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Abstract

Emissions trading mechanisms have been proposed, and in some cases implemented, as a tool

to reduce pollution. We argue that emission-trading mechanisms share some similarities with

monetary mechanisms. Both attempt to implement desirable allocations under various fric-

tions, including risk and private information. In addition, implementation relies on the issue

and trading of objects whose value is at least partially determined by expectations, namely

money and permits, respectively. We use insights from dynamic mechanism design in monetary

economics to derive properties of dynamic emissions trading mechanisms. At the optimum, the

price of permits increases over time. E¢ cient tax policies are state-contingent, and there is an

equivalence between such state-contingent taxes and emissions trading. Restrictions resulting

from the money-like feature of permits can break this equivalence when there is endogenous

progress in clean technologies. These restrictions must be taken into consideration in actual

policy implementation.

�First version: September 2010. We thank Peter Hartley and participants at the Environmental Economics
and Law Conference at the University of Bern, the CESifo Area Conference on Energy and Climate Economics
2011, and Rice University for comments.
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1 Introduction

Under an emissions trading system (also known as cap-and-trade), producers must acquire per-

mits equal to the amount of their emissions in a given period. These permits are then remitted

to the issuing institution.1 So far, the results from actual implementations of emissions trading

have been mixed, and some policy-makers have argued that taxes would be more e¤ective in

reducing emissions. Similar criticisms have also appeared in related academic investigations.

In a highly publicized recent study, Clò and Vendramin (2012) criticized features of the ETS

that have led to low prices for permits. They also point out shortcomings, speci�cally in regard

to the ability of emissions trading to induce investment in new technologies. They instead

advocate a tax as a more e¤ective non-distortionary instrument leading to price stability and

increased clean investments.

Our work is motivated by the observation that emission-trading mechanisms resemble mon-

etary mechanisms in at least two ways. First, both attempt to implement desirable allocations

under various frictions, including risk and private information. Second, in both cases imple-

mentation relies on the issue and trading of objects whose value is at least partially determined

by expectations, namely (�at) money and permits, respectively.2 One important aspect cap-

tured by our model is that individual �rms have some private information about their need to

engage in high emission-intensity activities. As �rms are heterogenous regarding their emission-

intensity needs, they must be provided with the appropriate incentives in order to e¢ ciently

adjust their production levels. We use insights from dynamic mechanism design in monetary

economics to derive properties of optimal dynamic emissions trading mechanisms.3 We �nd

that a state-contingent tax system can do at least as well as a cap-and-trade system in most

cases, and there is a sense in which it can dominate it when there is endogenous clean techno-

logy adoption. More generally, we argue that policy-makers should think about permit-issue in

1One of the �rst such systems was established in the US in 1990 trough the Clean Air Act in order to reduce
sulfur dioxide emissions. As a follow-up to the Kyoto protocol, EU countries adopted the so called EU Emission
Trading System (ETS) in 2005 in connection to a reduction in carbon emissions.

2Of course, a �central permit issuer,� an authority similar to a central bank, is not yet in existence. One
implication of our analysis is to point out the need for such an authority to be established.

3For related applications of dynamic mechanism design to optimal taxation and to monetary theory see, for
example, Golosov, Kocherlakota, and Tsyvinski (2003) and Wallace (2012).
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a manner similar to that used by central bankers. We discuss the determination of the optimal

permit-issue policy and �nd that, at the optimum, the price of permits must increase over

time. In the absence of aggregate risk, there is no role for �banking;� i.e., the optimum can

be supported even if the permits expire at the end of the speci�ed period of time. When �rms

can choose the level of technological progress in green technologies, emissions trading might

not be able to implement the optimal allocation. This is because, if there is a high fraction

of �dirty �rms�in the economy, emissions trading either makes technology adoption by these

�rms too slow, or it must distort production levels relative to the �rst best. Interestingly, we

demonstrate that �scal policies do not su¤er from this drawback.4

Requate (2005) surveys the large existing literature on instrument choice and innovation in

abatement technologies. The similarity between emissions permits and money is mentioned in

Lackner, Wilson, and Ziock (2001). However, to the best of our knowledge, ours is the �rst

paper that explores the implications of formalizing this insight. Blyth, Bradley, Bunn, Clarke,

Wilson, and Yang (2007) investigate how environmental policy uncertainty a¤ects investment

in low-emission technologies in the power-generation sector. In their model, �rms can choose

from di¤erent irreversible investments. They �nd that price uncertainty decreases clean invest-

ments. Li and Shi (2010) use a static general equilibrium model to compare regulatory emission

standards and emission taxes as alternative tools for controlling emissions in a monopolistically

competitive industry with heterogenous �rms. They �nd that an emissions standard results in

higher welfare than taxes if and only if productivity dispersion among �rms is small and dirty

�rms enjoy a high degree of monopoly power. Chen and Tseng (2011) �nd that investment

can be used to hedge against price risk, and it increases with uncertainty. In all these models

the price of permits is treated as exogenous. Colla, Germain, and Van Steenberghe (2012)

endogenize the price of the permits and study optimal policy in the presence of speculators.

The connection between environmental policy and business cycles is discussed in Heutel (2012).

Finally, in a recent working paper, Albrizio and Silva (2012) introduce uncertainty over the exo-

genous policy rule, as well as the possibility of reversible and irreversible investments by �rms.

4La¤ont and Tirole (1996) derive a similar result where markets fail to deliver the e¢ cient outcome in a
two-period model where pollution innovation is endogenous.
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In an in�uential paper, Weitzman (1974) studied price versus quantity-targeting policies in the

presence of uncertainty and concluded that their e¤ectiveness depends on the relative elasticit-

ies of supply and demand. However, Weitzman did not consider state-contingent policies. In

our model, state-contingent taxes are an important tool towards implementing e¢ cient levels

of output and emissions.

The paper is organized as follows. Section 2 describes the baseline model, while Section 3

studies taxation and emissions trading in a model with technological change. A brief conclusion

follows. Most proofs and an extension to include a futures market can be found in the Appendix.

2 The Model

Time is denoted by t = 0; 1; 2; :::. The economy is populated by a [0; 1]-continuum of �rms and

a [0; 1]-continuum of workers. Firms and workers discount the future at a rate � = 1=(1 + r),

where r is the risk free rate. There are two goods: labor and a (numeraire) consumption good.

Each �rm produces the numeraire good using labor. Workers supply labor to the �rm and

consume the numeraire good. Using q units of labor, each �rm can produce f (q) units of

the numeraire good. We assume that f is a smooth, strictly increasing, and strictly concave

function. Production is costly for the society, as each operating �rm creates harmful emissions.

When the level of overall emissions is E, the utility of workers from consuming c units of the

numeraire good and working q hours is U (c; q; E) = u (c)� q � E.5 For simplicity, we assume

that there is no storage across periods.

