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        Abstract 

 

This study explores the spatial effects in nitrogen (N) and phosphorus (P) pollution and drinking 
water production patterns in agriculture. Two important examples are that water utilities that 
deliver and treat drinking water in agricultural areas have to deal with excess nitrogen and 
phosphorus released to the environment by crop and livestock operations, an externality created 
by the agricultural sector; and, second, that the drinking water production sector in rural areas is 
a highly fragmented with a multitude of enterprise sizes, organization forms and network 
densities that have spatial components. In our analysis we present measures of N and P pollution. 
We employ information collected in section 303(d) of the Clean Water Act: count of impaired 
water bodies by N/P, and count of point source N/P pollution at the Hydrologic Unit Code 8 
(HUC) or sub-basin level and estimate how these variables affect drinking water utilities scale 
economies, productive efficiency, and scale and scope economies. 
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1. Introduction  

 Drinking water pollution has been a top environmental concern since at least 1989 

according to Gallup polls [Kaiser and Shapiro (2019)] and has recently been gaining increased 

traction in policy discussions. In 2018, American Water Works Association (AWWA) CEO 

David LaFrance applauded the U.S. Congress for passing a Farm Bill that recognizes the 

importance of protecting drinking water sources from nutrient runoff and that allocated $4 billion 

dollars over the next ten years to conservation practices that protect sources of drinking water, 

[AWWA (2020)].  In early 2020, a related important policy change was the U.S. Environmental 

Protection Agency (EPA) finalizing the repeal of the Waters of the U.S. Rule (WOTUS) which 

had  prohibited the dumping of certain industrial and agricultural pollutants  into some 234,000 

miles of small streams that provide tap water to more than 117 million people.   It was replaced 

with the Navigable Protection Rule, EPA (2020a).  

 Agricultural chemicals, in particular, have been a “growing source of environmental 

problems,” including drinking water source pollution affecting millions of people [Snider 

January 23, 2020]. The focus of the Clean Water Act, however, has been on wastewater 

treatment and point-source emissions rather than the non-point sources prevalent in agriculture. 

In an example of the impact of non-point sources used in, Mosheim and Ribaudo (2017), 

downstream effects played a role when the Des Moines Water Works sued three northwest Iowa 

counties in federal court for channeling excess nitrogen through an elaborate drainage system 

into the Raccoon River, the primary source of drinking water for half a million central Iowans, 

and thus burdening municipal water utility with an alleged cost of about half a million dollars in 

the 2013-2014 winter,  [(Timothy Meinch, Des Moines Register March 16, 2015)]. The 

https://www.ewg.org/research/trump-plan-gut-stream-protections-imperils-tap-water-117-million-americans
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complexity of identifying and analyzing sources of water pollution, illustrated in the Des Moines 

case where the pollutants originated far from the area covered by the utilities, require 

sophisticated analytic techniques such as spatial econometrics that capture the role of 

externalities and are based on well-developed datasets.  

The U.S. Environment Protection Agency (EPA) maintains data on water pollution 

including in rivers and lakes. Price and Heberling (2018) in their review article on the effects of 

source water quality on drinking water costs find, after reviewing twenty-four selected studies on 

the topic, that the main obstacle to conducting research on water quality in the United States is 

“data availability,” making it difficult to quantify the links between treatment costs and water 

quality. A similar point is also noted by Keiser and Shapiro (2019). In our study, we employ 

AWWA data from 2015 and 2016 Water and Wastewater surveys to construct a panel of two 

outputs (drinking water, wastewater), three inputs (labor, capital and other inputs), and variables 

that influence the performance of the water utility but are under of the control of the manager 

(proportion of ground water used in water production),  or out of the control of manager (number 

of impaired water bodies by nitrogen and phosphorus in the hydrologic unit where the water 

utility is located and number point sources of nitrogen or phosphorus release along the 

Hydrologic Unit Code 8 (HUC). 

Thanks to this dataset, we are able to measure the impact of nitrogen and phosphorus 

pollution on technical efficiency, scale economies, and economies of scope which ultimately 

affects costs. We estimate input and output distance functions (which need less data than, for 

example, cost functions) to predict environmentally sensitive measures of efficiency, calculate 

scale and scope economies, and spatial effects of nutrient pollution. Given both the importance 
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of spatial econometrics to the analysis of the externality problem and that that analysis employs a 

panel, we draw heavily on Sickles and Zelenyuk, (2019) and Baltagi (2015).  

 In what follows we first explore the main sources of data for our empirical study and 

describe the variables employed in the analysis.  We next present the spatial distance function 

models.  Our empirical findings follow. Finally, we summarize our results and conclusions.  

