
Direction Selection in Stochastic Directional Distance Functions

Kevin Layera, Andrew L. Johnsona,b,∗, Robin C. Sicklesc, Gary D. Ferrierd

aDepartment of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA.
bSchool of Information Science and Technology, Osaka University, Suita, Japan.

cDepartment of Economics, Rice University, Houston, TX, USA.
dDepartment of Economics, University of Arkansas, Fayetteville, AR, USA.

Abstract

Researchers rely on the distance function to model multiple product production using multiple

inputs. A stochastic directional distance function (SDDF) allows for noise in potentially all input

and output variables, yet when estimated, the direction selected will affect the functional estimates

because deviations from the estimated function are minimized in the specified direction. Specifi-

cally, the parameters of the parametric SDDF are point identified when the direction is specified,

we show that the parameters of the parametric SDDF are set identified when multiple directions are

considered. Further, the set of identified parameters can be narrowed via data-driven approaches to

restrict the directions considered. We demonstrate a similar narrowing of the identified parameter

set for a shape constrained nonparametric method, where the shape constraints impose standard

features of a cost function such as monotonicity and convexity.

Our Monte Carlo simulation studies reveal significant improvements, as measured by out of

sample radial mean squared error, in functional estimates when we use a directional distance

function with an appropriately selected direction and the errors are uncorrelated across variables.

We show that these benefits increase as the correlation in error terms across variables increase. This

correlation is a type of endogeneity that is common in production settings. From our Monte Carlo

simulations we conclude that selecting a direction that is approximately orthogonal to the estimated

function in the central region of the data gives significantly better estimates relative to the directions

commonly used in the literature. For practitioners, our results imply that selecting a direction

vector that has non-zero components for all variables that may have measurement error provides a

significant improvement in the estimator’s performance. We illustrate these results using cost and

production data from three random samples of approximately 500 US hospitals operating in 2007,

2008, and 2009, respectively, and find that the shape constrained nonparametric methods provide

a significant increase in flexibility over second order local approximation parametric methods.

Keywords: Nonparametric regression, Shape Constraints, Data Envelopment Analysis, Hospital

production.
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1. Introduction

The focus of this paper is direction selection in stochastic directional distance functions (SDDF).1

While the DDF is typically used to measure efficiency, in this paper we use a nonparametric shape

constrained SDDF to model the conditional-mean behavior of production. The stochastic distance

functions (SDF) was introduced by Lovell et al. (1994), and used in a series of early empirical stud-

ies by Coelli and Perelman (1999, 2000) and Sickles et al. (2002). The parameters of a parametric

distance function are point identified; however, if the direction in the DDF is not specified, then

the parameters of a parametric DDF are set identified.2 A set of axiomatic properties related to

production and cost functions, such as monotonicity and convexity in the case of a cost function,

are well established in the production literature (Shephard (1970), Chambers (1988)). Although

the stochastic distance function literature acknowledges the axiomatic properties necessary for du-

ality, it does not impose them globally. Instead, authors typically impose them only on a particular

point in the data (e.g., Atkinson et al. (2003)). Recognizing these issues, we provide an axiomatic

nonparametric estimator of the SDDF and a method to restrict the pool of the directions to choose

from for the SDDF, thereby reducing the size of the set identified parameter set. Most empirical

studies that use establishment or hospital level data to estimate production or cost functions either

assume a specific parametric form or ignore noise, or both ((Hollingsworth, 2003)). In contrast, we

use an axiomatic nonparametric SDDF estimator and the proposed method to determine a set of

acceptable directions to estimate a cost function that maintains global axiomatic properties for the

US hospital industry. Furthermore, we demonstrate the importance of global axiomatic properties

for the estimation of most productive scale size and marginal costs.

A few papers have attempted to implement the directional distance function in a stochastic

setting (see, for example, Färe et al. (2005), Färe et al. (2010), and Färe and Vardanyan (2016)).

The latter two papers discuss the challenges of selecting a parametric functional form that does

not violate the axioms typically assumed in production economics. Based on their observations,

Färe and Vardanyan (2016) use a quadratic functional specification.3 Yet several papers show also

a loss of flexibility in parametric functional forms, such as the translog or the quadratic functional

form, when shape constraints are imposed (e.g., Diewert and Wales (1987)). Another part of the

implementation, the selection of the direction vector in the SDDF has been discussed in Färe

et al. (2016) and Atkinson and Tsionas (2016), among others. These papers focus on selecting

the direction corresponding to a particular interpretation of the inefficiency measure, based on the

1Here we use the term stochastic in reference to a model with a noise term.
2Let φ be what is known (e.g., via assumptions and restrictions) about the data generating process (DGP). Let θ

represent the parameters to be identified, let Θ denote all possible values of θ, and let θ0 be the true but unknown
value of θ. Then the vector θ of unknown parameters is point identified if it is uniquely determined from φ. However,
θ is set identified if some of the possible values of θ are observationally equivalent to θ0 (Lewbel (2018), forthcoming).

3As Kuosmanen and Johnson (2017) note, the translog function used for multi-output production cannot satisfy
the standard assumptions for the production technology T globally for any parameter values. The quadratic functional
form does not have this shortcoming.
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distance to the economically efficient point. In contrast, we consider Kuosmanen and Johnson

(2017)’s multi-step efficiency analysis and focus on the first step, estimating a conditional mean

function. Our goal is to select the direction that best recovers the underlying technology while

acknowledging that the data generation process is very likely to introduce noise into potentially all

variables.4

To model multi-production production, Kuosmanen and Johnson (2017) have proposed the use

of axiomatic nonparametric methods to estimate the SDDF which they name Directional Convex

Nonparametric Least Squares(CNLS-d), a type of sieve estimator. Their methods have the benefits

of relaxing standard functional form assumptions for production, cost, or distance functions, but

also improve the interpretability and finite sample efficiency over nonparametric methods such

as kernel regression (Yagi et al. (2018)). A variety of models can be interpreted as special cases

of Kuosmanen and Johnson (2017). Among these special cases are a set of models that specify

the direction (e.g., Johnson and Kuosmanen (2011), Kuosmanen and Kortelainen (2012)). All

CNLS models are sieve estimators and fall into the category of partially identified or set identified

estimators discussed in Manski (2003) and Tamer (2010). The guidance our paper provides in

selecting a direction will reduce the size of the set identified for CNLS-d and other DDF estimators

with flexible direction specifications.