We think of the emission-intensity of a �rm�s operations as being subject to random shocks,

for example, due to a need to use energy for transportation, or for cooling or heating due

to weather conditions, which are inherently random. More precisely, we assume that in each

period, each �rm receives a shock, �, which determines the degree of emissions generated by

its production activity. At time t, the amount of emissions generated by a �rm that received

5Assuming that the negative externality is generated by the �ow of emissions makes our analysis readily
applicable in the context of conventional pollutants such as SOx , NOx , Mercury, or particulates. As is well
known, the stock of accumulated emissions is the relevant variable when one considers externalities related to
CO2 .
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shock � and that uses q units of labor is given by �f(q). For simplicity, we assume that the ��s

are iid across time and across �rms. We denote the cumulative distribution of � as G (�), and

we assume that its support is the interval
�
0; ��
�
.6 In order to capture the fact that �rms have

more information than the governing authority about their need to use high emission-intensity,

we assume that these shocks are private information. This is a relevant and novel feature of our

analysis, as it implies that e¢ cient policies need to �elicit information�about the realization

of these shocks.

Throughout the paper, we study conditions under which the full-information �rst-best al-

location, hence forth called the �e¢ cient allocation,�is supportable. Thus, we will follow the

following steps. First, we will characterize the full-information �rst-best arrangement under

certain assumptions on the underlying economic environment. Then we investigate under what

conditions various policies, such as taxation, or trading in permits, can support the �rst-best.

Of course, in order to be consistent with the private information friction, the policies themselves

are not permitted to depend on the true value of the ��s.7

While all producing �rms create pollution, they can also reduce their emissions at some

cost. More precisely, given �, we assume that each �rm can reduce its e¤ective emissions to an

amount y by incurring the cost h (�q � y), where h (�) : R+ ! R+ is the same convex function

for all �rms, with h (0) = 0, and h0 (0) = 0. We �rst study our economy in the absence of

emissions control, or any other policy. In this case, �rms maximize their pro�ts without being

concerned about their emissions. Since �rms only di¤er in their degree of emissions, they behave

homogeneously and they maximize their period-by-period pro�t. Thus, �rms in each period t

hire q units of labor at market wage w in order to solve

� = max
q
f (q)� wq (1)

6We make these simplifying assumptions for tractability. Assuming that emissions are proportional to the
amount of input employed by the �rm simpli�es the algebra, but the results would not change if emissions were
assumed to be proportional to output. Introducing correlated shocks could allow us to investigate business cycle
considerations as in Heutel (2012). However, as is well known, dynamic models with private information and
serially correlated shocks are not analytically tractable. This is an important avenue for future research.

7When there is no aggregate risk, policies can depend on the aggregate �.
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The optimal production satis�es

f 0 (q) = w (2)

and overall emissions, E, are given by E = q
R
�dG (�). Taking E as given, consumers maximize

their utility subject to their budget constraint. Since the numeraire good is not storable and

consumers are homogeneous, there is no scope for savings. Consumers solve:

max
c;q

u (c)� q � E

s:t: c � wq + � (3)

where � is the �rm�s pro�t and E is the level of total emissions. The �rst order conditions

imply

wu0 (c) = 1 (4)

Finally, market clearing gives

c = f (q) (5)

Combining (2) with (4) and (5) we obtain

f 0 (q)u0 (f (q)) = 1 (6)

We denote by �q the scale of operation that solves (6). The welfare, W , in this economy is then

given by

(1� �)W = u (f (�q))� �q
�
1 +

Z
�dG (�)

�
(7)

Contrary to private �rms, a social planner must take emissions into account when solving for

the e¢ cient outcome. It is easy to see that, since �rms vary in their degree of emissions, the

�rst-best would induce di¤erent production levels across di¤erent �rms:

max
q(�);0�y(�)��q(�)

u (c)�
Z
q (�) + y (�) dG (�)

s:t: c =

Z
f (q (�))� h (�q � y (�)) dG (�) (8)
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We denote the e¢ cient production scale by q� (�) and the e¢ cient level of emissions by y� (�).

The schedule (q�; y�) satis�es the following �rst order conditions for all �:

[f 0 (q� (�))� �h0 (�q� (�)� y� (�))]u0 (c�) + ��� = 1 (9)

h0 (�q� (�)� y� (�))u0 (c�)� �� + �0 = 1 (10)

where �� is the Lagrange multiplier on y � �q (�), and �0 is the multiplier on y � 0. In that

case, consumption c� is given by (8).

Clearly, as h0 (0) = 0, it is e¢ cient for all �rms to reduce emissions by a small amount.

Lemma 1 (a) y (�) < �q� (�), for all � such that q� (�) > 0; (b) Assume �f 00 (q) q=f 0 (q) � 1,

for all q. Then @y� (�) =@� > 0 and there is a ~� > 0 such that y (�) = 0 for all � < ~�. Also,

�q� (�)� y� (�) is constant for all � � ~�.

Thus, all active �rms with q (�) > 0 must reduce their emissions at the optimum. Our

assumptions also imply that, below a threshold factor, e¢ ciency requires that �rms reduce

their emissions to zero. Above this threshold the optimal ex-post emissions are positive and

proportional to the ex-ante emissions. The reason why y (�) = 0, for all � < ~� is simple.

Our speci�cation implies that the marginal bene�t of reducing emissions is the same regardless

whether the reduction comes from a polluting or a non-polluting �rm. The cost of emissions

reduction (in terms of the loss of consumption) is small if �rms are already relatively clean. This

is true even if a �rm eliminates its emissions entirely, as h0 (�q� (�)) converges to zero when � is

small. Hence, the optimal total emissions level is given by E� =
R
y� (�) dG (�). Interestingly,

the e¢ cient allocation dictates that some �rms reduce their emissions, by both reducing their

production scale and by cleaning their act. Of course, in the absence of taxes or other emission

control policies, all �rms operate at the same scale and none becomes cleaner.

For later reference, it is instructive to consider the following thought experiment. Consider

two economies which are identical except that one is subject to a �-distribution G0, while

the other is subject to distribution G1, where
R
�dG1 (�) <

R
�dG0 (�). In words, �rms are
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on average cleaner in the economy under G1. Comparing the e¢ cient allocations in the two

economies gives us the following.

Lemma 2 The optimal allocations are such that ~�1 > ~�0. For all � > ~�1, q�1 (�) < q
�
0 (�) and

y�1 (�) < y
�
0 (�).

Typically, e¢ ciency will require a reduction in emissions from their level under laissez-faire.

One possible tool towards accomplishing this involves imposing a tax. Another possibility

involves imposing controls over emissions, together with a market for emissions permits, so

that �rms which pollute most internalize the cost of their emissions. We �rst consider an

economy where �rms participate in a market for permits.

