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Abstract 

This paper estimates heterogeneous productivity growth and spatial spillovers 

through industrial linkages in the US and China from 1981 to 2010.  We employ a 

spatial Durbin stochastic frontier model and estimates with a spatial weight matrix 

based on inter-country input-output linkages to describe the spatial interdependencies 

in technology. We estimate productivity growth and spillovers at the industry level 

using the World KLEMS database. The spillovers of factor inputs and productivity 

growth are decomposed into domestic and international effects. Most of the spillover 

effects are found to be significant and the spillovers of productivity growth offered and 

received provide detailed information reflecting interdependence of the industries in 

the global value chain (GVC).  We use this model to evaluate the impact of a US-Sino 

decoupling of trade links based on simulations of four scenarios of the reductions in 

bilateral intermediate trade. Our estimation results and our simulations are as mentioned 

based on date that ends in 2010, as this is the only KLEMS data available for these 

countries at this level of industrial disaggregation.  As the GVC linkages between the 

US and China have expanded since the end of our sample period our results can be 

viewed as informative in their own right for this period as well as possible lower bounds 

on the extent of the spillovers generated by an expanding GVC. 

 

Keywords: productivity growth, technological spillovers, global value chain, US-Sino 

Decoupling 

JEL classification codes: C23, C51, C67, D24, O47, R15, F14 
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1 Introduction 

The trade friction between the United States and China has been accelerating since 

2018. The United States is China's largest export market and its second largest trading 

partner. China is the largest trading partner of the United States. The economies of both 

countries have a high level of interdependence. US-Sino trade is an important driving 

force in aggregate productivity growth and in the level of industrial development for 

the two countries. The occurrence and acceleration of trade frictions will have complex 

impacts on the economic operation of the two countries. Concurrently, such frictions 

will also challenge the direction and progress of globalization, which has been an 

important driver of world economic development in the past three decades.  

The industrial division of labor in the US and China reflects the characteristics of the 

global value chain, which has revolutionized global economic relations (Baldwin and 

Lopez-Gonzalez, 2015). During the past decades, the United States typically has shown 

an advantage in R&D, design, logistics, and marketing, which occupy a high value-

added position in the global value chain, while China has taken advantage of its large 

labor force and relatively low wage levels to mainly engaged in processing, assembly 

and other low-value-added production activities in the global value chain. The 

industries of the US and China are quite interdependent, with the share of intermediate 

product in bilateral merchandise trade between the US and China varying between 31% 

and 34% in 2005~2019. Intermediate inputs such as raw materials and capital 

components also are important mediums for knowledge dissemination, which promote 

growth in the scale of operation in industrial sectors as well as more intensive 

technologically sophisticated practices.  
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(a) Export of China to US          

 
(b) Export of US to China 

FIGURE 1. Share of intermediate product in the gross export between US and China 
 

Sources: OECD Structural Analysis (STAN) databases. https://stats.oecd.org/ 
 

The role of trade in the economic growth has been widely explored in the literature 

and the growing evidence that technological spillovers are a major engine for economic 

growth since the seminal paper of Coe and Helpman (1995). A number of studies have 

discussed the mechanism through which technological spillovers occur due to 

international trade (Eaton and Kortum, 1996; Madison, 2007; Chang et al, 2011), FDI 

(Caves, 1996; Branstetter, 2006) and geographical proximity (Keller, 2002). Ertur and 

Koch (2007, 2011) developed a model based on the Solow (1956, 1957) neoclassical 

growth mode in a form of spatial specifications. Fingleton (2008) used spatial 

econometric techniques compared the standard neoclassical growth model with the 
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model of economic geography. Nishioka and Ripoll (2012) studied the correlations 

between R&D embodied in intermediates and TFP. Foster-McGregor et al. (2017) 

found that the R&D spillovers through intermediate inputs are present and 

economically important. Ho et al. (2013, 2018) discussed the international spillovers of 

economic growth through bilateral trade with a spatial autoregressive model. Lee (2020) 

suggest that importing and exporting in intermediate inputs can be an important conduit 

of technology spillovers across borders. 

Although the international spillover effects on productivity, as one of the major 

sources of long-term economic growth, has been recognized in many studies, the 

literature has often focused on national economies and in so doing has also often 

assumed homogeneous productivity growth among countries or sectors. The GVC 

network between US and China is built on the basis of specialized labor division. The 

operation and coordination of the GVCs take place through upstream-downstream 

sectoral linkages. Therefore, an analysis of the pattern of interaction between US and 

China requires an investigation into industry level linkages.  Moreover, heterogeneity 

among sectors should be considered because of the diversified technical and economic 

features in each industrial sector as well as changes in the structure of the industrial 

sectors in both countries during the decades since China entered the WTO. Durlauf 

(2000, 2001) and Brock and Durlauf (2001) discussed the possible bias of homogenous 

assumption in modeling economic growth across countries. Jorgenson et al. (2012) 

suggest that some key industries such as IT-producing and IT-using industries play a 

predominant role as drivers of productivity growth. The list of the products that are no 

longer subject to additional tariffs in US-Sino bilateral are concentrated in several 

specific industries instead of the full set of product categories. A sector-level analysis 

of productivity growth and spillovers thus permits a more detailed evaluation of trade 

friction impacts leading to better informed decision-makers of both tactical and 

strategic trade policy measures.  

Our paper provides a novel model to measure industry-specific productivity growth 

and spillovers in GVC, and with this model we evaluate the impact of trade frictions 

between the US and China based on a set of scenarios that vary in the intensity of trade 
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conflicts. We propose a spatial production function that allows productivity growth to 

vary by sectors. We use the neoclassical growth model (Solow, 1956, 1957) with the 

inclusion of knowledge spatial externalities in the form of Ertur and Koch (2007). The 

intermediate flows from the World Input-Output tables are used to construct the spatial 

weights matrix to represent the economic distance between the industries in China and 

the US. The heterogeneous technical progress of cross-sections in the Solow residue is 

identified based on the estimation technique developed by Cornwell et al. (1990) by 

allowing for an industry-specific function of time. In our empirical analysis, we follow 

Glass et al. (2015) and calculate the direct, indirect and total marginal effects of inputs 

and time trends on gross output, so that we can explore the magnitude and distribution 

of knowledge diffusion among the industries within the GVC network. We also consider 

the direction of knowledge diffusion by distinguishing between sectors in the US and 

in China that receive and offer knowledge externalities in order to identify which 

sectors of both countries are playing a leading role in contributing the most in the GVC 

network and which industries are benefiting most from the spillovers. Furthermore, we 

propose a decomposition method to identify the spillovers transmitted within the border 

of one country and the spillovers across the borders, so that we can further investigate 

the distinction between the spillovers through domestic and international linkages. 