Much of the production function literature concerns endogeneity issues, for example Olley and

Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015). These methods are often

referred to as proxy variable approaches. The argument for endogeneity is typically that decisions

regarding variable inputs such as labor are made with some knowledge of the factors included

in the unobserved residuals. Recently, these methods have been reinterpreted as instrumental

variable approaches (Wooldridge (2009)), or control function approaches (Ackerberg et al. (2015)).

Unfortunately, the assumptions on the particular timing of input decisions is not innocuous. Indeed

every firm must adjust its inputs in exactly the same way, otherwise the moment restrictions needed

for point identification are violated. For an alternative in the stochastic frontier setting, see Kutlu

(2018).

Kuosmanen and Johnson (2017) show a production function estimated using a stochastic dis-

tance function under a constant returns-to-scale assumption is robust to endogeneity issues because

the normalization by one of the inputs or outputs causes the errors-in-variables to cancel each other.

In this paper, we consider the more general case of a convex technology, that does not necessarily

satisfy constant returns-to-scale, and show that when errors across variables are highly correlated,

a specific type of endogeneity, the SDDF improves estimation performance significantly over the

typical alternative of ignoring the endogeneity.

4For researchers interested in productivity measurement and productivity variation (e.g., Syverson (2011)), the
results from this paper can be used directly. For authors interested in efficiency analysis, they can use the insights
from this paper to improve the estimates from the first stage of Kuosmanen and Johnson’s (2017) three-step procedure
where efficiency is estimated in the third step.
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When considering alternative directions in the DDF, we show that the direction that performs

the best is often related to the particular performance measure used. We use an out-of-sample mean

squared error (MSE) that is measured radially to address this issue. This measure is motivated by

the results of our Monte Carlo simulations and is natural for a function that satisfies monotonicity

and convexity, assuring the true function and the estimated function are close in the areas were

most data are observed.

We analyze US hospital data and characterize the most productive scale size and marginal costs

for the US hospital sector. We demonstrate that out-of-sample MSE is reduced significantly by

relaxing parametric functional form restrictions. We also observe the advantage of imposing axioms

that allow the estimated function to still be interpretable. Concerning the direction selection, we

find, for this dataset, that the exact direction selected is not so critical in terms of MSE performance.

The remainder of this paper is organized as follows. Section 2 introduces the statistical model

and the production model. Section 3 describes the estimators used for the analysis. Section 4

outlines our reasons for the MSE measure we propose. Section 5 highlights the importance of the

direction selection through Monte Carlo experiments. Section 6 describes our direction selection

method. Section 7 demonstrates the benefits of using non-parametric shape-constrained estimators

with an appropriately selected direction for US hospital data. Section 8 concludes.

2. Models

2.1. Statistical Model

We consider a statistical model that allows for measurement error in potentially all of the

input and output variables. Let x̃i ∈ X ⊂ Rd+, d ≥ 1, be a vector of random input variables of

length d and ỹi ∈ Y ⊂ RQ+, Q ≥ 1, be a vector of random output variables of length Q, where i

indexes observations. Let εxi ∈ Rd, d ≥ 1, be a vector of random error variables of length d and

εyi ∈ RQ, Q ≥ 1, be a vector of random error variables of length Q. One way of modeling the

errors-in-variable (EIV) is: (
xi
yi

)
=

(
x̃i
ỹi

)
+

(
εxi
εyi

)
. (1)

Equation (1) is only identified when multiple measurements exist for the same vector of regressors

or when a subsample of observations exists in which the regressors are measured exactly (Carroll

et al. (2006)). Carroll et al. (2006) discuss a standard regression setting, not a multi-input/multi-

output production process. Thus, repeated measurement requires all but one of the netputs to be

identical across at least two observations. Here we use the term netputs to describe the union of

the input and output vectors. Neither of of these conditions is likely to hold for typical production

data sets; therefore, we develop an alternative approach to identification.

As our starting point, we use the alternative, but equivalent, representation of the EIV model

proposed by Kuosmanen and Johnson (2017):
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(
xi
yi

)
=

(
x̃i
ỹi

)
+ ei

(
gxi
gyi

)
. (2)

Clearly, the representations of Carroll et al. (2006) and Kuosmanen and Johnson (2017) are equiv-

alent if: (
εxi
εyi

)
= ei

(
gxi
gyi

)
. (3)

We define the following normalization:

ei =

√√√√ d∑
j=1

(εxij)
2 +

Q∑
j=1

(εyij)
2, (4)

which implies: √√√√ d∑
j=1

(gxij)
2 +

Q∑
j=1

(gyij)
2 = 1. (5)

We refer to (gxi , g
y
i ) as the true noise direction and in the most general case we allow the direction

to be observation specific. We note that endogeneity can exist if the error terms across variables

are correlated. If the ratio of noise in different variables is common for all observations, then

(gx, gy) is a common direction for all observations. The perfectly correlated case is an extreme

level of endogeneity. Thus, the standard EIV model with a random direction and the model with a

common direction for all observations bound a variety of practical levels for this type of endogeneity.

What are the benefits of using a directional distance function versus using a standard cost or

production function? The answer depends on the level of endogeneity among the variables in the

production process and our assumptions about the properties of the production technology.

2.2. Production Model

Researchers use production function models, cost function models, or distance function models

to characterize production technologies. Considering a general production process with multiple

inputs used to produce multiple outputs, we define the production possibility set as:

T =
{

(x̃, ỹ) ∈ Rd+Q+ | x̃ can produce ỹ
}
. (6)

Following Shephard (1970), we adopt the following standard assumptions to enforce T being a

production technology:

1. T is closed;

2. T is convex;
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3. Free Disposability of inputs and outputs; i.e., if (x̃, ỹ) ∈ T and
(
x̃k,−ỹk

)
≥ (x̃,−ỹ), then(

x̃k, ỹk
)
∈ T .

For an alternative representation, see, for example, Frisch (1964).

Developing methods to estimate characteristics of the production technology while imposing

these standard axioms was a popular and fruitful topic from the early 1950’s until the early 1980’s,

generating such classic papers as Koopmans (1951), Shephard (1953, 1970), Afriat (1972), Charnes

et al. (1978),5 and Varian (1984). Unfortunately, these methods are deterministic in the sense that

they rely on a strong assumption that the data do not contain any measurement errors, omitted

variables, or other sources of random noise. Furthermore, they are often harder to implement than

parametric regression. Thus, most econometricians and applied economists have chosen to use

parametric models, sacrificing flexibility for ease of estimation and the inclusion of noise in the

model.