This market operates as follows. If a �rm produces q units of goods, and given its emission

shock is �, it will need to accumulate �q units of emission permits. Alternatively, a �rm might

invest in order to reduce its pollution to ex-post emission level y (�) � �q and then accumulate

y (�) units of permits. The permits are then remitted once production takes place. There is

a market where �rms can trade permits. The (equilibrium) price of permits in terms of the

numeraire is denoted by �. The sequence of events for the producing �rms is as follows:

1. Receive shock � and plan to produce q.

2. Reduce emissions to y (�) � �q.

3. Produce and enjoy pro�t f (q)� wq � h (�q � y (�)).

4. Adjust permits in the market and remit y (�) permits.

5. Pro�ts, if any, are redistributed to shareholders.

6. Begin the next period.

We assume that the total stock of emission permits in this economy is M and we de�ne

the �rm�s problem recursively. A �rm�s individual holdings of permits are denoted by m. We
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denote the value function of a �rm entering the market with m permits and a shock � by

V (m; �). This value is de�ned by

V (m; �) = max
q;y;m+

f (q)� wq � h (�q � y) + � (m� y �m+) + �E�V (m+ + T ; �)

s:t: 0 � y � �q (11)

where T is a transfer of permits by the issuing authority. As we mentioned before, T cannot

depend on the individual ��s, as they are assumed to be private information. When the �rm

enters the market for permits, the value of its portfolio is �m. The �rm then has to remit y

permits (with value �y) and decides on how many permits to carry over to the next period,

m+. As a consequence, the �rm�s pro�t changes by the amount � (m� y �m+). GivenM , the

market clearing conditions for permits and goods are

Z
y (�) +m+ (�) dG (�) = M (12)Z

f (q (�))� h (�q (�)� y) dG (�) = c (13)

The law of motion for the stock of permits is

M+ =M �
Z
y (�) dG (�) + T (14)

Given a policy fTtg, an equilibrium is a list of prices, f�tg, a list of quantities and emissions,

fct; qt (�) ; yt (�)g, and trading decisions, fmt (�)g, such that, given prices, the decision variables

solve the �rms�and the consumers�problems and markets clear. An equilibrium is stationary

whenever the list of quantities and emissions is time independent; i.e., if fct; qt (�) ; yt (�)g =

fc; q (�) ; y (�)g, for all t. We �rst solve the �rm�s problem. The �rst order conditions give

f 0 (q)� �h0 (�q � y) = w � ���� (�) (15)

h0 (�q � y)� �� ��� (�) + ��0 (�) = 0 (16)

�E�Vm (m+ + T ; �) � � = if m+ > 0 (17)
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where ��� (�), ��0 (�) are the multipliers on the �rm�s constraints. Notice that, as there is no

persistence, all �rms will exit the market for permits with the same amount of permits for the

next period. The envelope condition gives

Vm (m; �) = � (18)

and using this expression in (17) we obtain that �E��+ � �, with equality if �rms carry permits

from one period to the next. As �+ does not depend on the i.i.d. idiosyncratic shock �, this

gives us

��+ � � ( = if m+ > 0) (19)

In words, �rms are willing to �bank� permits, provided that their appropriately discounted

future price equals today�s spot price. If today�s spot price is higher, then �rms prefer to buy

their permits tomorrow, and no permits are held across periods. This will be the case if the

issuing authority is supplying enough permits in the market tomorrow. However, there is no

equilibrium if today�s spot price is lower, as �rms will try to purchase an in�nite amount of

permits today to resell in tomorrow�s market.

Like before, the worker�s decision is given by (4) and, using market clearing, we obtain the

following expression for the wage.

wu0
�Z

f (q (�))� h (�q (�)� y (�)) dG (�)
�
= 1: (20)

To solve for y (�), �rst notice that all �rms will reduce their ex-post emissions whenever permits

are costly to acquire. In addition, the following Lemma states that, in that case, relatively clean

�rms do not create any ex-post emissions. The more costly permits are, the more �rms choose

not to pollute ex-post. In addition, the choice of production level in equilibrium does not

depend on the price of permits, but only on the realized marginal cost of emissions. Formally,

we have the following.

Lemma 3 (a) y (�) < �q, for all �, whenever � > 0. (b) Suppose � > 0. Then there is
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�� (�) > 0 such that for all � � �� (�), we have that y (�) = 0. The quantity produced, q (�; w), is

decreasing in � and w. In addition, ��0 (�) > 0.

One e¤ect of general equilibrium analysis is worth noting. The solution q (�) to (15) does

not necessarily coincide with the e¢ cient level q� (�). Indeed, notice that if a positive measure

of �rms do not follow the social planner�s production plan, the wage, given by (20), is distorted

and so is the decision of �rms with y (�) = 0.

For relatively high-polluting �rms, we obtain the following characterization. Dirtier �rms

reduce emissions by the same amount; i.e., the di¤erence between ex-ante and ex-post emissions

is the same. Dirtier �rms have higher ex-post emissions, but ex-post emissions decline as permits

become more expensive to acquire. The production of dirtier �rms is declining in the wage,

their degree of dirtiness, �, and in the price of permits. Interestingly, the higher the price

of permits, the lower the wage. Since permits are more costly to acquire, more �rms decide

to spend resources to reduce their ex-ante emissions. Those �rms who still emit ex-post also

reduce their production scale. Therefore, they do not employ as much labor as when the price

of permits is low. As a result, the wage has to fall. We thus have the following.

Lemma 4 (a) Suppose � > 0. Then, for all � > �� (�), we have that y (�; �) and q (�; �; w) are

such that 0 < y < �q, �q � y is a constant function of �. (b) w0 (�) < 0.

The equilibrium price level is a function of the policy on permit issue, T 2 R. As expected,

if there is a high volume of permits in circulation, they have no market value. Notice that �rms

receive a transfer of new permits, T , in each period, and they are not forced to carry permits

from one period to the next. One way to achieve the e¢ cient level of production, q� (�), is to

set M and T such that M = T =
R
y� (�) dG (�) = E�, so that the stock of permits is just

su¢ cient to cover the e¢ cient amount of emissions, E�. In this case, the unique equilibrium

price, �; is � = 1=u0 (c�), and m+ = 0, as ��+ < �. Thus, there is no banking of permits. In a

stationary economy, where the distribution of emissions is the same in each period, this implies

that the stock of permits should be set at E�. This discussion is summarized in the following.
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Proposition 5 (a) Suppose T � �q
R
�dG (�). Then � = 0 and q (�) = �q, for all �. (b) The

equilibrium with permits is e¢ cient if M = T = E� for all t. The banking of permits is not

necessary for e¢ ciency.

Proof. (a) Since T � �q
R
�dG (�), we have that M � �q

R
�dG (�) in all periods. We �rst

guess that m+ = 0 and show that this is the only outcome consistent with equilibrium. Denote

by y (�; �), the choice of emissions by a �rm with shock �, given that the price of permits is

�. From the market clearing condition for permits (12), using m+ = 0, we have that M =R
y (�; �) dG (�). We have shown that emissions y (�; �) are a decreasing function of �, for all

�. Thus, y (�; �) � y (�; 0) = ��q. But since M � �q
R
�dG (�), the equality M =

R
y (�; �) dG (�)

cannot hold. Hence, the only equilibrium is when � = 0 and q (�) = �q. (19) then implies that

�+ = 0, thus, m+ = 0.