This paper is organized as follows. In section 2 we outline the spatial production 

model with heterogeneity in technical progress using spatial Durbin model (SDM) 

specifications, and then use our approach to measure the spatial spillovers of the inputs 

and of Hicks-neutral technical change. We also provide the methodology to decompose 

domestic and international spillovers using the local Leontief matrices. Section 3 

discusses our estimation strategy.  Section 4 presents the industry-level data of the US 

and China, as well as the World Input-Output tables we use to construct the spatial 

weight matrix. In section 5 we estimate the production function using our methodology 

and discuss the productivity spillovers through the GVCs between US and China. 

Section 6 provides several sets of simulations of the impact of US-Sino decoupling 

based on differing scenarios of deteriorating trade links between the US and China.  

Section 7 concludes. 
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Our estimation results and our simulations are as mentioned based on date that ends 

in 2010, as this is the only KLEMS data available for these countries at this level of 

industrial disaggregation.  As the GVC linkages between the US and China have 

expanded since the end of our sample period our results can be viewed as informative 

in their own right for this period as well as possible lower bounds on the extent of the 

spillovers generated by an expanding GVC. 

 

2 Model  

2.1 Heterogeneous Technical Progress in Solow Residual 

Consider the aggregate Cobb-Douglas panel production function with three factor 

inputs capital, labor, and intermediates: 

  it it it it itY A K M Lα β γ= ，i=1,…,N; t =1,…,T.  (1) 

In keeping with the literature and on recent studies using the KLEMS data (Sanidas and 

Park, 2011; Oulton, 2012; Wu, 2016), we consider a nonspatial constant returns to scale 

technology wherein 1α β γ+ + = . itY  is the total output and itK , itM , and itL are the 

capital, labor, and intermediate input levels. itA is the aggregate level of productivity, 

which differs among industries and time periods and is given by: 

 i itt v
itA eδ += , (2) 

where iΩ  is the individual initial technology state and iδ  are the coefficients that 

depend on i. We relax the assumption of Solow model (Solow, 1956; Swan, 1956; Ertur 

and Koch, 2007) about the identical technical progress in cross-sections by allowing 

for an industry-specific time trend. 

The non-spatial production function per unit of labor is thus: 

 i i itt v
it it ity e k mδ α βΩ + += , (3) 

where /it it ity Y L= , /it it itk K L= , /it it itm M L= . 
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The level of time-varying productivity for industry/sector i  , itδ  , can be 

decomposed into a global time trend gtδ  and an industry-specific term iu t . If we add 

the usual idiosyncratic error itv , assumed to be iid N(0, 2
vσ ) to the average production 

function in (3) then it can be rewritten in logarithm form as the linear regression model  

 ln ln lnit it it i g i ity k m t u t vα β δ= + +Ω + + + . (4) 

Cornwell et al. (1990) considered a model such as (4), where the vector iu  is 

assumed to be iid with zero mean and covariance matrix Δ.  They further decomposed 

the time-varying progress of technology for each industry by allowing for the effects 

it i iu tα ω= +  to contain a time varying inefficiency term that could be identified after 

the average production function (3) was estimated by standard linear panel methods 

using time-varying fixed effects, random effects, and correlated random effects.  We 

do not pursue this further decomposition of productivity change into an innovation and 

efficiency component based on the stochastic frontier model and condition our model 

interpretations on the standard neoclassical average production literature2.  We can see 

that if heterogeneous productivity growth is not time-varying and thus iu  is zero, then 

the model will be consistent with the basic Solow model and we can estimate Eq. (4) 

with standard panel data methods. 

2.2 Spatial Interdependence and Technology Spillovers 

In order to allow for structural cross-sectional linkages among sectors across the two 

countries in our study, the US and China, we extend Eq. (4) to a spatial form production 

function following Ertur and Koch (2007).  They model technology itA  as a function 

of a common global time trend, per worker capital, and a spatial lag of a country’s 

neighbor’s technology. We extend Eq. (4) by allowing for the interdependence among 

industries/sectors that comes from knowledge diffusion via input-output linkages. The 

                                                        
2For a further discussion of these differences see chapter 6 and 9 of Sickles and Zelenuyk (2019). 
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strength of the linkage from industry i to its neighbor industry j is expressed as wij. We 

assume that the technical spillovers are influenced by the neighbor’s technology, input 

levels of per-worker physical capital jtk , and per-worker intermediate input jtm . The 

impact takes effect through the spatial linkages. Technology is then written as: 

 .ij ij iji i it

N N N
w w wt v

it jt jt jt
j i j i j i

A e A k mρ φ ϕδΩ + +

≠ ≠ ≠

= ∏ ∏ ∏

   (5) 

Taking logarithms of Eq. (5), itA  can be rewritten as: 

 ln ln ln ln
N N N

it i i it ij jt ij jt ij jt
j i j i j i

A t v w A w k w mδ ρ φ ϕ
≠ ≠ ≠

= Ω + + + + +∑ ∑ ∑   

 
1

1
1 ( ln ln )

N N N

ij i i it ij jt ij jt
j j i j i

w t v w k w mρ δ φ ϕ
−

= ≠ ≠

 
= − Ω + + + + 
 

∑ ∑ ∑ .  (6) 

The production function per worker can then be written in a Spatial Durbin form3 as: 

 
1

ln ( ln ln ) ln ln
N N N

it ij i i it ij jt ij jt it it
j i j i j i

y I w t v w k w m k mρ δ φ ϕ α β
−

≠ ≠ ≠

 
= − Ω + + + + + + 
 

∑ ∑ ∑ , 

or 

( )ln ln ln ln ( ) ln ln .
N N N

it ij jt it it ij jt ij jt i i it
j i j i j i

y w y k m w k w m t vρ α β φ αρ ϕ βρ δ
≠ ≠ ≠

= + + + − + − +Ω + +∑ ∑ ∑  

  (7) 

We can rewrite this in matrix form as: 

 ( )N T gy W I y k m r qU Vρ α β δ= ⊗ + + +Ω+ + +  

 ( ) ( )( )( ) N T N TW I k W I mφ αρ ϕ βρ+ − ⊗ + − ⊗ , (8) 

where y, k, m and V are NT×1 vectors, Ω  is ,i TιΩ ⊗ Tι is a T dimensional vector of 

ones, Nr Rι= ⊗ , Nι  is N dimensional vector of ones, R=1,…,T, ( )Nq diag Rι= ⊗ , 

is NT×N matrix, and U is an N×1 vector. 