Here we focus our attention on the distance function because it allows the joint production

of multi-outputs using multi-inputs. The production function and cost functions can be seen as

special cases of the distance function in which there is either a single output or a single input

(cost) respectively. Further, motivated by our discussion of EIV models above, we consider a

directional distance function which allows for measurement error in potentially all variables. We

try to relax both the parametric and deterministic assumptions common in earlier approaches to

modeling multi-output/multi-input technologies. We do this by building on an emerging literature

that revisits the axiomatic nonparametric approach incorporating standard statistical structures

including noise (Kuosmanen (2008);Kuosmanen and Johnson (2010)).

2.2.1. The Deterministic Directional Distance Function (DDF)

Luenberger (1992) and Chambers et al. (1996, 1998) introduced the directional distance func-

tion, defined for a technology T as:

DT (x̃, ỹ; gx, gy) = max {δ ∈ R : (x̃− δ gx, ỹ + δ gy) ∈ T}, (7)

where x̃ and ỹ are the observed input and output vectors, such that x̃ ∈ Rd+ and ỹ ∈ RQ+ are

assumed to be observed without noise and fully describe the resources used in production and the

goods or services generated from production. gx ∈ Rd+ is the direction vector in the input space,

gy ∈ RQ+ is the direction vector in the output space, and (gx, gy) ∈ Rd+Q+ defines the direction

from the point (x̃, ỹ) in which the distance function is measured.6 δ is commonly interpreted as a

measure of inefficiency by quantifying the number of bundles of size (gx, gy) needed to move the

observed point (x̃, ỹ) to the boundary of the technology in a deterministic setting.

5Data Envelopment Analysis is perhaps one of the largest success stories and has become an extremely popular
method in the OR toolbox for studying efficiency.

6We assume (gx, gy) 6= 0; i.e., at least one of the components of either gx or gy is non-zero.
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Chambers et al. (1998) explained how the directional distance function characterizes the tech-

nology T for a given direction vector (gx, gy); specifically:

DT (x̃, ỹ; gx, gy) ≥ 0, if and only if (x̃, ỹ) ∈ T. (8)

If T satisfies the assumptions stated in Section 2.2, then the directional distance function DT :

Rd+ × RQ+ × Rd+ × RQ+ → R+ has the following properties (see Chambers et al. (1998)):

(a) DT (x̃, ỹ; gx, gy) is upper semicontinuous in x̃ and ỹ (jointly);

(b) DT (x̃, ỹ;λ gx, λ gy) = (1/λ)DT (x̃, ỹ; gx, gy) , λ > 0;

(c) ỹ′ ≥ ỹ ⇒ DT (x̃, ỹ′; gx, gy) ≤ DT (x̃, ỹ; gx, gy);

(d) x̃′ ≥ x̃⇒ DT (x̃′, ỹ; gx, gy) ≥ DT (x̃, ỹ; gx, gy);

(e) If T is convex, then DT (x̃, ỹ; gx, gy) is concave in x̃ and ỹ.

An additional property of the DDF is the translation invariance:

(f) DT (x̃− αgx, ỹ + αgy; gx, gy) = DT (x̃, ỹ; gx, gy)− α.

Several theoretical contributions have been made to extend the deterministic DDF, see for

example Färe and Grosskopf (2010), Aparicio et al. (2017), Kapelko and Oude Lansink (2017),

and Roshdi et al. (2018). The deterministic DDF has been used in several recent applications,

including Baležentis and De Witte (2015), Adler and Volta (2016), and Fukuyama and Matousek

(2018).

2.2.2. The Stochastic Directional Distance Function

The properties of the deterministic DDF also apply for the stochastic DDF (Färe et al. (2016)).

Here we focus on estimating a stochastic DDF considering a residual which is mean zero.7 This is

represented in Figure 1.

Using the statistical model in Section 2.1 and the functional representation of technology in

Section 2.2, we restate Proposition 2 in Kuosmanen and Johnson (2017) as:

Proposition 1. If the observed data are generated according to the statistical model described in

Section 2.1, then the value of the DDF in the observed data point (xi,yi) is equal to the realization

of the random variable εi with mean zero, specifically

DT (xi,yi, g
x, gy) = εi ∀i.

7Two models are possible, 1) a mean zero residual indicating that the residual contains only noise and will pursue
a productivity analysis, or 2) a composed residual with both inefficiency and noise and our direction selection analysis
is for the first step of Kuosmanen and Johnson’s three step procedure in which a conditional mean is estimated.
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Figure 1. SDDF in mean zero case considered

In the stochastic distance function literature, the translation property, (f) above, is commonly

invoked to move an arbitrarily chosen netput variable out of the distance function, yielding an

equation that looks like a standard regression model; see, for example, Lovell et al. (1994) and

Kuosmanen and Johnson (2017). Instead, we write the SDDF equivalently with all of the outputs

on one side to emphasize that all netputs are treated symmetrically.

Under the assumption of constant returns to scale, normalizing by one of the netputs causes

the noise terms to cancel for the regressors, thus eliminating the issue of endogeneity (e.g., Coelli

(2000);Kuosmanen and Johnson (2017)). However, since we relax the constant returns to scale

assumption, endogeneity can still be an issue.8

Färe et al. (2016), among others, have recognized that the selection of the direction vector affects

the parameter estimates of the production function. In Appendix A.1, for the linear parametric

DDF defined below, we prove that alternative directions lead to distinct parameter estimates.

3. Estimation

We now describe the estimation of the DDF under a specific parametric functional form and

under nonparametric shape constrained methods.

3.1. Parametric Estimation and the DDF

Consider data composed of n observations where the inputs are defined by xi, i = 1, ..., n and

the outputs by yi, i = 1, ..., n. The estimator minimizes the squared residuals for a DDF with

8If the endogeneity is caused by correlations in the errors across variables, it can be addressed by selecting an
appropriate direction for the directional distance function. This is the direction we explore in the Monte Carlo
simulation section, Section 4.1.
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an arbitrary prespecified direction (−gx, gy). For a linear production function, we formulate the

estimator as:

min
α,β,γ,ε

n∑
i=1

ε2i (9)

s.t. γ ′ yi = α+ β xi − εi, for i = 1, . . . , n (9a)

β′ gx + γ ′ gy = 1, (9b)

where α is the intercept, β and γ are the vectors of the marginal effects of the inputs and outputs,

respectively, and the εi, i = 1, ..., n are the residuals.