 

2. Variable construction and descriptive statistics 

(insert table 1 here) 

Table one describes the variables we employed in the analysis described in section 4. The 

main source of data employed in this study is the American Water Works Association (AWWA) 

Rate Survey for 2015 [AWWA (2016b)] and 2016 [AWWA (2016d)], both in computer compact 

disk. We assembled a balanced panel of water utilities that had observed wastewater and 

drinking water operations in both years. Water utilities that had data for only one year or that 

only treated water or produced only water were not employed. The resulting panel covers 59 

mostly public firms that had complete information on all the variables representing 42 states as 

the original data set observed in 2015 and 2016 (Alaska and U.S. territories excluded because of 

missing observations on water quality), for a total of 114 observations. The combined panel will 

be referred as AWWA2017.  

Water production ranges from a minimum of 1.353 to a maximum of 240 million gallons 

per day (MGD), and wastewater treatment ranges from 0.49 to 160.46 MGD.  The overwhelming 

majority of the observations are municipally owned. The original data represent 42 states that 

serve anywhere from 1000 to 5 million customers. The data that we employ in the analysis had 

as many states represented. We employed the water and wastewater variables from the 
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AWWA2017 in (MGD) units to construct the drinking water and treated water variables, 

1 2 and y y respectively. Labor ( 1x ) refers to staff-combined variable (Water and Wastewater 

Employment). We define capital ( 2x ) as the variable Assets: Equipment plus Assets Net Plant in 

AWWA2017 The capital variable is deflated by the PPI industry, BLS (2019). The Other Inputs 

( 3x ) variable is defined as total operations and maintenance costs (OM) minus labor costs. The 

procedure we employed took account first of the variation of OM costs per account by water 

utility size and region available in AWWA2017. We also drew on AWWA (2016) 

“Benchmarking and Performance Indicators” and the 2015 AWWA (2015) and 2016 AWWA 

(2016c) Compensation Surveys for this task. Regional variation in salaries were assigned using 

BEA Price Parities by state for the years 2015 and 2016 [BEA (2019)].  

The variable Metro identifies whether or not the water utility is located in an urban or 

rural/suburban county. We employ the 2013 Rural-Urban Continuum Codes published by the 

Economic Research Service. These codes form a classification scheme that distinguishes 

nonmetropolitan counties by degree of urbanization and adjacency to metro areas, (ERS-USDA 

(2020). Size is a dummy variable that takes the value of 1 if the water utility that has more than 

100,000 customers, and 0 otherwise. The variable Ground is the total quantity of ground water in 

MGD going to drinking water production.     

 We used information from the watershed boundary dataset which maps the water 

drainage of the United States using a hierarchical system of hydrological unit code (HUC) at 

different levels of detail.  We used various water pollution variables by level hierarchy HUC-8. 

HUC 8 maps at the sub-basin level are analogous to medium sized river basins (about 2200 

nationwide). The HUC classification system represents the coordinated efforts among the United 



6 
 

States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), the 

United States Geological Survey (USGS), and the Environmental Protection Agency (EPA) 

(USGS (2019)). 

We employ two variables that characterize the water quality at the HUC -8 where the 

water utility is located. According to EPA, the Clean Water Act requires states, territories and 

authorized tribes to monitor water pollution and report to EPA every two years on the waters 

they have evaluated. This process is called assessment and includes deciding which waters do 

not meet water quality standards because they are too polluted. These degraded waters are called 

impaired (polluted enough to require action) and are placed on a State list for future actions to 

reduce pollution. The characteristics by HUC-8 are summarized by EPA (2020).      

 We employ data on EPA ATTAINS-- an acronym for the Assessment, Total Maximum 

Daily Load (TMDL) Tracking and Implementation System—which is an online system for 

accessing information about the conditions in the nation’s surface waters. Specifically, we 

examine waterways deemed unsound by Nitrogen or Phosphorus pollution. We also examine 

point sources permitted to discharge nitrogen or phosphorus into the environment. The National 

Pollutant Discharge Elimination System (NPDES) keeps track of the number of permits in a 

given hydrological unit, see EPA (2019b)].   

The variables ImpairedNP, DischargeN, DischargeP show HUC characteristics at the 

water utility site: the first variable shows the count of impaired water bodies by Nitrogen and 

Phosphorus, the second and third, the number of discharge monitoring reports (DMR) for 

nitrogen, indicating permitted point source pollution for these pollutants, and, third, the number 

of DMRs for phosphorus. The next three charts also show counts for these three variables for the 
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United States generally. We also include dummy variables to control for certain utilities facing 

greater levels of pollution in their source water than average.  