                                                        
3Strictly Eq. (12) is a partial spatial Durbin model as the local spatial function of Hicks-neutral technological change 
is omitted since ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔𝑁𝑁

𝑗𝑗=1  would be perfectly collinear with 𝑅𝑅𝑡𝑡′𝛿𝛿𝑔𝑔. 
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2.3 Spillovers of Technology through Factor Input and Technical change 

The production technology in our model is characterized by the spatial externalities 

across industries (Glass, et al., 2015). The elasticities of capital and intermediate input 

per worker in the spatial model are not only determined by α  and β , but also by the 

external elasticities of capital and intermediate inputs per worker from neighbors’ 

industries. Thus, total effects are a combination of direct and indirect effects that 

incorporate the spillover effects.  As an example, the total effect of a change in per-

worker capital is gotten by differentiating Eq. (7) with respect to per-worker capital and 

the matrix of direct and indirect effects for each industry are written as: 

 

1 1 1

1 2

2 2 2

1 2
1 2

1 1 1

1 1 1

ln ln ln
ln ln ln
ln ln ln

ln ln ln ln ln ln, , ,
ln ln ln

ln ln ln
ln ln ln

N

Nk
N t

t

y y y
k k k
y y y

y y y k k k
k k k

y y y
k k k

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂  ∂ ∂ ∂Ξ ≡ =   ∂ ∂ ∂   
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 






   



 (9a) 

 ( )

( ) ( )
( ) ( )

( ) ( )

12 1

1 21 2

1 2

N

N
N

N N

w w
w w

I W

w w

α φ αρ φ αρ
φ αρ α φ αρ

ρ

φ αρ φ αρ α

−

− − 
 − − = −
 
 

− −  





   



. (9b) 

The direct effect of per-worker capital can then be calculated by taking the mean of 

the diagonal elements of the matrix in Eq. (9b) and we denote the average marginal 

effect as D
kξ for all the industries. The indirect effect of per-worker capital, I

kξ , is 

calculated by taking the average of row sums of the non-diagonal elements of the matrix 

in Eq. (9b). The total effect, which is comparable to the overall input elasticity of capital 

per unit labor, is T D I
k k kξ ξ ξ= +  . The direct, indirect and total effect of per-worker 

intermediate input, denoted as D
mξ , I

mξ  and T
mξ , are calculated in the same way.  

Since the production function is subject to constant to scale, the direct effect of labor is 

1D D D
l k mξ ξ ξ= − −  and the indirect effect of labor is I I I

l k mξ ξ ξ= − − . The total effect 
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of labor 1T T T
l k mξ ξ ξ= − − , which suggests the assumption of constant returns to scale 

still holds in the spatial settings.  

The difference between the direct effect in spatial model and the elasticity in non-

spatial model is that the direct effect also considers the feedback process that originates 

from the input change of an industry which then influences the neighbor industries’ 

output, then rebounds back and induces the change in the output of the industry itself. 

The indirect effect is the external elasticity expressed as a spatial multiplier due to the 

interdependence among the industries. It refers to the output percentage change of an 

industry caused by a 1% increase in the sum of inputs across all the neighbor industries. 

The total elasticity is the summation of direct and indirect effects and is the percentage 

change of an industry due to a 1% increase in the sum of inputs across all the industries 

in the sample. 

The Hicks-neutral technical change also generates spatial spillovers among the 

industries. However, because technical change is industry-specific, the spillover that an 

industry received or offered will be not only dependent on the strength of the linkages 

with its neighbor, but also dependent on the technical change of the neighbors. These 

spillovers are expressed as: 

 ( )

1 11 1 12 2 1

1 2 21 1 22 2 2

1 1 2 2

0 0
0 0ln

ln
0 0

n n

n n
t N

t

n n n nn nt

w w w
w w wy I W

t
w w w

δ δ δ δ
δ δ δ δ

ρ

δ δ δ δ

−

   
   ∂     Λ ≡ = − =     ∂ 
   
   

   

   

       

   

, (10) 

where ijw   is the ijth element of ( ) 1
NI Wρ −−  . The direct effect of sector-specific 

innovation, proxied by the time trend of industry i and denoted as D
ig  , is the ith 

diagonal element of the matrix in Eq. (10) and indicates the average productivity change 

of industry i itself. The indirect effect of the sector-specific time trend reflects the 

exchange of knowledge among industries and is represented by the off-diagonal 

elements in Eq. (10). The row summation of the off-diagonal elements Ir
ig  can be 

interpreted as the aggregate spillover that industry i received from other industries and 

the summation by column of the off-diagonal elements Io
ig  is the aggregate spillover 
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that industry i offers to other industries. We can express the total effect Tr
ig   by 

Tr D Ir
i i ig g g= +  , which can be interpreted as the compound productivity change of 

industry i from the perspective of receiving. Correspondingly, the total effect 

To D Io
i i ig g g= +   represents compound productivity change that industry/sector i 

provides for the whole economic system composed of US and Chinese industries. 

2.4 Spillovers within Country and across Border 

The spillover of industries along GVCs not only happens among the sectors within a 

country, but also transmits across the border through the international input-output 

linkages. The first multiplier in Eq.(9b), ( ) 1
N N NG I Wρ −≡ −  , represents the global 

interaction of all the industries from both countries. Then NG  can be expressed in the 

form of block matrix as follows 

 ,UU UC
N

CU CC

G G
G

G G
 

=  
 

 (11) 

where UCG   is the block matrix of the global multiplier that refers to the global 

spillover between the industries groups of the US and China. UUG  is the block matrix 

of the global multiplier that represents the global spillover among the group of 

industries of the US. However, the global multiplier UUG   also includes the 

international spillovers that originates from the industries of the US, then transmits to 

the industries of China and finally rebounds back to the industries of the US. To solve 

this problem, we split the spatial weight matrix that based on the inter-country input-

output table of the economy system of the US and China into a four block matrices as 

following: 

 ,UU UC
N

CU CC

W W
W

W W
 

≡  
 

 (12) 
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where UUW   is U UF F×   matrix, UCW   is U CF F×   matrix, CUW   is C UF F×   matrix, 

CCW  is C CF F×  matrix, UF  and CF  are the number of sectors in the US and China. 

UUW  and CCW  represent the linkages of the industries within the US and China. UCW  

and CUW  represent the linkage of the industries between the US and China. Then in 

the same way of constructing the global multiplier NG  , we can define the local 

multiplier of the US and China as ( ) 1
UU F UUH I Wρ −≡ −   and ( ) 1

CC F CCH I Wρ −≡ −  , 

which represents the local industrial interaction within the border of US and China. 