Equation (9b) enforces the translation property described in Chambers et al. (1998); i.e., scaling

the netput vector by δ in the direction (−gx, gy) causes the distance function to decrease by δ.

The combination of Equation (9a) and Equation (9b) ensures that the residual is computed along

the direction (−gx, gy).

3.2. The CNLS-d Estimator

Convex Nonparametric Least Squares (CNLS) is a non-parametric estimator that imposes the

axiomatic properties, such as monotonicity and concavity, on the production technology. The

estimator CNLS-d is the directional distance function generalization of CNLS (Hildreth (1954);

Kuosmanen (2008)). While CNLS allows for just a single output, CNLS-d permits multiple outputs.

In CNLS the direction along which residuals are computed is specified a priori and is typically

measured in terms of the unique output, y. This corresponds to the assumption that noise is only

present in y and that all other variables, x̃, do not contain noise. CNLS-d allows the residual to

be measured in an arbitrary prespecified direction. If all components of the direction vector are

non-zero, this corresponds to an assumption that noise is present in all inputs.

Using the same input-output data defined in 2.1, the CNLS-d estimator is given by:

min
α,β,γ,ε

n∑
i=1

ε2i (10)

s.t. γ ′i yi = αi + β′i xi − εi, for i = 1, . . . , n (10a)

αi + β′i xi − γ ′i yi ≤ αj + β′j xi − γ ′j yi, for i, j = 1, . . . , n, i 6= j (10b)

βi ≥ 0, for i = 1, . . . , n (10c)

β′i g
x + γ ′i g

y = 1, for i = 1, . . . , n (10d)

γi ≥ 0, for i = 1, . . . , n, (10e)

where αi, i = 1, ..., n is the vector of the intercept terms, βi, i = 1, .., n and γi, i = 1, .., n are the
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matrices of the marginal effects of the inputs and the outputs, respectively, and εi, i = 1, ..., n is

the vector of the residuals (Kuosmanen and Johnson, 2017).

Equation (10b), which corresponds to the Afriat inequalities, imposes concavity. Given Equa-

tion (10b), Equation (10c) imposes the monotonicity of the estimated frontier relative to the inputs.

Equation (10d) enforces the translation property described in Chambers et al. (1998) and has the

same interpretation as Equation (9b). Similar to Equation (10c), the combination of Equation

(10b) and Equation (10e) imposes the monotonicity of the DDF relative to the outputs. In Equa-

tion (10), we specify the CNLS-d estimator with a single common direction, (−gx, gy).9

4. Measuring MSE under Alternative Directions

4.1. Illustrative Example

Data Generation Process. For our illustrative example, we use a simple linear cost function and

a directional distance linear parametric estimator. We consider two noise generation processes:

a random noise direction and a fixed noise direction (the latter corresponds to a case of severe

endogeneity). Here we discuss the random noise direction case, but direct the reader to Appendix

B for a discussion of the fixed noise direction case.

For our example, we consider the following single output cost function Data Generation Process

(DGP) where the observations (yi, ci) , i = 1, . . . , n are generated as outlined in Figure 2:

9Alternatively, some researchers may be interested in using observation specific directions or perhaps group specific
directions. In Appendix A.3, we derive the conditions under which multiple directions can be used in CNLS-d while
still maintaining the axiomatic property of global convexity of the production technology. Consider two groups each
with their own direction used in the directional distance function. Essentially, the convexity constraint holds as long
as the noise is orthogonal to the difference of the two directions used in the estimation. A simple example of this
situation is all the noise being in one dimension and the difference between the two directions for this dimension is
zero. However, this condition is restrictive when noise is potentially present in all variables. Thus, specifying multiple
directions in CNLS-d while maintaining the axiomatic properties of the estimator, specifically, the convexity of the
production possibility set, is still an open research question.
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1. Output, ỹi, is drawn from the continuous uniform distribution U [0, 1].

2. Cost is calculated as c̃i = β0 ỹi, where β0 = 1.

3. The noise terms, εyi , εci , are constructed as follows:

(a) ε0 is calculated as:

ε0 =
1

2

 √√√√ 1

n− 1

n∑
i=1

(ỹi − ȳ)2 +

√√√√ 1

n− 1

n∑
i=1

(c̃i − c̄)2
 , (11)

where ȳ = 1
n

∑n
i=1 ỹi and c̄ = 1

n

∑n
i=1 c̃i are the means of the output and cost

without noise, respectively.

(b) The scalar length of the noise is rescaled by the vector, vqεi , in each dimension.

These scaling factors are calculated as vqεi =
v∗qεi

L(v∗εi)
, q = {1, 2} where v∗qεi are drawn

from a continuous uniform distribution U [−1, 1] and L
(
v∗εi
)

=
√∑2

q=1

(
v∗qεi
)2

.

(c) (εyi , εci) = lεi vεi , i = 1, . . . , n, where lεi is a scalar length drawn from the nor-

mal distribution, N (0, λ ε0), where λ is prespecified initial value for the standard

deviation and vεi = [v1εi , v2εi ] is a normalized direction vector.

4. The observations with noise are simply obtained by adding the noise term:(
yi
ci

)
=

(
ỹi
c̃i

)
+

(
εyi
εci

)
, i = 1, . . . , n. (12)

Figure 2. Linear function data generation process with random noise directions

Figure 3 show the results of the two data generating processes, the case in which the direction

of the noise is random and the case in which the direction of the noise of fixed, respectively.

Evaluating the Parametric Estimator’s Performance. We use two criteria to assess the performance

of the parametric estimator: 1) Mean Squared Error (MSE) comparing the true function to the

estimated function, and 2) MSE comparing the estimated function to a testing dataset. While we

can calculate both metrics for our Monte Carlo simulations, only the second metric can be used

with our application data below.