 

 

 

 

3. Methodology 

 We next discuss how we can represent the technology of a water utility.  The water utility 

is assumed to use the technology 

𝑇𝑇𝑡𝑡 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡):𝑥𝑥𝑡𝑡 ∈ ℝ+
𝑛𝑛 ,𝑦𝑦𝑡𝑡 ∈ ℝ+

𝑚𝑚, 𝑥𝑥𝑡𝑡 can produce 𝑦𝑦𝑡𝑡}                       (1) 

where 1( ,..., )t t t
nx x x= and 1( ,..., )t t t

my y y= are the input and output vectors at time 𝑡𝑡 = 1,2, . . . ,𝑇𝑇.   
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Let 𝑃𝑃𝑡𝑡(𝑥𝑥𝑡𝑡) be the set of feasible output vectors 𝑦𝑦𝑡𝑡 that are obtainable from each input 

vector tx : 

𝑃𝑃𝑡𝑡(𝑥𝑥𝑡𝑡) = {𝑦𝑦𝑡𝑡: (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) ∈ 𝑇𝑇𝑡𝑡}.                (2) 

The output distance function [Shephard (1970)] is defined: 

𝐷𝐷𝑜𝑜𝑡𝑡(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡) = min
𝜃𝜃
�𝜃𝜃 > 0: �𝑦𝑦

𝑡𝑡

𝜃𝜃
� ∈ 𝑃𝑃𝑡𝑡(𝑥𝑥𝑡𝑡)�.                                                             (3)          

Given an input vector 𝑥𝑥𝑡𝑡, the value of 𝐷𝐷𝑜𝑜𝑡𝑡(𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡) is equal to 1 if the output vector lies in the 

boundary of 𝑃𝑃𝑡𝑡(𝑥𝑥𝑡𝑡). Modelling the effect of time as an exogenous variable the output distance 

function can be rewritten as 𝐷𝐷𝑜𝑜(𝑥𝑥,𝑦𝑦, 𝑡𝑡). 

For each output vector ty , let 𝐿𝐿𝑡𝑡(𝑦𝑦𝑡𝑡) be the set of feasible input vectors 𝑥𝑥𝑡𝑡 that can be 

obtained from each output vector 𝑦𝑦𝑡𝑡: 

𝐿𝐿𝑡𝑡(𝑦𝑦𝑡𝑡) = {𝑥𝑥𝑡𝑡: (𝑦𝑦𝑡𝑡,𝑥𝑥𝑡𝑡) ∈ 𝑇𝑇𝑡𝑡}.                           (4) 

The input distance function (Shephard (1970)) is: 

max( , ) 0 : ( )
t

t t t t
I

xD x y L yθ
θ θ

   = > ∈  
   

.                                                                                      (5) 

Given an input vector tx , the value of 𝐷𝐷𝐼𝐼𝑡𝑡(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡) is equal to 1 if the input vector lies in the 

boundary of 𝐿𝐿𝑡𝑡(𝑦𝑦𝑡𝑡). 

4. Empirical Results 

For the specification and estimation of the input and output distance functions we 

followed several well received articles in their empirical application: Kumbhakar, et al. (2007); 

Coelli and Perlman (2000), Nemoto and Furumatsu (2014), Feng and Serletis (2009), Inanoglu et 
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al. (2015), Lovell et al. (1994). We also employed spatial regression techniques discussed in 

Elhorst (2014), Arbia (2014), and Drukker et al. (2013). 

Kumbhakar et al. discuss parametric input and output frontier for a cross section. 

Important aspects are that inefficiency is non-negative if the distance function is output oriented 

whereas it would be non-positive if the distance function is input oriented. We also impose the 

homogeneity of degree one in outputs by dividing water production by the water treatment 

variable in the case of the output distance function.  restrictions by dividing outputs. In the case 

of the input distance function we imposed homogeneity of degree on inputs by dividing labor 

and capital by other inputs.  

 We employ panel data for our models. Our input-oriented model is: 

( )
2 2 2 1 2

, , ,
1 1 1 1

1 2 1 2 2 1 2

,
1 1 1 1

1ln ln ln ln ln
2

1 ln ln ln .
2

M M M N K
k

j j it jk j it k it kit
itj j k k

K L M K
k l k

kl jk j it
it it itk l j k

xO y y y O

x x xyO O O

οβ γ γ β

β δ

= = = = − =

= = = =

− = − = = − =

= = = =

 − = + + +  
 

     + +     
     

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
  (6) 

   We tested various specifications of equation (8) and found the quadratic input terms 

insignificant. Consequently, our final specification is Translog in outputs and Cobb-Douglas in 

inputs following Sickles, Good and Getachew (2002). Moreover, our final specification 

incorporates the variable y2016 that measures technical change relative to 2016: 

( )
2 2 2

, , ,
1 1 1

2

1

1ln( ) ln ln ln ln
2

ln 2016.

m m n

I it j j it ij j it k itit
j j k

n
k

k t
itk

D O y y y

x YO

οβ α α

β δ

= = =

= = =

=

=

= − = + +

 + + 
 

∑ ∑∑

∑
                                            (7)  

 

This model is then transformed into a spatial autoregressive (SARAR (1,1)) specification 

following Lee and Yu (2010a), Lee and Yu (2010b) and Arbia (2014): 
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2 2 2 2

, , , 1
1 1 1 1

1ln( ) ln( ) ln ln ln ln 2016
2

,      1,

m m n n
k

I it I it m m it jk j it k it k n
itj j k k

it

xD W D y y y y cO

u

l α α β δ

l

= = = =

= = = =

 = + + + + + 
 

+ <

∑ ∑∑ ∑

         1.it it itu Wu vρ ρ= + <                                        (8) 