From the definition of NG , we have: 

 ( )
0

0
UU UC F UU UC N

N N N
CU CC CU F CC N

G G I W W I
G I W

G G W I W I
ρ ρ

ρ
ρ ρ
− −     

− = =     − −     
, (13) 

And can then express UUG  as the summation of the following two terms 

 ( )( ) 1
UU N UC CU F UU UU UC CU UUG I G W I W H G W Hρ ρ ρ−= + − = + , (14) 

where UUH   is the pure domestic multiplier and UC CU UUG W Hρ   reflects the 

contribution due to the diffusion of technology that is first exported from the US to 

China, is then reimported back to the US, and finally is diffused within the industries 

of the US. 

In the same way, we can derive CCG  as: 

 ( )( ) 1 ,CC N CU UC F CC CC CU UC CCG I G W I W H G W Hρ ρ ρ−= + − = +  (15) 

and the global multiplier, NG   then can be expressed by the summation of two 

components: 

 
0

0
UU UC UU UC CU UU UC

N
CU CC CC CU CU UC CC

G G H G W H G
G

G G H G G W H
ρ

ρ
     

= = +     
     

. (16) 

The first component in the right most expression of Eq. (16) is a block diagonal matrix 

that captures the effect of the domestic interaction among the industries within the US 

and China and the second component captures the international interaction between the 
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US and China, which is defined as the international multiplier. The diagonal blocks in 

the international multiplier matrix represent the feedback effects, and the off-diagonal 

blocks represent the diffusion between the groups of industries of the US and China. 

In the expression of the elasticity of inputs in Eq.(9b), the second multiplier can also 

be decomposed into domestic linkages and international linkages by splitting the matrix 

into four blocks as follows: 

( ) ( )
( ) ( )

( ) ( )

12 1

21 2

1 2

N

N k UU k UC
k

k CU k CC

N N

w w
w w W Wk

W
W Wk

w w

α φ αρ φ αρ
φ αρ α φ αρ

φ αρ φ αρ α

− −

− −

− − 
 − −   ≡ =      

− −  


 

 
 

   



. (17) 

The direct and indirect effects of per worker capital can be decomposed into a domestic 

effect k dom−Ξ  and an international effect k int−Ξ : 

 
0 0

0 0
UU k UU

k dom
CC k CC

H W
H W

−
−

−

  
Ξ =   

   



 , (18) 

0 0
,

0 0
UU UC CU UU UCk UC k UU k UC

k int
CC CU CU UC CCk CU k CU k CC

H G W H GW W W
H G G W HW W W

ρ
ρ

− − −
−

− − −

      
Ξ = +      

      

  

  

  (19) 

where k dom−Ξ   is the product of the two block diagonal matrices that represent the 

interaction within the border of each country and k int−Ξ  is the remaining portion of 

k k int−Ξ −Ξ that includes all the interactions that cross the border of each country. Then, 

in the same way we can calculate the direct, indirect and total effect of per-worker 

capital, the domestic counterparts can be derived and are denoted as 
k dom

Dξ
−

  , 
k dom

Iξ
−

 

and 
k dom

Tξ
−

, while the international counterparts are denoted as 
k int

Dξ
−

 , 
k int

Iξ
−

 and 
k int

Tξ
−

.  

The spillovers that come from domestic economic activity and the spillovers that 

come from international economic activity can be separately identified based on our 

method.  The spillover of technical change tΛ   can be decomposed into domestic 

spillover t dom−Λ  and international spillover t int−Λ  in Eq. (20) and Eq. (21). Then we 

can express the corresponding direct, indirect and total counterparts as: 
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. (21) 

3 Estimation 

The production function given in Eq. (8) can be estimated as a typical spatial-Durbin 

model based on a neoclassical average production technology with the implied 

assumption that every unit of production is efficient in converting the various inputs 

into final aggregate. One can also allow for this assumption to be relaxed and thus allow 

each industry in the global value chain to potentially exhibit inefficiency, in which case 

Solow-type residual productivity growth of each industry is decomposed into an 

efficiency and technical progress component. Instead of using the standard SDM model, 

one can combine the spatial model with a stochastic frontier analysis (SFA) approach 

to estimate the production function with time-varying productivity, composed of the 

usual productivity time trend that captures overall technical innovation that is 

appropriable by all sectors and countries and an efficiency component that is sector-

specific. In order to avoid strong distributional assumptions for the residual of the panel 

production frontier, Schmidt and Sickles (SS) (1984) and Cornwell, Schmidt, and 

Sickles (CSS) (1990) assume inefficiency to be unit-specific and relative inefficiency 

to be derived from a simple transformation of the residuals after the average production 

function is estimated.  We relax the time-invariant assumption of SS by allowing for 

time-varying productivity via the CSS model specification. However, instead of 

focusing on the decomposition of productivity into an innovation and an efficiency 

component after estimation, we focus on total productivity growth.   
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Following the approach of the CSS model, we can estimate Eq. (4) via a within 

transformation, generalized least squares, and an efficient instrumental variable 

approach. To estimate the spatial model of Eq. (8), however, which has the additional 

spatially correlated variables, we use a quasi-maximum likelihood estimation (QMLE) 

method.  By using QMLE, we are able to minimize the number of parameters to be 

estimated with concentrated likelihood function instead of using the full likelihood 

function. The closed-form solutions for a set of parameters are substituted into the 

likelihood function and then the spatial coefficient is the only parameter left in the 

concentrated likelihood function. The maximized full likelihood by optimizing the 

concentrated likelihood is known to give the same maximum likelihood estimates 

(LeSage and Pace, 2009). The details of estimation are developed in Han (2016). 

For the parameters except for the spatial autoregressive parameter ρ , closed-form 

solutions can be obtained by the first-order conditions of the likelihood functions of Eq. 

(8). The spatially weighted independent variables are treated as additional regressors. 

By substituting of the closed-form solutions into the likelihood functions, we can 

formulate the concentrated likelihood functions with ρ  as the only unknown variable. 

Then by maximizing the concentrated likelihood function, ρ̂ can be obtained. Hence 

all other parameters can be found using ρ̂ .  

4 Data 

International comparisons concerning patterns of output, input and productivity are 

very challenging (Jorgenson, et al., 2012) for the involvement of combining and 

matching of various datasets. The data for the US is collected from the WORLD 

KLEMS database, which provides the quantity and price indices of gross output and 

inputs including capital service, labor service and intermediate by industry. The 

reference year is 2005. The data for China comes from the China Industrial Productivity 

(CIP) Database. The latest version is CIP 3.0 released in 2015. The database provides 
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the real and nominal gross output and intermediate input (Wu and Keiko, 2015; Wu, 

2015; Wu, et al, 2015). We derive the price indices based on the released current value 

and constant value of the gross output and intermediate and then obtain the indices for 

them by single deflation. The capital and labor input indices are provided in CIP which 

are consistent with the KLEMS database. The reference year is 1990 and we convert 

them to the 2005 base year. The industries are consistent with the ISIC revision 3. 