(b) Using (108) and the fact that �� (�) = 0, for all �, the �rm�s �rst order condition can

be re-arranged as

[f 0 (q)� �h0 (�q � y)]u0 (c) = 1 (21)

h0 (�q � y) = � [1� �0 (�)] (22)

Setting M = E� the equilibrium is y = y� (�), q = q� (�), and � satis�es �u0 (c�) = 1. Indeed,

given this �, we can de�ne �0 (�) = �0, where �0 is the multiplier in (10). Then the �rm�s FOC

and the planner�s FOC coincide. Therefore, M = E� implements the e¢ cient allocation.8

Next, we investigate the implications of taxing emissions. Here we assume that, while the

government does not observe �, ex post emissions, y (�), are veri�able, so the government can

impose a tax, � , on emissions once production takes place. For simplicity, we assume the tax

schedule is history-independent, so that � t (ejht) = � t+1 (ejht+1), where ht is the history of

total emissions, e, up to and including date t � 1. The tax proceeds are then distributed to

consumers as a lump-sum transfer. At the start of a period, a �rm which received shock �

8In the Appendix we show that the structure of the equilibrium does not change if the issuing authority sells
permits instead of simply distributing them as transfers. These two methods are essentially the same for our
purposes.
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solves the following:

max
q;y

f (q)� wq � h (�q � y)� � (y)

s:t: 0 � y � �q (23)

The �rst order conditions are

f 0 (q)� w � �h0 (�q � y) = 0

h0 (�q � y)� � 0 (y) + ~�0 � ~�� = 0 (24)

The planner�s �rst order conditions are

[f 0 (q (�))� �h0 (�q � y)]u0 (c�) = 1 (25)

h0 (�q � y (�))u0 (c�) + �0 � �� = 1 (26)

It is then easy to see that the tax schedule � (e) = e
u0(c�) implements the e¢ cient allocation.

Thus, taxes can be an e¤ective way to implement the �rst-best.

So far we have assumed that there is no aggregate risk. As a result, the optimal level of

emissions and consumption are known. However, our results generalize to the case where the

function G is random. In that case, c� will be a function of G, which is not observable. Yet,

both cap and trade and a state-contingent tax can support the e¢ cient levels of consumption

and emissions in our economy.

As an example, consider the case where emissions are drawn from a new distribution G1

instead of the initial distribution G0, where
R
�dG1 (�) <

R
�dG0 (�). In words, �rms are on

average cleaner and, as a result, E� decreases, from E�0 to E
�
1 < E

�
0 . Clearly, any tax system

which does not depend on any aggregate variable will not achieve the �rst best. Let us, however,

consider a tax system that is measurable with respect the wage level, w, which is observable at

the time of production. Then a �rm emitting y has to pay tax � (e;w). Given Gi, let c�i be the

planner�s solution for consumption and wi such that wiu0 (c�i ) = 1. Then we can de�ne the tax
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schedule � (e;w) as follows:

� (e;wi) =
e

u0 (c�i )
= ewi (27)

The same analysis as before shows that this tax schedule implements the �rst-best.

We now turn to the cap-and-trade system. We start from the initial steady state with

optimal policy M = E�0 . If M = E�0 , the new steady state, where � � G1 will be characterized

by a lower price of permits, �1 < �0. This is true if E
�
0 > �q1

R
�dG1 (�). Now, consider the

case where �q1
R
�dG1 (�) > E

�
0 . The �rms�decisions are still given by (15)-(17). In particular,

if �1 > 0, we still have that �� (�) = 0, for all � (it is still optimal to reduce emissions by a tiny

amount), so that the �rst order conditions become

f 0 (q)� �h0 (�q � y) = w (28)

h0 (�q � y) + �1�0 (�) = �1 (29)

�E�Vm+ (m+; �) � �1 (30)

Suppose, by way of reaching a contradiction, that �1 � �0. Since m+ (�0) = 0, we also have

m+ (�1) = 0. From the market clearing conditions (with m+ = 0), we obtain

Z
y (�; �1) dG1 (�) = E

�
0 : (31)

As the FOCs remain the same, y (�; �) still has the same properties as before: it is increasing

in � and decreasing in �. In addition, y0 (�) > 0. Therefore,

Z
y (�; �0) dG1 (�) <

Z
y (�; �0) dG0 (�) (32)

We have shown that y (�; �) is a decreasing function of � for all �, so that

Z
y (�; �1) dG1 (�) <

Z
y (�; �0) dG1 (�) <

Z
y (�; �0) dG0 (�) = E

�
0 (33)

However, this violates the equilibrium condition (31). Hence, we must have �0 > �1.
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In summary, both taxes and emission trading can support the e¢ cient allocation. This

conclusion relies on considering state-contingent taxes. In the case of cap and trade, the market

price for permits acts as a signalling device. It declines when �rms are on average cleaner.

Notice, however, that without an exogenous change in the supply of permits, total emissions

will remain constant, and will diverge from the e¢ cient level of emissions. This calls for an

authority that can adjust the stock of permits so as to keep the price at �0. Our analysis

recommends that the price of permits should be a policy variable for this authority, very much

like the supply in the money market is controlled by a central bank.

3 Endogenous Technological Change

Our analysis so far has abstracted from issues related to technological change. These issues

are important, and it would be interesting to study the relative merits of taxes versus cap and

trade if the possibility of endogenous technological change is introduced.9 In this section we

extend our basic model to account for this possibility.

Like before, we identify �rms by their type, �, indicating their tendency to pollute. Here

we assume that types, which are private information, are distributed at t = 0 according to the

cumulative distribution G with support [0; ��]. As in the previous section, a �-�rm emits �q

units of pollution whenever it uses q units of labor. We will assume that �rms can hire labor

in order to invent/adopt new, cleaner technologies. To capture the fact that returns to R&D

involve an element of randomness, we assume that by devoting 
 units of labor, a �rm can enter

a �lottery.�If a �-�rm pays this cost, it receives the new emission factor ~� = 0 with probability

s in the next period. With probability 1 � s, its emission factor is the same as before, ~� = �.

In words, with probability s a �rm becomes clean forever and with probability 1� s it remains

as dirty as before. Other than this feature, the model remains the same as in the previous

section.10

We will consider the simplest case, where G (�) has a two point support, f0; ��g, with G (0) =
9See Acemoglu, Aghion, Bursztyn, and Hemous (2012) for a discussion of these issues in connection to the

environment.
10Note that this speci�cation results in a non-stationary equilibrium fraction of clean �rms.
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� denoting the mass of clean �rms.11 Conveniently, the distribution of �rms in every period is

summarized by the mass of clean �rms, which greatly simpli�es the analysis. As in the previous

section, our e¢ ciency benchmark will be the full-information �rst-best. This involves choosing

non-negative consumption, c, production, q (�), and a choice of R&D investment, i (�) 2 [0; 1],

for each �rm. Clearly, the e¢ cient allocation would not involve investment in a new technology

for clean �rms, so we let i
�
��
�
2 [0; 1] be the mass of dirty �rms entering the lottery. Given

that there is a need for 
 units of labor to enter the lottery, the consumer�s utility function is

reduced by the amount of labor devoted to research and development (1� �) 
i.12 We denote

by V the objective function of the planner given an initial distribution �. To reduce notation,

in what follows we use i = i
�
��
�
, q = q (0), �q = q

�
��
�
, while �+ = � + (1� �) si

�
��
�
denotes

the measure of clean �rms in the next period. The e¢ cient allocation is the solution to the

following planner�s problem.

V (�) = Max
c;q;�q;i

u (c)� �q � (1� �)
�
1 + ��

�
�q � (1� �) 
i+ �V (�+ (1� �) si)

s:t: c = �f (q) + (1� �) f (�q)

0 � i � 1 (34)

Given the linearity of the objective function in i, we can obtain an explicit form for V (�).