 Arbia (2014) refers to the case where 0, 0λ ρ≠ ≠  using the SARAR (1, 1) acronym for 

Spatial Autoregressive with additional Autoregressive error structure (Kelejian and Prucha 

(1998)).  We row-standardized W, and given that 1λ <  and 1ρ < insures a solution to the 

parameters of equation (10). We followed Arbia (2014) and STATA (2017) when we specified 

our spatial autoregressive models for panel data in equation (10) above. Here 

'
1 2ln( ) ( , ,..., )I it I t I t IntD d d d=  is an  1n ×  vector of observations for n  panels at the time period t; 

W is an n n×  spatial weighting matrix exogenously given and row-standardized; 

1 2ln( ) ( , ,..., )it t t nty y y y=  is an   1n ×  vector of observations for n panels of observations for 

drinking water and treated water; 𝛽𝛽𝑗𝑗𝑊𝑊 �𝑥𝑥
𝑂𝑂
�
𝑖𝑖𝑖𝑖

+ 𝛾𝛾𝑗𝑗 �
𝑥𝑥
𝑂𝑂
�
𝑖𝑖𝑖𝑖

 is an  1n ×  vector of observations for n 

panels of observations for labor-other inputs water and capital-other input ratios multiplied or not 

by W; the variable 1z is a dummy variable equal to one the number of impaired of water bodies is 

above average for the water utilities and 0 if it is below average; itu   is an 1n× vector of 

spatially lagged errors; itv   is an i.i.d. across i and t with variance; nc  is random effects with 

mean 0 and variance 2
cσ ; ρ  is the spatial dependence parameter; and , , , , ,λ α β γ ρ δ  are 

parameters to be estimated. 

  
The output distance is specified as: 
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( ) ( )

( ) ( )

2
1 1

2 1 11
2 2 1

1
1

21 1 1

1ln ln ln ln
2

1 ln ln( ) ln ln 2016.
2

K

k kit it
it it k

K L K

kl k l it k k tit it
itk l k

y yy xy y

yx x x yy

οβ α α β

β δ δ

=

= = =

   − = + + +   
   

 + + + 
 

∑

∑∑ ∑
                              (9)               

 

As the model above does not support the quadratic input terms we adjust the specification 

to:  

2
2 1 1 2 11 1 2

1

1ln( ) ln( ) ln( / ) ln( / ) ln( ) 2016.
2

K

O it k k it t
k

D y y y y y x yοβ α α β δ
=

= − = + + + +∑               (10)           

This model is then transformed into a spatial autoregressive (SARAR (1,1)) specification: 

2
1 1

1 11
2 2 1

1ln( ) ln( ) ln ln ln 2016 ,
2

K

O it O it k it t n it
it it k

y yD W D x y c uy yl α α β δ
=

   = + + + + + +   
    ∑  

 1,λ <                                                                                                                                         (11) 

it it itu Wu vρ= + ,    1ρ < . 

We estimated four distance functions: two input-oriented and two output-oriented 

specifications. Of these four models two are spatial and two nonspatial (regression models.) The 

non-spatial models incorporate the same variables used in the spatial model. We estimated both 

the input and output distance spatial functions by correlated random effects. Spatial correlated 

effects2 were preferred to random spatial effects models.  We present the two econometric 

estimation results of the spatial input and output distance functions in tables 3a and 3b, and 

regular regression counterparts in Table3areg and Table3breg. A spatial model is better than a 

                                                           
2 See Wooldridge (2013) 
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non-spatial one by the significance of the estimated value of the spatial autocorrelation 

parameter, ρ  (STATA SP, p53). Also, model selection statistics (AIC and BIC) identify first 

that the spatial models as preferred to the non-spatial models, and second that the spatial input 

distance is preferred to the output distance function.  In what follows we discuss both the spatial 

input and output distance function models calculation of scale economies just to compare the 

scale economy results and confirm our exclusion of model 2. Then we proceed to estimate scope 

economies just using model 1.   

 Tables 3a and 3b shows the estimates for the input and output distance functions. The 

implied elasticities for the input distance function for outputs 1 and 2 are 
1

ln 0.637ln
ID

y
∂ = −∂

and
2

ln 0.159ln
ID

y
∂ = −∂ . The bootstrap standard errors are respectively 0.005 and 0.022. The 

input function equation for output 1 is 

  1 3 1 5 2
1

ln 2 ln lnln
ID y yy β β β∂ = + +∂ ,                       (12)  

and output 2 is 

 2 4 2 5 1
2

ln 2 ln lnln
ID y yy β β β∂ = + +∂ .                                                                                   (13) 

The implied elasticity of the output distance with respect to water production and water treatment 

are: 
1

ln 3.589ln
oD

y
∂ =∂  and

2
.ln

l 82n 3 7oD
y

∂ =∂ .  