However, a few industries are categorized a bit differently. We matched the 

classifications and use the nominal values as the weights to calculate the overall growth 

for the aggregated industries. Non-market economy sectors such as public services that 

include Housing, Public Administration and Defense, Education, Health and Social 

Work, Other Community, Social and Personal Services are excluded4 . The industry 

classifications are listed in Table 1. The period covers from 1980 to 2010. We also add 

country dummies to control for different technology states between the US and China. 

The linkages for the industries of the US and China are extracted from the world input-

output table. We use the mid-year of the sample period of 1995 to construct the spatial 

weight matrix. 

 Table 1: Industry classifications and codes 

No.  Industry ISIC Rev. 3 

1 Agriculture, Hunting, Forestry and Fishing AtB 

2 Mining and Quarrying C 

3 Food , Beverages and Tobacco 15t16 

4 Textiles and Textile, Leather, Leather and 

Footwear 

17t19 

5 Wood and of Wood and Cork 20 

6 Pulp, Paper, Paper , Printing and Publishing 21t22 

7 Coke, Refined Petroleum and Nuclear Fuel 23 

8 Chemicals and Chemical 24 

9 Rubber and Plastics 25 

                                                        
4We also remove the whole and retail trade, Renting of Machine and Equipment and Other Business Activities in 
India for the data are missing. 
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10 Other Non-Metallic Mineral 26 

11 Basic Metals and Fabricated Metal 27t28 

12 Machinery Not Elsewhere Classified (NEC) 29 

13 Electrical and Optical Equipment 30t33 

14 Transport Equipment 34t35 

15 Manufacturing NEC; Recycling 36t37 

16 Electricity, Gas and Water Supply E 

17 Construction F 

18 Wholesale and Retail Trade 50to52 

19 Hotels and Restaurants H 

20 Transport, Storage & Post Services 60t64 

21 Financial Intermediation J 

22 Renting of Machine and Equipment; Other 

Business Activities 
71t74 

 

International trade flows are an important medium for knowledge diffusion (Ho, et 

al., 2013). On the industry level, the flow of intermediate inputs is more directly related 

to knowledge diffusion because intermediate inputs are directly used in the production 

process and substantial know-how is embodied in it. The importance of trade in 

intermediates has long been recognized in empirical work (Grubel and Lloyd, 1975; 

Hummels, et al., 2001; Johnson and Noguera, 2012). We use the intermediate flow data 

from World input-output table to indicate the technological interdependence between 

industries. In the classical endogenous economic growth theory, technology progress 

mainly originates from “learning-by-doing”. Therefore, when an upstream industry is 

producing intermediates for a downstream industry, the instruction and requirement of 

the downstream buyer will facilitate the upstream supplier to upgrade their product and 

improve their quality. The intermediate inputs, after taking logarithm from industry i to 

industry j, is denoted as 1ijw . We set the diagonal element to zero and normalize the 

matrix by row to obtain the spatial weight matrix denoted as 1W . On the other hand, 
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we also consider the spillover that may come from upstream industry by incorporating 

the technology embodied in the intermediate of suppliers. Therefore, by summing the 

transposed matrix of the input-output table with the original, we can get a symmetric 

spatial weight matrix that accounts for the spillover from both directions. The elements 

in the spatial weigh matrix are then constructed as 2 1 1ij ij jiw w w= +  . The row 

normalized matrix is denoted as 2W .  

5 Empirical results 

5.1 Estimations of Production Functions 

We firstly estimate the non-spatial production function per work for the industries of 

both the US and China. The first column of Table 1 is based on the CSS model with 

time-varying fixed effects (CSSW), which is based on the standard projections used in 

the average production approach but with the added option to decompose the error term 

from the within residuals after, e.g., a fixed effects regression. The second column of 

Table 1 is based on the CSS model with time-varying random effects (CSSG). We also 

include the estimation with the sample of the industries from the US and China in the 

following column. 

TABLE 1 
Estimate of Non-spatial Cobb-Douglas Production Function 

 (1) (2) (3) (4) (5) (6) 

 US+China US China 

Variables CSSW CSSG CSSW CSSG CSSW CSSG 

lnk(α) .093** .098*** .112*** .113*** .076*** .081** 

 (.021) (.020) (.024) (.023) (.029) (.028) 

lnm(β) .529*** .541*** .174*** .170*** .582*** .594*** 

 (.017) (.016) (.022) (.021) (.024) (.022) 
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Country-

dummy 
No Yes No No No No 

Intercept  -.178*  -.188*  -.298* 

  (.089)  (.089)  (.145) 

Time  .014***  .013***  .020** 

  (.004)  (.004)  (.006) 

Implied γ .378*** .361*** .714*** .717*** .342*** .325*** 

 (.031) (.029) (.034) (.033) (.043) (.040) 

# of 

industries 
44 44 22 22 22 22 

# of obs. 1276 1276 638 638 638 638 

HW-statistic  7.002  .603  2.361 

HW- prob  .030  .740  .307 

Notes: Significant at: *5, * *1 and * * * .1 percent; Standard error in parentheses. 

The coefficients of the factor inputs are all statistically significant, which represents 

the output elasticities of the input. The elasticities of capital, labor and intermediate are 

0.093, 0.378 and 0.529 respectively in CSSW model. And the results of CSSG is close 

to CSSW. The time trend of productivity in the CSSG model is estimated to be 1.4%, 

which represents average progress of the technology of the industries of both countries 

during 1981-2010. We also find that the elasticities of factor inputs differ between 

countries. The input with the largest elasticity is labor in the US, while intermediates is 

the input with the largest elasticity in China. The contrast reflects their difference in 

growth patterns, i.e. the difference in the share of input factors in gross output. The 

growth rates of productivity in the US and China are 1.3% and 2% respectively in CSSG 

model. Hausman-Wu statistic for the fixed effects v. random effects specification of the 

CSS estimator for the sample includes both US and China is 7.002 with a p-value of 

0.030 which weakly rejects the time-varying random effects specification on the 0.05 
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level. However, the statistics for the separated sample of the US or China are both small 

and support the random effects specification. 