To calculate deviations, we use the MSE direction
(
gyMSE , g

c
MSE

)
. For any particular point

of the testing set, (ytsi , ctsi) , i = 1, . . . , n, we determine the estimates, (ŷtsi , ĉtsi) , i = 1, . . . , n ,

defined as the intersection of the estimated function characterized by the coefficients
(
α̂, β̂

)
and

the line passing through (ytsi , ctsi) , i = 1, . . . , n, and direction vector
(
gyMSE , g

c
MSE

)
. We evaluate
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Figure 3. Linear Case with Random Noise Direction (left), Linear Case with Fixed Noise Direction (right)

the value of the MSE as:

MSE =
1

n

n∑
i=1

(
(ŷtsi − ytsi)

2 + (ĉtsi − ctsi)
2
)
. (13)

We use the same method when comparing the true function to the estimated function and

the estimated function to our testing dataset. To compare the true function to the estimated

function, we use the Linear Function Data Generation Process, the left figure of Figure 3 steps 1

and 2, to construct our testing dataset, and to evaluate the estimated function without knowing

the true function using the full Linear Function Data Generation Process. Figure 4 show the MSE

computations.
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Figure 4. MSE calculated relative to the True Function in the MSE direction π/4 (left), MSE calculated using a
testing data set in the MSE direction π/4 (right)
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Additional Information Describing the Simulations. We apply the DGP described above to gen-

erate a training set, (ytri , ctri) , i = 1, . . . , ntr, and a testing set (ytsi , ctsi) , i = 1, . . . , nts, in which

noise is introduced to the observations in random directions. We set the noise scaling coefficient

to λ = 0.6 and the number of observations to ntr = nts = 100. We run 100 repetitions of the

simulation for each experiment on a computer with a processor Intel Core i7 CPU 860 2.80 GHz

and 8 GB RAM. We use the quadratic solver on MATLAB 2017a.

For the estimator, we define the direction vector used in the parametric DDF as a function

of an angular variable θ, which allows us to investigate alternative directions. Specifically, the

direction vector used in the DDF is (gy, gc) = (cos(θt), sin(θt)). We examine the set of directions

corresponding to the angles θt ∈ {0, π/8, π/4, 3π/8, π/2}.

Results: Random Noise Directions. Table 1 and Table 2 show results corresponding to the two

performance criteria introduced above, the MSE relative to the true function and the MSE relative

to a testing dataset, respectively. Table 1 shows that the direction corresponding to the angle

π/4, (gy = 0.707, gc = 0.707), produces the smallest values of MSE (shown in bold in the table)

regardless of the direction used for the MSE computation. Thus, for noise introduced in random

directions and given this particular DGP, we are able to fit an optimal direction for estimation.

However, the estimator’s quality diminishes if we select the extreme directions corresponding to

the angles 0 and π/2. Table 2 reports that the direction corresponding to the smallest MSE

value (shown in bold) is always the one matching the direction used in the MSE computation.

In applications, using a testing set is necessary because the true function is unknown. Table 2

shows the benefits of matching the direction of MSE evaluation direction outweigh the benefits of

selecting a direction based on the properties of the function being estimated.

Table 1. Average MSE over 100 simulations for the Linear Estimator compared to the true function with a DGP
using random noise directions

Avg MSE: Comparison
to the True Function

DDF Angle θt

MSE Dir Angle θMSE 0 π/8 π/4 3π/8 π/2

0 2.09 0.75 0.56 1.16 3.68
π/8 1.36 0.46 0.32 0.63 1.89
π/4 1.25 0.41 0.28 0.51 1.48
3π/8 1.59 0.50 0.32 0.57 1.60
π/2 3.06 0.91 0.55 0.92 2.44

Note: Displayed are measured values multiplied by 103.

For the out-of-sample testing set, the direction that provides the smallest MSE value is the

direction used for the MSE computation. Because the functional estimate is optimized for the

direction specified in the SDDF, it is perhaps expected that using the same direction that will be
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Table 2. Average MSE over 100 simulations for the Linear Estimator compared to an out-of-sample testing set with
a DGP using random noise directions

Avg MSE: Comparison
to Out-of-Sample

DDF Angle θt

MSE Dir Angle θMSE 0 π/8 π/4 3π/8 π/2

0 28.28 29.43 31.29 34.23 40.67
π/8 18.03 17.79 18.19 19.09 21.32
π/4 16.38 15.55 15.45 15.77 16.90
3π/8 20.50 18.67 18.04 17.90 18.46
π/2 38.63 33.07 30.68 29.29 28.70

Note: Displayed are measured values multiplied by 103.

used in the MSE evaluation would produce a relatively low MSE compared to other directions.

However, when the functional estimate is compared to the true function, the MSE values are around

ten times smaller than the out-of-sample testing case. In out-of-sample testing the presence of noise

in the observations causes a deviation regardless of the quality of the estimator or the number of

observations. The DDF direction corresponding to the smallest MSE is the direction orthogonal

to the true function (i.e., π/4 for our DGP). This direction provides the shortest distance from the

observations to the true function. We conclude that, in this experiment, it is preferable to select a

direction orthogonal to the true function (see Section 5 for further experiments).

From the fixed noise direction experiments (see Appendix B), we observe that using a direction

for the estimator that matches the direction used for the noise generation significantly reduces the

MSE values compared to the true function. From this, we infer that when endogeneity is severe,

using a direction that matches the characteristics of this endogeneity significantly improves the fit

of the estimator; i.e., the MSE is 50% smaller for the matching direction than for the second best

direction in 70% of the cases (see Section 5 for the details).

Finally, we need to solve the problem of evaluating alternative directions when the true function

is unknown so that we can evaluate alternative directions in the application data. Below, we

describe our proposed alternative measure of fit.

4.2. Radial MSE Measure

MSE is typically measured by the average sum of squared errors in the dimension of a single

variable, such as cost or output. As explained in Section 4.1, when we compare out-of-sample

performance, we find that the best direction to use in estimating a SDDF is the direction used

for MSE evaluation regardless of the direction of noise in the DGP or any other characteristics

of the DGP. To avoid this relationship between the direction of estimation and the direction of

evaluation, we propose a radial MSE measure.
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We begin by normalizing the data to a unit cube and consider a case of Q outputs and n

observations, where the original observations are:

(yi1, . . . , yiQ, ci), i = 1, . . . , n.

The normalized observations are:

y̆ij =
yij −mink ykj

maxk ykj −mink ykj
, j = 1, . . . , Q, i = 1, . . . , n, (14)

c̆i =
yi −mink ck

maxk ck −mink ck
, i = 1, . . . , n. (15)

Our radial MSE measure is the distance from the testing set observation to the estimated func-

tion measured along a ray from the testing set observations to the center C. Having normalized

the data, the center for the radial measure is C =

 Q︷ ︸︸ ︷
0, . . . , 0, 1

 .
The radial MSE measure is the average of the distance from each testing set observation to the

estimated function measured radially. Figure 5 illustrates this measure. For a convex function, a

radial measure reduces the bias in the measure for extreme values in the domain.