The output distance function equation for output 1 is 

1 1 2 2 3 1 2 2
1

ln 1/ ( / ) / (1/ ) (ln )(1/ )ln
oD y y y y y yy β β∂ = +∂            (14) 

and for output 2, 
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1 1 2 1 3 1 2 1
2

ln 1/ ( / ) / (1/ ) (ln )(1/ ).ln
oD y y y y y yy β β∂ = +∂           (15) 

The bootstrap standard errors are respectively 0.587 and 0.651. 

Also, Table 3a shows that all the input elasticities are negative indicating the estimated 

input distance function meets monotonicity properties: the inputs decrease and outputs increase 

with respect to distance. Homogeneity of degree one has been imposed by dividing distance and 

input quantities by the input variable 3x , other inputs. Table 3b shows the output distance 

function results. Homogeneity of degree one in outputs was imposed by dividing water 

production output by water treatment output ( 1

2

y
y ). The estimated output function meets the 

monotonicity properties: increasing in inputs and decreasing in outputs. 

The y2016 variables have different signs whether it is incorporated in an input or output 

orientated distance function in as expected; both functions point to an increase in technical 

change of 2016 relative to 2015. Also, both input and output distance functions show that a 

greater share of ground water sourced by the water utility is predicted to increase water utility 

inefficiency and hence costs. The variable ImpairedNP is a dummy variable that represents the 

number of water bodies impaired by N and P in the HUC where the water utility operates. If the 

number of impaired water bodies is greater than the average in the HUC, the dummy variable is 

equal to one. Otherwise, it is equal to zero.  The estimate in the output distance is highly 

significant.  

The variables DischargeN and DischargeP captures the number of point pollution sources 

within the HUC where the water utility operates. If the DischargeN and DischargeP dummy 

variables are equal to 1 it means that the water utility operates in a HUC where the number of 

point sources is greater than average, zero otherwise. If the effect of DischargeN is positive it 
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means that water utilities facing larger than average number of point sources in their HUC face 

increase use of inputs or decrease production of outputs. The process by which N affects water 

utility cost might be more rapid or more complex than for P and that might the different signs of 

the effects.  The effects of the DischargeN and DischargeP are highly significant for both input 

or output distance functions and have opposite signs as expected. 

 After estimating input-orienting inefficiency we predicted inefficiency. We exponentiated 

the result and then multiplied by the other input variable. We then divided the result by the 

minimum calculation of this result for the 114 observations. Similarly, after we predicted output-

oriented inefficiency we exponentiated the result before multiplying it by 2y . We then divided 

this prediction by the maximum output result for this calculation from the 114 observations.  

Table 4 shows the distance results for the four models. As can be seen from this table results for 

models 1 and 3 are very similar and results 2 and 4 diverge from these models. The discussion in 

the previous paragraph would make the inefficiency results from models 1 and 3 more robust 

than those from model 2 and 4. 

 We calculated input oriented and output-oriented scale economies using two tray returns 

to scale formulas.  The first is Input-Oriented [Nemoto and Furumatsu [(2014, p.8)]: 

2

1

1
ln ( , , )

ln
I s

I

ss

RTS
D x y t

y
=

=

= −
∂

∂∑
.             (16) 

The second is Output-Oriented [Feng and Serletis (2009, p. 11)]: 

3

1

ln ( , , )
ln

s
O

O
ss

D x y tRTS x
=

=

∂= − ∂∑ .             (17) 
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The pattern of Table 4 is the same as those of table 2: results for models two and four diverge 

and results for models 1 and 3 do not—they are a great deal more robust. We use the delta 

method to calculate the standard errors for the scale economies. We simply use model 1 to 

calculate scope economies the input distance function.    

 Economies of scope between outputs i and j is calculated by the derivatives of either the 

input distance or output distance functions (Hajargashat, et al., 2006; Inanoglu, et al., 2015):  

1
yy

y y yy yx xx x x xy
C D D D D D D D DC

−
 ′ ′= − + +
 

.                                                                      (18)  

We restricted equation (18) so that it exhibits input homotheticity so that equation (18) 

becomes:3 

2yy
y y yy

C D D DC
′= − .              (19) 

 Equation (19) has a positive sign which Hajargashat, et al. (2008, p.186) associate with the 

existence of scope economies.4 This result indicates that water utilities that separate water 

production and treatment facilities will have higher costs than the ones that do not. We calculated 

scope economy averages by exogenous variables employed in the analysis. We underscore two 

results:  first, scope economies for rural utilities is 0.201 and for urban ones are 0.302; second, 

water utilities that face higher than average environmental pollution in their source water have 

lower economies of scope.  These economies of scope are: DischargeN, 0.276, DischargeP, 

                                                           
3 Without this restriction the data cannot identify a reasonable technology. This restriction is consistent with a 
general technology, more so than the standard Cobb-Douglas technology. 
 
4 The calculation of equation (19) results in four quadrants of size (114 114).×  The upper right quadrant and the 
lower left quadrant involve cross derivatives between the two outputs. We constrained these cross derivatives to be 
equal. We calculated the analytical derivatives of the distance functions following Hajargashat, et al. (2006, p.17). 
The diagonal of the upper right matrix is the implementation of (19). 
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0.280, and ImpairedNP, 0.291. Otherwise, scope economies are 0.303, 0.302 and 0.291 for these 

variables respectively. 