 
TABLE 2 

Estimate of SDM Production Function 

 (1) (2) (3) (4) 

 Downstream Up+Downstream 

 CSSW CSSG CSSW CSSG 

lnk .122*** .124*** .121*** .123*** 

(.021) (.020) (.021) (.020) 

lnm .531*** .541*** .530*** .541*** 

 (.017) (.016) (.017) (.016) 

W•lnk -.275*** -.287*** -.249*** -.261*** 

 (.069) (.065) (.075) (.070) 

W•lnm -.165* -.131* -.231** -.187** 

 (.096) (.086) (.097) (.090) 

Country-dummy No Yes No Yes 

Intercept  -.146  -.158 

  (.100)  (.102) 

Time  .012**  .013** 

  (.005)  (.005) 

W•lny(ρ) .505*** .483*** .524*** .484*** 

 (.058) (.055) (.058) (.058) 

σv
2 .014 .014 .014 .014 

R2 .739 .741 .732 .732 

Adjusted R2 .719 .720 .712 .711 

LL 946.837 907.619 943.285 904.234 

Impliedγ .348*** .335*** .349*** .336*** 

 (.030) (.029) (.030) (.029) 
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Implied ϕ -.214 -.227 -.186 -.201 

Implied φ .103 .130 .047 .075 

HW-statistic  2.840  1.381 

HW- prob  .725  .926 

Notes: Significant at: *5, * *1 and * * * 0.1 percent; Standard error in parentheses. 

We conduct the Moran’s I test (Cliff and Ord, 1981) against spatial autocorrelation 

in the error term of the non-spatial estimation. The Moran’s I statistics is 0.0793, which 

strongly rejects the null hypothesis whatever the spatial weight matrix used. Therefore, 

we can infer that the traditional Solow model is mis-specified since it omits variables 

that reflect technological interdependence and factor input externalities. It is 

straightforward to show that non-spatial estimation leads to biased estimators when 

endogenous spatial lag variables are omitted. 

Table 2 provides estimates of the SDM specified production functions based on Eq. 

(8). Column 1 and column 2 reflect estimates with a spatial weight matrix constructed 

by the downstream intermediate flow. Column 3 and column 4 are based on the spatial 

weight matrix constructed by the summation of downstream and upstream 

intermediates flows. The coefficients for capital and for intermediates are both 

statistically significant at the 0.1% significance level. The coefficients for the spatially 

lagged regressors are both significantly negative. The spatial autocorrelation coefficient

ρ is positive and significant in the four columns and ranges between 0.483 and 0.524, 

indicating the importance of technological interdependence between industries to affect 

the gross output. Theγcoefficient in the regression under the constant return to scale 

assumption ranges between 0.335 and 0.349. The other coefficients are very close 

among the four columns. The estimates of ϕ and φ, which represent the local spatial 

relationships of factor inputs, are negative and positive respectively and suggest that a 

sector’s capital inputs have a negative effect for the productivity of another sector, while 

a sector’s intermediate inputs have a positive effect on productivity. The Hausman-Wu 

statistics in the models of two spatial weight matrices suggest the random effects 

specification is better than fixed effects specification. Based on the random effects 

estimates we obtain an average time trend of 1.2% and 1.3%, which represent 
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productivity growth in the spatial model with spatial weight matrices specified by the 

Downstream and Up+Downstream intermediate flows respectively. Comparing these 

with the result of 1.4% in the non-spatial model we can see that ignoring the spatial 

interactions appears to leads to an overestimation of overall productivity growth. In the 

following analysis of direct and indirect effects on the input factors, we choose the 

partial Spatial Durbin model with spatial weight matrix based on the downstream 

linkages as our preferred model as it has the highest log likelihood values. 

5.2 The Direct and Indirect Effect of Input Factors 

The output elasticities of the factor inputs in the spatial model include the direct effect 

of the factor inputs of the industry itself and the indirect effect of the neighbor industries’ 

factor inputs through the sectoral linkages. Based on Eq. (9b), we obtain the (44×44) 

matrices kΞ  and mΞ  representing the direct and indirect elasticities for the input of 

capital and intermediates. The direct effect is the average along the diagonal elements 

of the matrix and the indirect effect is the average of the row (or column) sums of the 

off-diagonal elements. The summation of the direct and indirect effect is the average 

total effect. We follow the simulation process suggested by LeSage and Pace (2009) to 

compute the significance of these effects. 
TABLE 3 

Direct, indirect and total effect of input factors 

SDM-Downstream 
Direct Indirect Total 

Effect t-stat Effect t-stat Effect t-stat 

 Capital .118*** 5.875 -.434*** -3.494 -.316** -2.491 

overall Intermediate .545*** 34.639 .243* 1.870 .787*** 5.929 

 Labor .338*** 11.514 .191 .079 .529** 2.141 

 Capital .119*** 5.915 -.301*** -3.590 -.183** -2.094 

domestic Intermediate .544*** 34.663 .170* 1.864 .714*** 7.575 

 Labor .337*** 11.537 .133 .079 .471*** 2.713 

 Capital -.001** -2.269 -.132*** -3.123 -.133*** -3.117 
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international Intermediate .000* 1.658 .073* 1.847 .074* 1.846 

 Labor .000 .178 .057 .748 .058 .756 

Notes: Significant at: *10, * *5 and * * * 1 percent; Standard error in parentheses. 
 

The direct, indirect and total effect of each factor input in the SDM model with spatial 

weight matrix specified by the downstream intermediate flow is reported in Table 3. 

The direct effects of capital and intermediate inputs are 0.118 and 0.545 respectively 

and statistically significant at 1% level. The direct effect of the labor input, which is 

derived based on the constant return-to-scale assumption, is 0.338. The indirect effect 

reflects the externalities of the neighbor industries’ factor inputs. The indirect effect of 

the capital input is negative while the indirect effects of intermediate and labor inputs 

are positive. The negative spillover of capital suggests that the increase of a neighbor 

industries’ capital input may have a negative externality, which leads to the decrease of 

output of an industry. However, the indirect effect of intermediate and labor inputs of 

neighbor industries have positive externalities for the output of an industry, which 

suggests that the complementary relationship on labor and intermediate input outweighs 

the competitive relationship among industries.  

To further investigate the scope and intensity of the indirect effect of a factor input, 

we split the indirect effect into domestic and international components based on the 

methods outlined in Eqs. (17)-(19). The last two groups of rows in Table 3 show the 

domestic and international direct, indirect and total effect of each factor input. The 

international direct effect is negligible, which accounts for the backflow of the 

knowledge diffusion through the international linkages. For the indirect effect, the 

international component constitutes about 30% for each factor input.  