Figure 5. A Radial MSE Measure on a Cost Function with Two Outputs
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5. Monte Carlo Simulations

We next examine how different DGPs affect the optimal direction for the DDF estimator based

on a set of Monte Carlo simulations. We consider both random noise directions for each observation

and a fixed noise direction representing a high endogeneity case. We consider the effects of the

different variance levels for the noise and changes in the underlying distribution of the production

data. Using the simplest case of two outputs and a fixed cost level for all observed units allows us

to isolate the effects of the characteristics of the data and of the function separately.

5.1. CNLS-d Formulation for Cost Isoquant Estimation

Before describing our experiments, we first outline the CNLS-d for estimating the iso-cost level

set. It is based on the following optimization problem:

min
γ,ε

n∑
i=1

ε2i (16)

s.t. − εj + εi − γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (16a)

γ ′i g
y = 1, for i = 1, . . . , n (16b)

γi ≥ 0, for i = 1, . . . , n. (16c)

We can recover the fitted values, ŷi, and the coefficient, αi, i = 1, . . . , n, using:

ŷi = yi − εi gy, for i = 1, . . . , n (17)

αi = γ ′i yi + εi, for i = 1, . . . , n. (18)

5.2. Experiments

We conducted four experiments to investigate the optimal direction for the DDF estimator.

Experiment 1 - Base case: A two output circular isoquant with uniformly distributed angle param-

eters and random noise direction.

For the base case, we consider a fixed input level and approximate a two output isoquant; i.e.,

Q = 2. Indexing the outputs by q and observations by i, we generate the output variables as:

yqi = ỹqi + εqi, q = 1, . . . , Q, i = 1, . . . , n, (19)

where ỹi is the observation on the isoquant and εi is the noise. We generate the output levels

ỹqi, q = 1, . . . , Q , i = 1, . . . , n as:
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ỹ1i = cos(θi), i = 1, . . . , n (20)

ỹ2i = sin(θi), i = 1, . . . , n, (21)

where θi, i = 1, . . . , n, is drawn randomly from a continuous uniform distribution, U
[
0, π2

]
. The

noise terms, εqi, q = 1, . . . , Q, i = 1, . . . , n, have the following expressions:

ε1i = l cos(θεi), i = 1, . . . , n (22)

ε2i = l sin(θεi), i = 1, . . . , n, (23)

where the length l is drawn from the normal distribution N (0, λ), the angle θεi is observation

specific and characterizes the noise direction for each observation, and θεi is drawn from a continu-

ous uniform distribution U
[
−π

2 ,
π
2

]
. The values considered for the directions in CNLS-d estimator

are 0, π8 ,
π
4 ,

3π
8 ,

π
2 . The standard deviation of the normal distribution is λ = 0.1. We perform the

experiment 100 times for each parameter setting.

Table 3 reports the radial MSE values from a testing set of n observations lying on the true

function.

Table 3. Experiment 1: Values of the radial MSE relative to the true function. The angle used in CNLS-d estimator
varies and the noise direction is randomly selected. In the DGP, the standard deviation of the noise distribution, λ,
is 0.1.

CNLS-d Direction Angle
0 π/8 π/4 3π/8 π/2

Average MSE across simulations 13.90 4.65 3.32 4.49 13.93

Note: Displayed are measured values multiplied by 104.

As shown in Table 3, the angle corresponding to the smallest MSE (shown in bold) is the one that

gives an orthogonal direction to the center of the true function, π
4 , and that the MSE values differ

significantly, increasing at similar rates as the direction angle deviates from π
4 in either direction.

Experiment 2 - The base case with fixed noise directions.

In this experiment, θεi , which characterizes the noise direction for each observation, is constant

for all observations, θε. The values used for θε and the directions in CNLS-d estimator are the same,

0, π8 ,
π
4 ,

3π
8 ,

π
2 . The standard deviation of the normal distribution is again λ = 0.1. We perform the

experiment 100 times for each parameter settings. Table 4 reports the results.

Each row in the Table 4 corresponds to a different noise direction in DGP. The bold numbers

identify the directions in CNLS-d estimator that obtains the smallest MSE for each noise direction.
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We confirm our previous insight, from the parametric estimator and fixed noise direction case

described in Appendix B, that the bold values appearing on the diagonal (from the upper-left

to the lower-right of Table 4) correspond to the directions used in CNLS-d. This result indicates

that selecting the direction in the SDDF that matches the underlying noise direction in the DGP

results in improved functional estimates.

Table 4. Experiment 2: Values of radial MSE relative to the true function varying the DGP noise direction and the
CNLS-d estimator direction. In the DGP, the standard deviation of the noise distribution, λ, is 0.1.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 2.69 3.03 4.49 8.86 25.47
π/8 7.49 3.44 4.00 8.07 28.83
π/4 20.28 5.79 4.30 5.80 19.06
3π/8 25.58 7.80 4.18 3.51 6.84
π/2 25.90 9.09 4.73 3.10 2.57

Note: Displayed are measured values multiplied by 104.

Experiment 3. Base case with fixed noise direction and different noise levels.

In Experiment 3, we vary the noise term by changing the λ coefficient from λ = 0.1 to a value half

as large, λ = 0.05, and a value twice as large, λ = 0.2. Table 5 reports the results for λ = 0.05:

Table 5. Experiment 3–Less Noise: Values of radial MSE relative to the true function varying the DGP noise direction
and the CNLS-d direction. In the DGP, the standard deviation of the noise distribution, λ, is 0.05.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 0.92 0.82 0.96 1.53 5.12
π/8 1.83 1.09 1.09 1.47 5.45
π/4 3.70 1.41 1.29 1.43 3.93
3π/8 5.75 1.68 1.27 1.18 1.86
π/2 4.61 1.40 0.95 0.79 0.90

Note: Displayed are measured values multiplied by 104.

In Table 5 (Experiment 3, with λ = 0.05), we do not observe the same diagonal pattern observed

in Experiment 2, and the best direction for CNLS-d estimator does not match the direction selected

for the noise. This leads us to hypothesize that when the noise level is small, data characteristics,

such as the distribution of the regressors or the shape of the function, affect the estimation whereas

when the noise level is large, regressors’ relative variability becomes a more dominant factor in

determining the best direction for the CNSL-d estimator.
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The results of Experiment 3 with λ = 0.2 are reported in the appendix, section Appendix B,

Table B.15 (Experiment 3 with λ = 0.2). The results are consistent with the results of Experiment

2, specifically, the best direction always coincides with the noise direction selected.

Experiment 4: Base case with different distributions for the initial observations on the true function.