 The total impact of an independent variable x is the average of the marginal effects it has 

on the reduced-form mean:   

2
1 1 1

( | , ; )1 .
T n n

I it it it

t i j jt

E D X W Y
n T x= = =

∂
∂∑∑∑         (20) 

 The direct impact of an independent variable x  is the average of the direct, or own, 

marginal effects: 

1 1

( | , ; )1 .
T n

Iit it it

t i it

E D X W Y
nT x= =

∂
∂∑∑         (21) 

 The indirect impacts of an independent variable x  

 
1 1 1,

( | , ; )1
( 1)

T n n
Iit it it

t i j j i it

E D X W Y
nT n x= = = ≠

∂
− ∂∑∑ ∑ .       (22) 

 A further discussion of these measures of spillovers can be found in Le Sage and Pace 

(2009, 36-37) and STATA (2017, pp 218).  Results are displayed in Table 5. The most important 

aspect to note from these results is the strength of the indirect effects of point sources of N and P 

pollution on water utility performance which underscores the externality motivation of the spatial 

analysis we applied. The strength of the Ground variable could underscore the interconnection 

between water utilities.    

 

5. Summary of Results and Conclusions 

  

 This paper models the environmental effects of nutrients (nitrogen and phosphorus) 

coming from agriculture on drinking water production. We employed a dataset drawn from 
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myriad sources to analyze inputs, outputs, source water pollution variables and other exogenous 

variables affecting water utilities. We estimated input and output distance functions to derive 

environmentally sensitive measures of efficiency (input- and output-oriented), scale economies, 

scope economies and spatial effects. We find that input-oriented results are more robust than 

output-oriented ones. Spatial model specification tests indicated application of spatial 

econometric models is more appropriate than regular regression. In our analysis we present 

measures of nitrogen and Phosphorus pollution: ImpairedNP, number of impaired water bodies 

impaired by Nitrogen or phosphorus. DischargeN and Discharge P number of facilities with 

permits to discharge N or P in the utility. These variables constitute measures of N and P point 

and non-point pollution in the hydrological unit where the utility captures its water to produce 

drinking water. We showed that these variables do indeed affect scale, scope and efficiency of 

the water utilities.  

 We take advantage of the ability of spatial econometrics to model externalities. We find 

large indirect effects of point and nonpoint sources of nitrogen and phosphorus pollution. We 

find that the sector exhibits significant scope economies between drinking water production and 

drinking water quality and increasing returns to scale. A water utility might face the choice of 

how much water quality to maintain to produce a given level of safe drinking water. However, 

there are other factors outside the control of the manager that might affect the costs of operation. 

We showed that the presence of certain contaminants in the source water that the drinking water 

utility employ affects a myriad of production measures which translate ultimately into increased 

costs. We hope that this analysis might be of use to both local and national policy makers 

concerned with the economic impact of environmental regulations. 
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Table 1.- Summary Statistics Spatial Distance Functions Variables 

 
Variable (Units)       Mean Std. Dev. Min Max 

Latitude (Decimal (6)) 35.66 4.80 26.26 44.64 

Longitude (Decimal (6)) -92.61 15.06 -123.11 -69.77 

1y   = Drinking Water (MGD) 36.79 49.20 1.35 240 

2y  = Treated Water (MGD) 26.32  33.65 0.49 160.46 

1x   = Labor (Staff) 297.04 453.74 5.00 2158 

2x  = Capital (Million $) 405.00 657.00 0.39 4620 

3x = Other Inputs (Million $) 19.00 20.80 0.61 151 

Metro (Dummy: urban=1, rural =0) 0.93 0.26 0 1 

Y2016 (Dummy:  y2016=1, if year=2016, else 0) 0.50 0.50 0 1 

Ground (Total source ground water (MG)) 92,44 671,98 0 6.82M 

ImpairedNP (Dummy: N/P Imp.  Waters in HUC)   0.21 0.41 0 1 

DischargeN, (Dummy: Facilities permits N in HUC)  0.28 0.45 0 1 

DischargeP, (Dummy: Facilities permit P in HUC) 0.33 0.47 0 1 

Observations (i = 57, t=2 2015, 2016) 114 
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Table 2. – Weight Matrix (Distance), W 

 

 

 

 

Weight Element Weight (Rounded) Miles 

Minimum > 0 0.00065 1548.22 

Mean 0.00824 121.37 

Max 0.69390 1.44 
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Table 3a_reg. Regression estimates of input-oriented distance function 

(standard errors in parentheses) 

 

Variable Par. Estimate Variable Par. Estimate 

Input Distance Function, Regression 

1ln( )y  1α  
-0.570*** 

(0.165) 
1

3

x
x  23β  

-0.006*** 

(0.002) 

2ln( )y  2α  
0.141 

(0.151) 
2016Y  tδ  

-0.271*** 

(0.076) 