Notice �rst that the solution for c, q, and �q does not depend on i. Replacing the market

clearing condition in the planner�s objective and taking the �rst order conditions with respect

to q and �q, we obtain

u0 (�f (q) + (1� �) f (�q)) f 0 (q) = 1 (35)

u0 (�f (q) + (1� �) f (�q)) f 0 (�q) = 1 + �� (36)

Given �, (35) and (36), de�ne the solution by q� (�) and �q� (�), independently of i. Plugging

11Normalizing the lowest state to � = 0 is only for simplicity and the results generalize to any �nite support.
Analyzing the case of a continuous support for G poses technical di¢ culties and is beyond the scope of this
paper.
12We assume that R&D itself is not a polluting activity.
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these values in the market clearing condition determines c� (�). Thus, the planner�s problem

becomes

V (�) = max
i

F (�)� (1� �) 
i+ �V (�+ (1� �) si)

s:t: 0 � i � 1 (37)

where F (�) � u (c� (�)) � �q� (�) � (1� �)
�
1 + ��

�
�q� (�). As the solution to (35) and (36) is

unique, there is a single value of � such that F (�) = v, for each value of the instantaneous

surplus v. Also, F is di¤erentiable with

F 0(�) = u0�(�))[f(q�(�))� f(�q�(�))]� q�(�) + (1� �)�q�(�) (38)

and F 00(�) = u00�(�))[f(q�(�)) � f(�q�(�))]c0(�) < 0. Our assumptions on preferences and

technology guarantee that F 0�1 exists. Let � � F 0�1
�
1��
�



s

�
. We now guess that the value

function takes the form

V (�) = F (�) +



s
(�� �) + �

1� �F (�) (39)

To verify, using (39) the planner�s problem becomes

max
i

F (�)� (1� �) 
i+ �
�
F (�+ (1� �) si) + 


s
(�+ (1� �) si)� 


s
� +

�

1� �F (�)
�

s:t: 0 � i � 1 (40)

The �rst order condition gives

i =
�� �
(1� �) s (41)
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Using this policy function in the objective function, we obtain

V (�) = F (�)� (1� �) 
 �� �
(1� �) s + �

�
F (�) +




s
�� 


s
� +

�

1� �F (�)
�

= F (�)� 

s
(�� �) + �

�
F (�) +

�

1� �F (�)
�

= F (�) +



s
(�� �) + �

1� �F (�) (42)

which veri�es our guess (39). Notice that � is a constant in [0; 1] and (41) gives us @i
@�
=

�(1��)s+(���)s
[(1��)s]2 < 0. Hence, as the measure of clean �rms increases, the planner reduces invest-

ment in the clean technology. Clearly, there is a �� such that for all � � ��, the planner chooses

i (��) = 0. The threshold level, ��, is de�ned by

� = ��, or

F 0 (��) =
1� �
�




s
(43)

If there is no emissions control, �rms maximize their pro�ts without concern about emissions,

and their production decision follows (2). No �rm invests in emissions reduction, as the in-

vestment in R&D is costly. Since �rms�production decision is independent of their shock,

overall emissions, E, capture the emissions from dirty �rms; i.e., �E = (1� �)���q, where �q is the

equilibrium level of production. Taking E as given, consumers maximize their utility subject

to their budget constraint and their behavior is again summarized by the �rst order condition

(4). Market clearing is given by (5) and the equilibrium level of production �q satis�es (6); i.e.,

f 0 (q)u0 (f (q)) = 1. Welfare in this economy is given by

(1� �)W = u (f (�q))� �q
�
1 + (1� �)��

�
(44)

We discuss policy next.
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3.1 Emissions Trading

We �rst consider an economy where �rms are subject to a cap and trade system: a dirty �rm

producing q units of goods and receiving emission factor ��, will need to accumulate ��q permits

in that period. The permits are then remitted once production takes place. As before, �rms

can also invest in order to reduce their emissions. There is a market where �rms can trade

permits. We assume that ex post emissions, e = �q, are observable, while � and i(�) are private

information.13 The price of permits in terms of the numeraire is again denoted by �. The

sequence of events is as follows:

1. Firms of type � 2 f0; ��g plan to produce q(�) and invest i(�) in clean technology R&D.

We assume that �rms are able to randomize, so i(�) 2 [0; 1] denotes the probability of

investing.

2. Firms produce and enjoy pro�t f (q)� w (q + 
I), where w is the wage and I 2 f0; 1g is

the result of the lottery i(�).

3. Firms adjust their permits in the market and remit �q permits.

4. Pro�ts, if any, are redistributed to shareholders.

5. Firms learn the result of their R&D investment and move to the next period.

As before, we denote the total stock of permits in this economy by M , while a �rm�s

individual permit holdings are denoted by m. We denote the value of a dirty �rm entering the

market with m permits and shock �� by V�� (m), and the value for a corresponding clean �rm by

V0(m). Hence, V�(m) for � 2 f0; ��g is de�ned by14

V� (m) = max
q;i;m0

+;m
�
+

f (q)� w (q + 
i) + �m� ��q

+is
�
��m0

+ + �V0
�
m0
+ + T

0
+

��
+ [i(1� s) + (1� i)]

�
��m�

+ + �V�(m
�
+ + T

e
+)
�

s:t: 0 � i � 1 (45)
13Assuming that ex post emissions are observable might seem overly strong. However, we will demonstrate

that a tax scheme will be more e¤ective than emissions trading, even if emissions trading can condition on such
expanded information.
14To economize on notation, we suppress the dependence on � in what follows.
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where T e+ is the (ex-post emissions-dependent) transfer of permits by the issuing authority.

When a �rm enters the market for permits, the value of its portfolio is �m. The �rm then has

to remit �q permits with value ��q and decides how many permits to carry over to the next

period, m+. The �rst order conditions for an interior condition i(�) 2 (0; 1) are

f 0 � w � �� = 0 (46)

�w
 + s
�
��m0

+ + �V0
�
m0
+ + T

0
��
� s

�
��m�

+ + �V�(m
�
+ + T

e
+)
�
� 0 (47)

( = if i > 0, > 0, if i = 1)

��+ �V 00(m0
+ + T

0
+) � 0(= if m0

+ > 0) (48)

��+ �V 0� (m�
+ + T

e
+) � 0(= if m�

+ > 0) (49)

and the envelope condition gives V 0� (m) = �, for � 2 f0; ��g. The �rst order condition for i(0)

clearly implies that i(0) = 0, as clean �rms remain clean. The last two conditions imply that,

in an equilibrium with banking, the price of permits must satisfy

� = ��+ (50)

The consumer�s �rst order conditions give

wu0(c) = 1 (51)

Finally, market clearing implies

�f
�
q0
�
+ (1� �)f

�
q
��
�
= c (52)

�m0
+ + (1� �)m1

+ = M + T

and the law of motion for clean �rms is �+ = �+ si(��)(1��). Next, we determine whether the

e¢ cient allocation is implementable. We divide the analysis into three cases. First we discuss

the policy which implements the e¢ cient allocation when � � ��. Second, we consider the case
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where � < �� but close to �. Finally, we consider the case where � is far below ��.