In Experiment 4, we seek to understand how changing the DGP for the angle, θi, i = 1, . . . , n,

affects the optimal direction. We consider the three normal distributions with different parameters:

N
[
π
8 ,

π
16

]
, N

[
π
4 ,

π
16

]
and N

[
3π
8 ,

π
16

]
. We truncate the tails of the distribution so that the generated

angles fall in the range [0, π/2]. Noise is specified as in Experiment 1. Table 6 reports the results

of this experiment.

Table 6. Experiment 4: Values of radial MSE relative to the true function varying the CNLS-d direction and the
mean of the normal distribution used in the DGP.

Mean of the CNLS-d Direction angle

Normal Distribution (θ̄) 0 π/8 π/4 3π/8 π/2

π/8 3.19 2.21 3.89 10.28 46.47
π/4 8.44 2.92 1.98 3.17 9.00
3π/8 45.64 10.25 4.02 2.43 3.07

Note: Displayed are measured values multiplied by 104.

In Table 6, we observe that selecting a direction in the SDDF to match θ̄, the mean of the

distribution for the angle variable used in the DGP, corresponds to the smallest MSE value. This

result suggests that the estimator’s performance improves when we select a direction that points

to the “center” of the data.

6. Proposed Approach to Direction Selection

Based on Monte-Carlo simulations, we have found that the optimal direction depends on the

shape of the function and the distribution of the observed data. This of itself is not surprising.

However, by assuming a unimodal distribution for the data generation process, a direction that

aims towards the “center” of the data and is perpendicular to the true function at that point

tends to outperform other directions. To apply this finding for a dataset with Q outputs and

n observations, (yi1, . . . , yiQ, ci), i = 1, . . . , n, we suggest selecting the direction for the DDF as

follows:
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1. Normalize the data:

y̆ij =
yij −mink ykj

maxk ykj −mink ykj
, j = 1, . . . , Q, i = 1, . . . , n (24)

c̆i =
yi −mink ck

maxk ck −mink ck
, i = 1, . . . , n (25)

2. Select the direction: 
gy1
...

gyQ

gc

 =


median (y̆i1)

...

median (y̆iQ)

1−median (c̆i) .

 (26)

This provides a method for direction selection that can be used in applications when the true

direction is unknown. We test the proposed method by estimating a cost function for a US hospital

dataset.

7. Cost Function Estimation of the US Hospital Sector

We analyze the cost variation across US hospitals using a conditional mean estimate of the cost

function. We estimate a multi-output cost function for the US hospital sector by implementing

our data-driven method for selecting the direction vector for the DDF. We report most productive

scale size and marginal cost estimates.

7.1. Description of the Dataset

We obtain cost data from the American Hospital Association’s (AHA) Annual Survey Databases

from 2007 to 2009. The costs reported include payroll, employee benefits, depreciation, interest,

and supply expenses. We obtain hospital output data from the Healthcare Cost and Utilization

Project (HCUP) National Inpatient Sample (NIS) core file that captures data annually for all dis-

charges for a 20% sample of US community hospitals. The hospital sample changes every year.

For each patient discharged, all procedures received are recorded as International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD9-CM) codes. The typical hospital in the US

relies on these detailed codes to quantify the medical services it provides and summarize the re-

sources consumed via cost measures (Zuckerman et al. (1994)). We map the codes to four categories

of procedures, specifically the procedure categories are “Minor Diagnostic,” “Minor Therapeutic,”

“Major Diagnostic,” and “Major Therapeutic” which are standard output categories in the liter-

ature (Pope and Johnson (2013)). The number of procedures is each category are summed for

each hospital by year to construct the output variables. The total number of hospitals sampled is
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around 1,000 per year from 2007 to 2009.10 However, mapping between the two databases is only

possible for approximately 50% of the hospitals in the HCUP data, resulting in approximately 450

to 525 observations available each year.

Table 7. Summary Statistics of the hospital dataset

2007
(523 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 146M 162 4083 3499 7299

Skewness 3.51 2.89 2.63 5.19 3.28
25-percentile 24M 9 277 108 512
50-percentile 72M 73 1688 938 3108
75-percentile 182M 207 5443 4082 9628

2008
(511 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 163M 175 4433 3688 7657

Skewness 4.19 3.80 2.97 4.87 2.82
25-percentile 28M 10 325 120 545
50-percentile 83M 76 1809 1013 3350
75-percentile 189M 246 5984 4569 10781

2009
(458 observations)

Cost ($) MajDiag MajTher MinDiag MinTher
Mean 175M 161 4471 3615 7905

Skewness 3.39 3.78 2.43 4.68 2.41
25-percentile 31M 12 420 148 713
50-percentile 91M 69 1737 1136 3458
75-percentile 220M 230 6402 4694 10989

7.2. Pre-Analysis of the Dataset

7.2.1. Testing the Relevance of the Regressors

We begin by testing the statistical significance of our four output variables, y = (y1, y2, y3, y4),

for predicting cost. The null hypothesis stated for the qth output is:

H0 : P [E (c |y − {yq}) = E (c |y)] = 1

10The NIS survey is a stratified systematic random sample. The strata criteria are urban or rural location,
teaching status, ownership, and bed size. This stratification ensures a more representative sample of discharges than
a simple random sample would yield. For details see https://www.hcup-us.ahrq.gov/tech_assist/sampledesign/

508_compliance/508course.htm#{463754B8-A305-47E3-B7EE-A43953AA9478}.
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against:11

H1 : P [E (c |y − {yq}) = E (c |y)] < 1.

We implement the test with a Local Constant Least Squares (LCLS) estimator described in

Henderson and Parmeter (2015), calculating bandwidths using least-squares cross-validation. We

use 399 wild bootstraps. We found that all output variables were highly statistically significant in

all years.

7.3. Results

CNLS-d and Different Directions. We analyze each year of data as a separate cross-section because,

as noted above, the HCUP does not track the same set of hospitals across years. To illuminate

the direction’s effect on the functional estimates, we graph “Cost” as a function of “Major Diag-

nostic Procedures” and “Major Therapeutic Procedures” holding “Minor Diagnostic Procedures”

and “Minor Therapeutic Procedures” constant at their median values. Figure 6 illustrates the es-

timates for three different directions, one with only a cost component, one with only a component

in Major Therapeutic Procedures, and one that comes from our median approach. Visual inspec-

tion indicates that the estimates with different directions produce significantly different estimates,

highlighting the importance of considering the question of direction selection.