[ ]2
1ln( )y  11α  

0.028 

(0.067) 
Constant οβ  

-13.08*** 

(0.892) 

[ ]2
2ln( )y  22α  

-0.006 

(0.055) 
   

1 2ln( ) ln( )y y×  12α  
-0.093 

(0.113) 
   

1

3
ln x

x
  
 

 13β  
0.127** 

(0.070) 
   

1

3

x
x  13β  

   25290*** 

(5,544) 
   

2

3
ln x

x
  
 

 23β  
0.071 

(0.044) 
   

  

Ground 1γ  
-2.59e-08*** 

(5.95e-08) 
Metro 5γ  

-0.141 

(0.185)      

 

DischargeN 2γ  
-0.122 

(0.228) 
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DischargeP 3γ  
-0.056 

(0.232) 
   

ImpairedNP  4γ  
-0.0005* 

(0.0003) 
   

Note: * P = <0.10 ; ** P = <0.05 ; *** P = <0.01 

Variance Parameters 
2ADJR 0.879      

      

Model Selection Statistics (degrees of freedom in parentheses) 

Log Likelihood                           -64.02 

Penalized Likelihood Criteria d.f. (14) 

 Akaike information     (AIC)= 156.043 

 Bayes Information      (BIC)= 194.345 

                         

                                          

F(13,100) =64.11 Prob >  F=0.0000 
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Table 3b_reg. Regression estimates of output-oriented distance function 

(standard errors in parentheses) 

 

Variable Par. Estimate Variable Par. Estimate 

Output Distance Function, Regression 

1ln( )y  1α  
-0.570*** 

(0.165) 
1

3

x
x  23β  

-0.006*** 

(0.002) 

2ln( )y  2α  
0.141 

(0.151) 
2016Y  tδ  

-0.271*** 

(0.076) 

[ ]2
1ln( )y  11α  

0.028 

(0.067) 
Constant οβ  

-13.08*** 

(0.892) 

[ ]2
2ln( )y  22α  

-0.006 

(0.055) 
   

1 2ln( ) ln( )y y×  12α  
-0.093 

(0.113) 
   

1

3
ln x

x
  
 

 13β  
0.127** 

(0.070) 
   

1

3

x
x  13β  

   25290*** 

(5,544) 
   

2

3
ln x

x
  
 

 23β  
0.071 

(0.044) 
   

  

Ground 1γ  
-2.59e-08*** 

(5.95e-08) 
Metro 5γ  

-0.141 

(0.185)      

 

DischargeN 2γ  
-0.122 

(0.228) 
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DischargeP 3γ  
-0.056 

(0.232) 
   

ImpairedNP  4γ  
-0.0005* 

(0.0003) 
   

Note: * P = <0.10 ; ** P = <0.05 ; *** P = <0.01 

Variance Parameters 
2ADJR 0.880      

      

Model Selection Statistics (degrees of freedom in parentheses) 

Log Likelihood                           -39.55 

Penalized Likelihood Criteria d.f. (16) 

 Akaike information     (AIC)= 111.092 

 Bayes Information      (BIC)= 154.871 

                         

                                          

F(15,98) =56.09 Prob >  F=0.0000 
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Table 3a. Maximum likelihood estimates of input-oriented distance function 

(standard errors in parentheses) 

 

Variable Par. Estimate Variable Par. Estimate 

Input Distance Function, Correlated Random Effects. Dependent variable, 3ln x−  

1ln( )y  1α  
-0.517*** 

(0.125) 
1

3

x
x  23β  

-0.005*** 

(0.002) 

2ln( )y  2α  
0.118 

(0.107) 
2016Y  tδ  

-0.178*** 

(0.032) 

[ ]2
1ln( )y  11α  

0.124* 

(0.048) 
Constant οβ  

-13.383*** 

(0.366) 

[ ]2
2ln( )y  22α  

0.107*** 

(0.035) 
   

1 2ln( ) ln( )y y×  12α  
-0.303*** 

(0.074) 
   

1

3
ln x

x
  
 

 13β  
0.140*** 

(0.025) 
   

1

3

x
x  13β  

   23,534*** 

(4,471) 
   

2

3
ln x

x
  
 

 23β  
0.110*** 

(0.034) 
   

Inverse distance weight matrix, 02w  

Ground 1γ  
9.63e-07*** 

(3.30e-07) 
Metro 5γ  

2.049 

(1.502)      

 

DischargeN 2γ  9.302***    
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(1.608)  

DischargeP 3γ  
-7.485*** 

(1.245) 
lndoi   

-0.140 

(0.098) 

ImpairedNP  4γ  
0.0009 

(0.0008) 
e.lndoi  ρ  

0.566** 

(0.274) 

Note: * P = <0.10 ; ** P = <0.05 ; *** P = <0.01 

Variance Parameters 

 Std. Error 

 
uσ  

0.269 

(0.029) 

   

Std. Error 

 
εσ  

0.100 

(0.001) 

   