(i) Case when � � ��

First, note that the equilibrium outcome in an economy with banking but without transfers

is ine¢ cient for all � � ��. Indeed, in this case the e¢ cient allocation is such that q(��) satis�es

wf 0(�q) = 1 + ��, where w = u0(c)�1 is a constant. But this can only be the case if � = w, a

constant. Therefore � > ��+ = ��. This contradicts the e¢ ciency of banking. The only other

way to reach the e¢ cient allocation when � � � is through a transfer policy T et � 0. With

� � ��, a transfer policy is optimal only if (35) and (36) are satis�ed. (46) together with (51)

and (52) imply that � = w(�) = u0
�
�f (q0) + (1� �)f

�
q
��
��

�1, for all t: Hence, it has to be

that T et satis�es

V 0� (T
e
t ) = � = w(�) (53)

Therefore T et = T
e is constant, and market clearing requires T e = ��q. Hence, dirty �rms should

not conduct R&D whenever � � ��, and the transfer should implement i(��) = 0. That is,

V0 (0)� V�(T e) <

w

�s
(54)

where we can easily compute V0(0)� V�(T e) to be

V0(0)� V�(T e) =
f (q0)� wq0
1� � �

f
�
q
��
�
� wq�� � w��q�� + wT e

1� � (55)

Using the market clearing condition in the market for permits, we obtain that i(��) = 0 if

f
�
q0
�
� wq0 �

h
f
�
q
��
�
� wq��

i
< (1� �)
w

�s
(56)

Since � � �� and F 00 < 0, this condition is satis�ed since the LHS is less than wF 0(��) which is

equal to the RHS by (43).

(ii) Case when � < �� but close to ��
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In this case, the e¢ cient allocation has some dirty �rms investing in R&D according to (41).

Therefore, it must be that (47) holds with equality, or,

�
��m0

+ + �V0
�
m0
+ + T

0
+

��
�
�
��m�

+ + �V�(m
�
+ + T

e
+)
�
=
w


s
(57)

We can then write V�(m) as

V� (m) = max
q;i;m0

+;m
�
+

f (q)� w (q + 
i) + �m� ��q

+is
w


s
� �m0

+ + �V0
�
m0
+ + T

0
+

�
� w


s

s:t: 0 � i � 1 (58)

or, using the solution for q0 for clean �rms,

V� (m) = max
q;i;m0

+;m
�
+

f (q)� wq + �m� ��q

�f(q0)� �m0 + wq0 + V0(m
0)� w


s
(59)

We need to check whether we can obtain (57) using this formulation. Let q� be the solution to

the dirty �rm�s problem given wage w. Then

V�(m)� V0(m0) = f(q�)� f(q0)� wq� � ��q� + wq0 + �(m�m0)� w

s

(60)

Using this expression into (57), we obtain that i(��) 2 (0; 1) i¤

w


s
= �w

�
m0
+ �m�

+

�
+ �

h
f(q0+)� f(q�+)� w+q0+ + w+ (1 + �) q�+ + w+(T 0+ � T e+) +

w+


s

i
(61)

where we have used that �+ = w+, as this is a necessary condition for e¢ ciency. Using F
0(�+),

we can rewrite the above equation as

� w

w+
s
�
m0
+ �m�

+

�
+ �

�
sF 0(�+) + s(T

0
+ � T e+) + 


�
=
w

w+

 (62)
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Comparing this equation with (41) the e¢ cient outcome with i = i� given by (41) is implemen-

ted i¤

� w

w+
s
�
m0
+ �m�

+

�
+ �s(T 0+ � T e+) + �
 �

w

w+

 = �
 + �
 (63)

or

�s(T 0+ � T e+) =
�
w

w+
� 1
�

 +

w

w+
s
�
m0
+ �m�

+

�
(64)

Since �+ = w+, the consumers��rst order condition gives u
0(c) = w(�)�1. Thus,

��+
�

= �
u0(c(�))

u0(c(�+))
< 1 (65)

where the last inequality follows from the fact that we assume that � is close to ��. In this case,

the e¢ cient allocation implies that investment in R&D decreases, so that � can be close to �+,

in order to satisfy the above inequality. In that case, m0
+ = m

�
+ = 0, so that (64) gives

T e(�+) =

�
1� u

0(c(�+))

u0(c(�))

�



�s
+ T 0(�+) (66)

Market clearing requires that

(1� �)T e(�) + �T 0(�) = (1� �)�q� (67)

Therefore,

T 0(�+) = (1� �+)�q�+ � (1� �+)
�
1� u

0(c(�+))

u0(c(�))

�



�s
(68)

T e(�+) = (1� �+)�q�+ + �+
�
1� u

0(c(�+))

u0(c(�))

�



�s
(69)

Notice that if �+ is close enough to � (which will be the case when i(�) is su¢ ciently close to

zero), then T 0(�) > 0, so that the optimal policy is to grant some permits to clean �rms. As

T e(�) is not su¢ cient for dirty �rms to pledge the required permits, they will have to purchase

the missing permits from clean �rms, thus, e¤ectively subsidizing them. This subsidy makes
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being �clean�more attractive and incentivizes investment in R&D. Note that this is in addition

to having to give up revenue from permits. This additional incentive is necessary since e¢ ciency

requires that w = �, so that the price of permits is pinned down by the wage and the wage is

pinned down by the marginal utility of consumption.

(iii) Case when � is far lower than ��

Finally, we consider the case where � is far lower than ��, so that u0�(c(�+))=u
0�(c(�)) < �.

Importantly, emissions trading cannot implement the e¢ cient allocation in this case. Indeed,

optimality requires that w(�) = �(�) and w(�)u0 (c(�)) = 1. But this would imply that

�(�) < ��(�+). This is not consistent with an equilibrium, as it implies an excess demand of

permits by �rms who will want to resell them in the next period.

It is useful to provide some intuition for this result. E¢ ciency requires that aggregate i

increases fast. To induce this increase, the future price of permits must be su¢ ciently high.

However, this creates an incentive for �rms to purchase permits now, in order to sell them in

the future, when the price will be high. This behavior is inconsistent with equilibrium, as it

creates an excess demand for permits.

In summary, when the measure of dirty �rms is greater than a critical threshold, the e¢ cient

allocation is not implementable via the use of an emissions trading system. Equilibrium under

emissions trading either makes technology adoption by dirty �rms too slow, or it distorts

production of dirty �rms relative to the �rst best. Below we show that �scal policies do not

su¤er from this drawback. As in the case without endogenous technology change, a tax scheme

can implement the �rst best.

