the intersection of more traditional productivity research, new productivity research
that addresses imperfect decision making, and panel methods to pursue these topics.
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Notes

1. For a survey of some of Jorgenson’s voluminous work on productivity, see Dale W.
Jorgenson’s Productivity, Vol. 1 and 2 1995), Vol. 3 (2005).

2. For Griliches’s work on this subject, the reader should consult the working papers of the
NBER Productivity Program over the years before his untimely death in 1999, and over
the years since. Mairesse (2003) contains a thoughtful overview of his many contributions
to the field of productivity measurement.

3. The NBER Productivity, Innovation, and Entrepreneurship Program was led originally
by Griliches who was followed by Ernst Berndt and is currently co-directed by Nicholas
Bloom and Josh Lerner.

4. See, for example, Leeb and Potscher (2005), Buckland et al. (1997), Akaike (1973),
Mallows (1973), Schwarz (1978), Hansen (2007), Carroll et al. (2006), Burnham and
Anderson (2002), Claeskens and Hjort (2008), Raftery et al. (1997), Hoeting et al. (1999),
and Koop et al. (2007), Timmermann (2006).

5. Se, for example, Newbold and Harvey (2002), Bates and Granger (1969), Diebold and
Lopez (1996), Lahiri, et al. (2011), Clemen (1989), Timmermann (2006), Lahiri and
Shaeng (2010), Zarnowitz and Lambros (1987), Lahiri and Sheng (2010), Lahiri, Peng and
Sheng. (2010), Davies and Lahiri (1995), and Lahiri, Teighland, and Zaprovski (1988).

6. A more detailed discussion of the Asian experience is discussed in Sickles, Hao, and Sheng
(2014).
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