Model Selection Statistics (degrees of freedom in parentheses) 

Log Likelihood                           21.386 

Penalized Likelihood Criteria d.f. (19) 

 Akaike information     (AIC)= -4.77 

 Bayes Information      (BIC)= 47.21 

                         

                                          

Wald test of spatial terms:  2 (7)χ =49.80 Prob >  2χ  =0.0000 
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Table 3b. Maximum likelihood preferred estimates of output-oriented distance function 

 

(standard errors in parentheses) 

 

Variable Par. Estimate Variable Par. Estimate 

Output Distance Function, Correlated Random Effects. Dependent variable, 2ln y−  

1

2
ln y

y
  
 

 12α  
0.608*** 

(0.082) 
1ln( )x  1β  

-0.181*** 

(0.030) 

1

2

y
y  12α  

-0.189 

(0.160) 
2ln( )x  2β  

-0.189*** 

    (0.045) 

2
1

2

1 ln
2

y
y

  
 

 2
12α  

-0.279*** 

(0.099) 
3ln( )x  3β  

   -0.652*** 

(0.057) 
2

1

2

1
2

y
y

 
 
 

 2
12α  

0.087*** 

(0.035) 
Y2016 tδ  

-0.156*** 

(0.043) 

   Constant οβ  
-12.286*** 

(0.961) 

Inverse distance weight matrix, 02w  

Ground 1γ  
-1.79e-06*** 

(4.37e-07) 
ImpairedNP  5γ  

     -0.004*** 

(0.001) 

DischargeN 2γ  
-6.020*** 

(2.082) 
  

 

 

DischargeP 3γ  
4.873*** 

(1.690) 
lndoo   

-0.366*** 

(0.176) 

Metro 4γ  
0.140 

(0.404) 
e.lndoo  ρ  

1.402*** 

(0.147) 

Note: * P = <0.10 ; ** P = <0.05 ; *** P = <0.01 
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Variance Parameters 

 Std. Error 

 
uσ  

0.381 

(0.043) 

   

Std. Error 

 
εσ  

0.112 

(0.012) 

   

Model Selection Statistics (degrees of freedom in parentheses) 

Log Likelihood                           -4.608 

Penalized Likelihood Criteria d.f. (18) 

 Akaike information     (AIC)= 45.22 

 Bayes Information      (BIC)= 94.47 

                         

                                          

Wald test of spatial terms:  2 (7)χ =126.26  Prob >  2χ  =0.0000 
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Table 4. Predicted Inefficiency and Economies of Scale and Scope 

(Mean, Standard Error, Minimum and Maximum)5 

 

 Model 1  Model 2 Model 3 Model 4 

         Predicted Inefficiency 

Input Oriented 

2.301 

(0.667) 

1 

4.758 

 

2.280 

(0.759) 

1 

4.880 

 

Output Oriented  

2.908 

(1.292) 

1 

10.078 

 

3.813 

 (1.958) 

1 

14.362 

Scale Economies  

Ray Input 

1.271 

(0.057) 

 

 
1.242 

(0.056) 
 

Ray Output  
0.958 

(0.002) 
 

0.949 

(0.001) 

Scope Economies 

Input Oriented              

0.295 

(0.059) 

0.521 

0.020 

   

                                                           
5 Models 1 and 2 are spatial and model 3 and 4 are nonspatial. 
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 Table 5. Average Direct, Indirect and Total Effects a 

(Standard Errors in Parentheses) 

VARIABLE Model 1   Model 2    VARIABLE      Model1 Model2 

Metro   DischargeN   

      

  Direct  0.019 

(0.028) 

-0.003 

(0.008) 

  Direct 0.084 

(0.071) 

0.127* 

(0.078) 

   Indirect 1.053  

(0.845) 

0.056 

 (0.162) 

  Indirect 4.782*** 

(1.021) 

-2.390*** 

(0.829) 

   Total 1.072  

(0.872) 

0.053 

 (0.154) 

  Total 4.867*** 

(1.079) 

-2.263*** 

(0.796) 

ImpairedNP   DischargeP   

      

Direct 

 

8.42e-06 
(0.00001) 

0.00008 
(0.00006) 

Direct 

 

-0.068 

(0.056) 

-0.103* 

(0.062) 

Indirect 0.0005  

(0.0004) 

-0.001***  

(0.0005) 

Indirect -3.848*** 

(0.770) 

1.934*** 

(0.679) 

Total 0.0005  

(0.0004) 

-0.001*** 

 (0.0004) 

Total -3.916*** 

(0.813) 

1.832*** 

(0.654) 

Ground      

      

  Direct 8.78e-09  

6.84e-09 

3.78e-08** 
(2.02e-08) 

   

   Indirect 4.95e-07*** 

 1.68e-07 

-7.11e-07*** 

( 1.80e-07) 

   

  Total 5.04e-07*** 

 1.72e-07 

-6.74e-07*** 

 (1.77e-07) 

   

a * 10%, ** 5% and *** 1% significance level.              
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