5.3 The Productivity Growth of Industries and Spillovers 

The direct and indirect effect of individual productivity growth by industry, and the 

domestic and international spillovers of technical change through the global value chain, 

are shown in Table 4.  Average productivity growth rates for the US and China are 

1.83% and 2.95% respectively, which is approximately the same as results from the 
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non-spatial CSS estimation for the US and for China. The average spillover from 

productivity growth received in the US and China is 1.83% and 2.27% respectively, 

which indicates that China benefits more than the US from the industrial input-output 

linkages. However, results from the decomposition of received spillovers into its 

domestic and international portions suggest that the share of domestic spillovers in the 

indirect effect is 76% for China’s industries, which is larger than 63% for sectors in the 

US.  Therefore, the international spillover received by China is only 0.54%, which is 

smaller than the 0.71% received by the US. On the other hand, from the perspective of 

the average spillovers of productivity growth offered, the indirect effects of the US and 

China are 1.65% and 2.44% respectively. The international spillovers offered by the 

US and China are 0.51% and 0.71% respectively, which suggest that during the past 

decades, the high-speed growth of China’s economy has made an important 

contribution to the productivity growth of the economies of both countries. During the 

time period under study, the industries of the US and China have established a close 

and coordinated working relationship through the rapid development of global value 

chain labor division. 

The sector with the fastest productivity growth in our sample is China’s industry of 

manufacturing not elsewhere classified (NEC) and recycling (8.61%), which includes 

recycling, manufacture of furniture and other manufacturing that has not been 

categorized. Before the Chinese government issued a series of bans on solid wastes in 

2017, China imported about half of the solid wastes of the world. Relying on the 

advantages of lower environmental costs and enormous demand for industrial raw 

materials such as plastics, paper and metal, the industry of recycling experienced rapid 

growth during our sample period. The industry with the fastest productivity growth in 

the US is electrical and optical equipment (7.69%), which includes the manufacture of 

office, accounting and computing machinery; electrical machinery and apparatus; radio, 

television and communication equipment and apparatus; medical, precision and optical 

instruments; watches and clocks. These subsectors have the highest rates of technology 

innovation and product enhancement. The US electrical and optical equipment sector 

is the most important contributor to productivity growth for both countries, with an 
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overall spillover offered of 7.71%, the highest in our sample. Its domestic and 

international components are 5.17% and 2.55% and this indicates that the 

manufacturing of electrical and optical equipment is a very substantial driver of 

economic growth for both the US and China. The international spillover of China’s 

manufacturing of electrical and optical equipment is 1.47%. Although it is the industry 

with second largest international spillover, there is still a big gap in technology progress 

compared with the counterpart in US.  
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TABLE 4 
Technical change and spatial spillovers for SDM-Downstream model 

 Direct 
Received Offered 

 Indirect  Total  Indirect  Total Sum Domestic Int'l Sum Domestic Int'l 
US.s1 .0262 .0181 .0082 .0099 .0443 .0229 .0165 .0064 .0491 

US.s2 .0179 .0177 .0124 .0053 .0356 .0126 .0093 .0033 .0305 

US.s3 .0147 .0176 .0108 .0068 .0323 .0150 .0102 .0049 .0297 

US.s4 .0169 .0195 .0108 .0087 .0364 .0149 .0103 .0047 .0318 

US.s5 .0048 .0190 .0118 .0072 .0238 .0038 .0027 .0011 .0087 

US.s6 .0045 .0197 .0109 .0088 .0242 .0046 .0031 .0015 .0091 

US.s7 .0274 .0180 .0110 .0070 .0454 .0166 .0126 .0040 .0440 

US.s8 .0112 .0201 .0098 .0103 .0313 .0114 .0079 .0035 .0226 

US.s9 .0159 .0190 .0116 .0074 .0348 .0144 .0101 .0043 .0302 

US.s10 .0174 .0173 .0135 .0038 .0347 .0129 .0094 .0034 .0302 

US.s11 .0153 .0196 .0107 .0089 .0348 .0141 .0098 .0044 .0294 

US.s12 .0106 .0193 .0102 .0091 .0299 .0097 .0065 .0032 .0203 

US.s13 .0769 .0171 .0079 .0092 .0941 .0771 .0517 .0255 .1541 

US.s14 .0162 .0191 .0104 .0086 .0353 .0169 .0109 .0060 .0331 

US.s15 .0281 .0179 .0114 .0064 .0459 .0241 .0166 .0075 .0522 

US.s16 .0140 .0173 .0138 .0035 .0313 .0086 .0066 .0020 .0226 

US.s17 -.0008 .0177 .0144 .0033 .0170 -.0009 -.0006 -.0003 -.0017 

US.s18 .0303 .0166 .0133 .0033 .0469 .0332 .0221 .0111 .0635 

US.s19 .0118 .0175 .0131 .0044 .0293 .0120 .0082 .0038 .0239 

US.s20 .0219 .0183 .0102 .0081 .0402 .0218 .0153 .0065 .0437 

US.s21 .0169 .0174 .0128 .0046 .0343 .0120 .0087 .0033 .0289 

US.s22 .0055 .0180 .0126 .0053 .0235 .0055 .0038 .0016 .0110 

CN.s1 .0015 .0239 .0189 .0049 .0254 .0015 .0010 .0005 .0030 

CN.s2 -.0168 .0244 .0194 .0050 .0076 -.0144 -.0103 -.0040 -.0312 

CN.s3 .0402 .0216 .0168 .0048 .0617 .0358 .0246 .0112 .0760 

CN.s4 .0417 .0223 .0152 .0071 .0640 .0395 .0272 .0123 .0813 

CN.s5 .0666 .0221 .0162 .0059 .0888 .0436 .0319 .0116 .1102 

CN.s6 .0447 .0225 .0167 .0059 .0672 .0359 .0252 .0107 .0806 

CN.s7 .0114 .0235 .0190 .0045 .0349 .0070 .0054 .0016 .0184 

CN.s8 .0482 .0226 .0165 .0061 .0707 .0459 .0318 .0142 .0941 

CN.s9 .0515 .0221 .0148 .0073 .0737 .0407 .0292 .0115 .0922 

CN.s10 .0485 .0218 .0158 .0060 .0703 .0442 .0317 .0125 .0927 

CN.s11 .0454 .0220 .0148 .0072 .0674 .0449 .0308 .0141 .0903 

CN.s12 .0569 .0215 .0153 .0062 .0784 .0501 .0356 .0145 .1070 

CN.s13 .0571 .0207 .0124 .0083 .0778 .0517 .0358 .0158 .1088 

CN.s14 .0670 .0213 .0158 .0055 .0883 .0527 .0376 .0151 .1197 

CN.s15 .0861 .0215 .0160 .0055 .1076 .0563 .0416 .0147 .1424 

CN.s16 .0054 .0240 .0196 .0044 .0294 .0037 .0028 .0009 .0092 

CN.s17 .0124 .0215 .0189 .0026 .0338 .0121 .0084 .0036 .0244 

CN.s18 .0001 .0254 .0228 .0027 .0256 .0001 .0001 .0000 .0003 

CN.s19 -.0114 .0246 .0220 .0026 .0133 -.0081 -.0060 -.0021 -.0195 

CN.s20 .0088 .0226 .0163 .0063 .0314 .0079 .0057 .0023 .0167 

CN.s21 -.0016 .0249 .0219 .0030 .0232 -.0012 -.0009 -.0003 -.0028 

CN.s22 -.0147 .0225 .0155 .0070 .0077 -.0123 -.0088 -.0035 -.0271 
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6 Simulation of US- Sino Decoupling in Global Value Chain 