24



3.2 Taxes

We denote the value of a dirty �rm by V��, and the value for a clean �rm by V0. Hence, for

� 2 f0; ��g, V� is de�ned by

V�(�) = max
q;i
f (q)� w (q + 
i)� � (�qj�)

+is�V0(�+) + [i(1� s) + (1� i)] �V�(�+)

s:t: 0 � i � 1 (70)

The �rst order conditions are

f
0 � w � �� 0(�qj�) = 0 (71)

�w
 + s�V0
�
�+
�
� s�V�(�+) � 0(= 0, if i > 0, > 0, if i = 1) (72)

Clearly, optimality requires that

� 0(�qj�) = w(�) (73)

so that the optimal tax is linear in the quantity of emissions; i.e., �(�qj�) = w(�)�q+x�(�), for

some x�(�). To induce investment, the tax must be such that (72) holds with equality whenever

i� > 0. Using q0 as the optimal choice of clean �rms, and (72) at equality, we can rewrite V��(�)

as

V��(�) = max
q
f (q)� wq � � (�qj�)�

�
f(q0)� wq0 � �(0j�)

�
+ V0(�)� w
=s

Therefore,

V��(�+)�V0(�+) = f
�
q�+
�
�w(�+)q�+� �

�
�q�+j�+

�
�
�
f(q0+)� w(�+)q0+ � �(0j�+)

�
�w(�+)
=s

(74)
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and using this expression back in (72), we obtain that i� 2 (0; 1) i¤

V0
�
�+
�
� V�(�+) =

w(�)


s��
f(q0+)� w(�+)q0+ � x0(�+)

�
�
�
f
�
q�+
�
� w(�+)q�+ � w(�+)�q�+ � x�(�+)

�
+
w(�+)


s
=
w(�)


s�

s�F 0(�+) + �
 � s�
x0(�+)� x�(�+)

w(�+)
=
w(�)


w(�+)
(75)

Comparing this last expression with (41), we obtain that the tax policy can implement i� i¤

s�
x0(�+)� x�(�+)

w(�+)
=

�
1� w(�)

w(�+)

�

 (76)

or, using the consumers��rst order condition, if

x0(�+)� x�(�+) =
1

u0(c(�+))

�
1� u

0(c(�+))

u0(c(�))

�



s�
(77)

In particular, if x0 = 0 then x�(�) < 0 and dirty �rms should receive a corresponding lump-sum

subsidy.

We summarize the main �nding in the following.

Proposition 6 A tax scheme is less constrained in achieving the optimum than an emissions

trading system. Equilibrium under emissions trading imposes the additional condition that

� = w, which reduces the range of feasible policies. As a result, emissions trading fails to attain

the �rst best when the measure of dirty �rms is greater than a critical threshold.

The intuition for our main result is simple. In monetary models, certain conditions need to

be satis�ed in order for money to have value in equilibrium. Modeling explicitly the money-like

feature of permits in an intertemporal model implies that a set of related requirements must

be satis�ed in order for permits to have value. We showed that these requirements are likely to

be binding in the case where there is endogenous progress in clean technologies and when the

initial fraction of �dirty��rms is large.
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4 Conclusion

Our work is motivated by the observation that emission-trading mechanisms resemble monetary

mechanisms. We used insights from dynamic mechanism design in monetary economics to derive

properties of optimal dynamic emissions trading mechanisms. More generally, we argued that

policy-makers should think about permit-issue in a manner similar to that used by central

bankers, and we discussed optimal permit-issue policy. At the optimum, the price of permits

increases over time. Our main �nding is that when the measure of dirty �rms is large, the

e¢ cient allocation is not implementable via the use of an emissions trading system. Equilibrium

under emissions trading either makes technology adoption by dirty �rms too slow, or it distorts

production of dirty �rms relative to the �rst best. We showed that �scal policies do not su¤er

from this drawback.
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5 Proofs

Proof of Lemma 1: (a) Suppose that �� > 0, for some �. Then y (�) = �q (�). As a

consequence, �0 = 0, and (10) implies 1 = ��� < 0, which is a contradiction.

(b) Since �� (�) = 0, the �rst order conditions are

[f 0 (q� (�))� �h0 (�q� (�)� y� (�))]u0 (c�) = 1 (78)

h0 (�q� (�)� y� (�))u0 (c�) + �0 = 1 (79)

First, consider the set of � for which �0 = 0. Then y (�) 2 (0; �q), and the �rst order conditions

are

f 0 (q� (�))u0 (c�) = 1 + � (80)

h0 (�q� (�)� y� (�))u0 (c�) = 1 (81)

Given c�, (80) implies that q� (�) is decreasing with �. Also (81) implies that

dy

d�
= q + �

dq

d�
= q

�
1 +

�

1 + �

f 0

f 00q

�
(82)

so that y (�) is increasing in � if �f 00q
f 0 � 1.

15 Therefore, there is ~� such that given c�, �0 = 0

and y(~�) = 0. For ~�, q(~�) solves

f 0
�
q�(~�)

�
u0 (c�) = 1 + ~� (83)

h0
�
~�q�(~�)

�
u0 (c�) = 1 (84)

so that, in turn, ~� solves

h0

 
~��

 
1 + ~�

u0 (c�)

!!
u0 (c�) = 1 (85)

where � (x) = f 0�1 (x). For all � > ~�, the solution is given by (80) and (81). Also, if � < ~�,

15This is the case, for example, if f (x) = lnx, or if f (x) = A (1� e��x), with � � 1.
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it cannot be the case that �0 = 0. Thus, y (�) = 0, for all � < ~�. Notice that �q� (�) � y� (�)

is constant in � whenever y� (�) > 0; i.e., the reduction in emissions is the same for all �rms.

Finally, it remains to show that ~� > 0. By contradiction suppose that ~� = 0. Notice that

for any q� (�) and y� (�) satisfying (80) and (81), it must be the case that q� (�) < q� (0) and

�q� (�) ! 0, as � ! 0. Therefore, h0 (�q� (�)� y� (�)) ! 0, as � ! 0. Thus, for any c� and

" > 0, there is � > 0 such that h0 (�q� (�)� y� (�)) = " and "u0 (c�) < 1. This contradicts that

y (�) > 0, implying that ~� > 0.�

Proof of Lemma 2: From (80) and (81), given a level of aggregate consumption, c�, the

value of q� (�), is decreasing in � whenever y (�) > 0. Since there is a larger fraction of

relatively clean �rms in the economy with G1 (while the mass of �rms is the same), we infer

that c�1 > c
�
0. In this case, (80) implies that f

0 (q�1)u
0 (c�1) = f

0 (q�0)u
0 (c�0) whenever y

�
1; y

�
0 > 0.

Therefore, q�1 (�) < q�0 (�); i.e., �rms with the same � produce relatively less in the cleaner

economy. Finally, from (81), h0 (�q�1 (�)� y�1 (�))u0 (c�1) = h0 (�q�0 (�)� y�0 (�))u0 (c�0), so that

�q�1 (�) � y�1 (�) > �q�0 (�) � y�0 (�). Thus, �rms with the same � reduce their emissions by a

larger factor in the cleaner economy. Next, we demonstrate that ~�1 > ~�0. First, notice that, for

any c, �q (�) is increasing in � if �f 00q � f 0. This implies that, given c, ��( 1+�
u0(c)) is increasing

in �, where � (x) = f 0�1 (x). Second, since �0 (x) < 0 and u0 (c�1) < u
0 (c�0), we must have that

��( 1+�

u0(c�1)
) < ��( 1+�

u0(c�0)
), for any �. However, (85) implies that ~�1�( 1+

~�1
u0(c�1)

) > ~�0�(
1+~�0
u0(c�0)

). Since

��( 1+�
u0(c)) is increasing in �, this implies that

~�1 > ~�0. Thus, more �rms are clean ex-post in the

economy under G1.�

Proof of Lemma 3: (a) y (�) < �q, for all �, implies that �� (�) = 0. Indeed, suppose there

is one � such that �� (�) > 0 and y (�) = �q. Then �0 (�) = 0 and, since h0 (0) = 0, (16) gives

��� ��� (�) = 0 (86)

which is impossible when � > 0.