Based on our production function in the SDM form of Eq. (7), the logarithm of output 

can be expressed as follows: 
1
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Individual productivity growth and relative output elasticities of factors inputs are 

fixed in our simulations. Replacing the term in brackets with ijΘ  , Eq. (22) can be 

written more compactly as: 
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Following the methods in decomposing the domestic effect and international effect 

that we have outlined above, we can simulate the output change based on varying 

scenarios of US-Sino decoupling of their value chain. By splitting the spatial weight 

matrix into the domestic and international block matrices, we simulate the impact of 

different degrees of international supply chain disruptions on the gross output of 

industries in both countries. We consider four different scenarios of supply chain 

disruptions: a 10%, 20%, 50% and 100% reduction of international intermediate inputs 

flows with the domestic intermediate flow left unaffected. The spatial weight matrix is 

replaced by a new one constructed with reduced international linkages based on the 

four different scenarios. We then calculate itY  as the output generated from the spatial 

multiplier based on the reduced international linkages. By taking the average of 

( ) /it it itY Y Y−   for all the years, we can obtain the output declines due to the four levels 
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of supply chain disruptions.  These are shown in Table 5. The first scenario of a 10% 

reduction of international intermediate flow for example, indicates an average output 

decline of 5.5% for US industries and 7.0% for Chinese industries. The sector with the 

steepest drop is China’s electrical and optical equipment sector, which shows a decrease 

of 10.3%. However, the industry that may be the most seriously affected in the US is 

agriculture, hunting, forestry and fishing, which shows a decrease of 8.2%. The greater 

reduction in intermediate trade flow, the greater impact will be received on the output 

of both industries. In the extreme case of complete closure of bilateral trade between 

the US and China, the average output decline is 37.0% for US and 46.7% for China. 

 

TABLE 5 
Percentage of output decline on different level of supply chain disruptions 

 
-10% -20% -50% -100% 

US CN US CN US CN US CN 

s1 8.2% 6.9% 15.5% 13.1% 32.8% 28.6% 51.4% 46.9% 

s2 4.3% 6.4% 8.2% 12.3% 18.2% 27.1% 30.5% 45.0% 

s3 6.3% 6.3% 12.0% 12.0% 26.0% 26.5% 42.4% 44.0% 

s4 6.5% 9.2% 12.4% 17.2% 26.6% 36.5% 42.8% 57.5% 

s5 5.2% 7.8% 9.9% 14.9% 21.8% 32.1% 36.0% 51.8% 

s6 6.7% 7.7% 12.8% 14.6% 27.4% 31.7% 43.9% 51.2% 

s7 5.8% 5.8% 11.0% 11.2% 23.9% 24.8% 39.1% 41.5% 

s8 7.8% 7.8% 14.8% 14.7% 31.3% 31.8% 49.1% 51.2% 

s9 5.6% 9.3% 10.6% 17.6% 23.1% 37.1% 37.7% 58.2% 

s10 3.1% 7.8% 5.9% 14.8% 13.3% 31.9% 22.9% 51.5% 

s11 6.7% 9.3% 12.7% 17.4% 27.2% 36.9% 43.7% 57.9% 

s12 7.3% 8.0% 13.8% 15.2% 29.4% 32.8% 46.8% 52.6% 

s13 7.7% 10.3% 14.6% 19.3% 31.0% 40.2% 48.8% 61.9% 

s14 6.9% 7.1% 13.1% 13.5% 28.2% 29.3% 45.0% 48.0% 

s15 5.2% 7.1% 9.9% 13.6% 21.7% 29.7% 35.7% 48.5% 

s16 2.9% 5.7% 5.5% 10.9% 12.6% 24.3% 21.7% 40.8% 
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s17 2.7% 3.4% 5.2% 6.5% 11.8% 14.9% 20.5% 26.3% 

s18 2.7% 3.5% 5.3% 6.7% 12.1% 15.4% 20.9% 27.1% 

s19 3.7% 3.4% 7.0% 6.7% 15.8% 15.3% 26.9% 26.9% 

s20 6.9% 8.1% 13.0% 15.4% 28.0% 33.0% 44.9% 53.0% 

s21 4.0% 3.9% 7.6% 7.6% 17.1% 17.3% 29.0% 30.1% 

s22 4.7% 8.8% 9.0% 16.6% 20.0% 35.3% 33.5% 56.0% 

Avg 5.5% 7.0% 10.4% 13.3% 22.7% 28.7% 37.0% 46.7% 

 

7 Conclusion 

In this paper, we propose a production model with heterogeneous productivity growth 

and spatial interdependence under the GVCs labor division system for industries in the 

US and China. We estimate the output elasticity of capital, labor and intermediate inputs 

by the direct and indirect effect with modified spatial Durbin model. We also measure 

the individual productivity growth of the industries and their spillovers through input-

output linkages. We further develop a method to decompose the spillovers of factor 

inputs and productivity growth into domestic and international spillovers.  

Our study includes 44 industries in the US and China from 1981 to 2010. The SDM 

model with a spatial weight matrix based on downstream intermediate linkages is our 

preferred model. Our results suggest that the indirect effects of factor inputs are 

significant and play an important role in both economies. International spillovers 

between both countries account for about 30% of the indirect effect for each factor. The 

spillovers from productivity growth received by the industries of the US and China 

average about 1.83% and 2.27%, while a greater proportion of China’s spillover 

received is dependent on its domestic industrial linkage. International spillovers offered 

by the industries of the US and China are 0.51% and 0.71%, which suggests the close 

interdependent relationship between these industries. 

We also simulate the possible scenarios of decoupling between the US and China 

with our model for four different levels in the reduction of international intermediate 
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input flows. Results suggest average output declines of 5.5% in US and 7.0% in China 

when the international intermediate trade drops by 10%. Were trade totally cut off, the 

US would suffer a 37.0% drop in output and China would suffer a 46.7% decline. The 

relationship between the industries of both countries is more complementary than 

competitive. Our results suggest that the trade frictions and other “decoupling” policies 

between the US and China will lead to a lose-lose situation for both sides. 
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