(b) Consider the case of a �rm with y (�) = 0, for some �. In this case, �0 (�) > �� (�) = 0 and
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the �rm�s solution is

f 0 (q)� �h0 (�q) = w (87)

h0 (�q) � � (88)

The LHS of (87) is strictly decreasing in q, so that (87) de�nes a function q (�) that is uniquely

de�ned for each �. It is easy to check that q0 (�) < 0. In addition, q (�) is decreasing in w, for

all � such that y (�) = 0. Finally, notice that the LHS of (88) is increasing in �. Taking the

total derivative, and using the expression for q0 (�) from (87), we obtain16

dh0 (�q)

d�
= q

�
1� �2h00

�2h00 � f 00

�
h00 > 0 (89)

where the inequality follows from the concavity of the production function. Thus, there is a ��

such that y (�) = 0, for all � < ��. The threshold �� is de�ned by

h0
�
��q
�
��
��
= � (90)

Whenever �� (�) = 0, the emissions constraint is not binding, and, from (87), q (�) is not an

explicit function of �. Therefore, when � increases, �� also has to increase by (89). Thus, more

�rms choose to reduce their emissions to a full extent when the price of permits increases.�

Proof of Lemma 4: (a) Let us consider the case when 0 < y (�) < �q. Setting �� (�) =

16From (87), we have �
f 00 � �2h00

�
q0 (�) = �qh00:

Therefore,

dh0

d�
= �h00q0 (�) + qh00 = h00 (�q0 (�) + q) = h00

�
�

�qh00

f 00 � �2h00
+ q

�
= qh00

�
1� �2h00

�2h00 � f 00

�
:
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�0 (�) = 0, the solution of the �rm becomes,

f 0 (q)� �h0 (�q � y) = w (91)

h0 (�q � y) = � (92)

Replacing the expression for h0 in the �rst equation, we obtain

f 0 (q (�)) = w + �� (93)

h0 (�q (�)� y (�)) = � (94)

For �rms with � > ��, the solution is a pair (q (�) ; y (�)) that solves these equations. Notice

that q0 (�) < 0 whenever � > 0. Also, y0 (�) > 0 if �f 00 (q) q=f 0 (q) � 1. Finally, if � increases

then q (�) declines, in which case y (�) is also decreasing in �.

(b) Given �rms�optimal behavior, w is given by

wu0

 Z ��

0

f (q (�))� h (�q (�)) dG (�) +
Z 1

��

f (q (�))� h (�q (�)� y (�)) dG (�)
!
= 1 (95)

Since q (�) does not depend on � when � < ��, we obtain

u0
@w

@�
+ wu00

�Z 1

��

w
@q

@�
+ p

@y

@�
dG (�)

�
= 0 (96)

Since @q
@�
< 0 and @y

@�
< 0, we have @w

@�
< 0. When studying the general equilibrium e¤ect of a

rise in �, it is important to notice that the e¤ect on q (�) is somewhat tempered by the decline

in w. Still, q (�) and y (�) remain decreasing as functions of �.�

6 An Extension: Futures Market

In the emissions trading system studied in the body of the paper we assumed that the issuing

authority assigns permits to �rms at the start of a new remittance period. In this section, we
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show how our model can be extended to the case where the government sells permits rather

than transferring them lump-sum and free of charge.17

Assume that �rms receive signal s = � + " on the realization of their shock, �, at the start

of the market. The random term " is drawn from a distribution F and E ("i) = 0, for all i.

Given this structure, the �rm�s signal is also a �rm�s best guess for the true value of �. Once

s is observed, a �rm can access a futures market to acquire or sell permits at a price p, for

delivery at the remittance date. At this stage, the government sells an amount T of permits

(buys if T < 0).

Then the true shock is realized and �rms decide on their production and emission levels. At

the remittance date, a spot market for permits opens, where �rms can trade their permits at a

price �. Finally, each �rm presents an amount of permits equal to the amount of emissions, y.

We denote the value of entering the futures market with m permits and shock s by V (m; s)

and the value of entering the spot market for permits with m permits and shock value s by

W (m; �). Then, V (m; s) is de�ned by

V (m; s) = max
x
E�jsW (m� x; x; �) (97)

s:t: x � m

while W (m) solves

W (m;x; �) = max
x;q;y;m+

f (q)� wq � h (�q � y) + � (m� y) + px+ � � �m+ + �EsV (m+; s)(98)

s:t: 0 � y � �q (99)

17More generally, we could investigate competing mechanisms for allocating permits in environments that
include frictions, as in Eeckhout and Kircher (2010). This, however, is beyond the scope of the present paper.
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where � is a lump-sum transfer. Using (98) to replace W in (97), we obtain

V (m; s) = max
x�m

px+

Z
�js

�
max
q;y

f (q)� wq � h (�q � y) + � (m� x� y)
�

+max
m+

�EsV (m+; s)� �m+

s:t: 0 � y � �q

Given M , the market clearing conditions are

Z
x (s) dH (s) + T = 0 (100)Z

y (�; s) dH (s) dG (�) +m+ = M + T (101)Z
f (q (�))� h (�q (�)� y) dG (�) = c (102)

The stock of permits follows the law of motion

M+ =M �
Z
y (�) dG (�) + T

Given a policy fTtg, an equilibrium is a list of quantities and emissions fct; qt (�) ; yt (�)g,

permit-trading decisions fxt (�) ;mt (�)g, and prices fpt; �tg, such that, given prices, the list of

decision variables solves the �rms�and consumers�problems and markets clear. An equilibrium

is stationary whenever the list of quantities and emissions is time independent; i.e., when

fct; qt (�) ; yt (�)g = fc; q (�) ; y (�)g, for all t.

We demonstrate that for any stationary policy T , there is a unique stationary equilibrium.

We �rst solve the �rm�s problem. The �rst order conditions give

f 0 (q)� �h0 (�q � y) = w � ���� (�) (103)

h0 (�q � y)� �� ��� (�) + ��0 (�) = 0 (104)

p� �� (s)� � = 0 (105)

�EsVm+ (m+; s) � � = if m0 > 0 (106)
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where �� (s) is the Lagrange multiplier on the �rm�s constraint in the futures market, and

��� (�), ��0 (�) are the multipliers on the constraints related to emissions reduction. Notice

from (106) that all �rms will exit the market holding the same amount of permits for the next

period. The envelope condition gives

Vm (m; s) = � (1 + � (s)) (107)

The workers�decision is still given by (4) and, using market clearing, we obtain an expression

for the wage

wu0
�Z

f (q (�))� h (�q (�)� y (�)) dG (�)
�
= 1 (108)

From (105), it is clear that either � (s) > 0, for all s, and p > �, or � (s) = 0, for all s, and

p = �. If p > �, then all �rms sell their permits, so that T = �M < 0. In addition, (101)

implies that
R
y (�; s) +m+ = 0. Since y (�; s) � 0 and m+ � 0, this implies that y (�; s) = 0,

for all s, �. Clearly this is not e¢ cient. The only candidate e¢ cient equilibrium is one where

� (s) = 0, for all s, so that p = �. This is equivalent to an equilibrium where the issuing

authority would buy or sell permits in the spot market during the remittance period. Given

p = �, the equilibrium is as in the text, and we can set x (s) = �T and y (�; s) = y (�; s0), for

all (s; s0), since �rms are indi¤erent between holding permits across the two markets.
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