Figure 6. US Hospital Cost Function Estimates for Three Directions

11Where the notation y − {yq} implies the vector y excluding the qth component.
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We compare the estimator’s performance when using different directions. Table 8 reports the

MSE for three sample directions in each year. We define our direction vector as (gy1, gy2, gy3, gy4, gc).
12

Table 8. Results of the radial MSE values for different directions by year

Direction Year
(gy1, gy2, gy3, gy4, gc) 2007 2008 2009

(0.45, 0.45, 0.45, 0.45, 0.45) 2.10 1.30 1.50
(0.35, 0.35, 0.35, 0.35, 0.71) 2.15 1.65 1.29
Median Direction 1.79 1.55 1.34

Note: Displayed are the measured values
multiplied by 103

We pick two directions, one with equal components in all dimensions, and a second direction

that has a cost component that is double the value of the output components. The median vector

is (0.014, 0.041, 0.033, 0.038, 0.998), which is very close to the cost-only direction. The MSE varies

by 15-30% over the different directions. We observe that there is no clear dominate direction;

however, the median direction performs reasonably well in all cases. We conclude that as long as a

direction with non-zero components for all variables that could contain noise is selected, then the

precise direction selected is not critical to obtaining improved estimation results.

Comparison with other estimators. We compare three methods to estimate a cost function: 1) a

quadratic functional form (without the cross-product terms), Färe et al. (2010); 2) CNLS-d with

the direction selection method proposed in Section 6; and 3) Lower bound estimate calculated using

a Local Linear Kernel regression with a Gaussian kernel and Leave One-Out Cross-validation for

bandwidth selection, Li and Racine (2007).13 We select these estimators because a quadratic

functional form to model production has been used in recent productivity and efficiency analysis of

healthcare. See, for example, Ferrier et al. (2018). The local linear kernel is selected because it is

an extremely flexible nonparametric estimator and provides a lower bound for the performance of

a functional estimate. However, note the local linear Kernel does not have the standard properties

of a cost function, specificaly cost is monotonic in cost and marginal costs are increasing as output

increases.

We will use the criteria of K-fold average MSE with k = 5 to compare the approaches. This

means we split the data equally into 5 parts. We use 4 of the 5 parts for estimation (training) and

evaluate the performance of the estimator on the 5th part (testing). We do this for all 5 parts and

average the results. The values presented correspond to the average across folds. Table 9 reports

the results.

12We focus on types of directions found to be competitive in our Monte Carlo simulations.
13For CNLS-d, we select a value for an upper bound through a tuning process, Ubound = 0.5, and impose the

upper bound on the slope coefficients estimated (Lim, 2014).
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Table 9. US Hospital K-fold Average MSE in Cost to the Cost Function Estimates for the Three Functional Speci-
fications by Year

Quadratic CNLS-d Lower Bound
Year Regression (Median Direction) Estimator

2007 3.43 2.44 2.35
2008 2.76 1.93 1.48
2009 2.43 1.80 1.53

Note: The MSE values displayed are the measured
values multiplied by 103

Overall CNLS-d performs well and is close to the lower bound in terms of fitting performance

while imposing standard axioms of a cost function. Like most production data, the hospital data is

very noisy. The shape restrictions imposed in CNLS-d improves the interpretability. The CNLS-d

estimator outperform the parametric approach, indicating the general benefits of nonparametric

estimators.

Description of Functional Estimates - MPSS and Marginal Costs. We report the Most Productive

Scale Size (MPSS) and the Marginal Costs for the a quadratic parametric estimator, the CNLS-d

estimator with our proposed direction selection method and an alternative. For the MPSS, we

present the cost levels obtained for different ratios of Major Diagnotic procedures (MajDiag) and

Major Therapeutic procedures (MajTher), with the minor diagnostics and therapeutics held con-

stant at their median levels. For the Marginal Costs, we present the values for different percentiles

of the MajDiag and MajTher, with the minor diagnostics and therapeutics held constant at their

median levels. A more exhaustive comparison across all outputs is presented in Appendix C.

MPSS results are presented in Table 10 and the values for CNLS-d (Median Direction) are illus-

trated in Figure 7. We observe small variations across both years and estimators. The differences

across years are in part due to the sample changing across years. Most hospitals are small and

operate close to the MPSS.14 However, there are several large hospitals that are operating signif-

icantly above MPSS. Hospitals might choose to operate at larger scales due to synergies of joint

production and network effects, meaning providing a large array of services allows hospitals to

increase their production levels by providing one location where a consumer can fulfill multiple

healthcare needs.

CNLS-d is the most flexible estimator and allows MPSS values to fluctuate significantly across

percentiles. CNLS-d does not smooth variation, rather it minimizes the distance from each observa-

tions to the shape constrained estimator. Even though the LL Kernel bandwidths are selected via

cross-validation, relatively large values are selected due to the relatively noisy data and the highly

skewed output distributions. These large bandwidths and the parametric nature of the Quadratic

14Recall the data has been rescaled so that all variables including cost are on the scale of 0 to 1.
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function make these two estimators relatively less flexible compared to CNLS-d. A feature that is

only captured by CNLS-d is that in all years hospitals that specialize in either major diagnostics

or major therapeutics maximize productivity at a larger scale of operation.

Table 10. Most Productive Scale Size measured in normalized cost conditional on Major Diagnostic procedures
(MajDiag) and Major Therapeutic procedures (MajTher) , Minor Diagnostic procedures (MinDiag) and Minor
Therapeutic procedures (MinTher) held constant at the 50th percentile

Ratio Quadratic Regression CNLS-d (median) CNLS-d (equal)

MajTher/MajDiag 2007 2008 2009 2007 2008 2009 2007 2008 2009

20% 0.73 1.69 1.46 0.96 0.46 1.02 0.88 0.45 1.01
30% 0.87 1.22 1.28 0.46 0.44 1.01 0.83 0.42 0.49
40% 1.00 1.08 1.19 0.43 0.41 0.48 0.41 0.39 0.47
50% 1.13 0.81 1.34 0.43 0.39 0.45 0.42 0.38 0.44
60% 1.25 0.87 1.08 0.46 0.39 0.43 0.46 0.38 0.44
70% 0.89 0.91 1.14 0.98 0.42 0.45 0.95 0.41 0.44
80% 0.93 0.93 1.17 1.01 0.44 0.96 0.99 0.43 0.45

Note: The values displayed are the measured values multiplied by 10
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Figure 7. Most Productive Scale Size (in red) on the estimated function by “CNLS-d (Med)”, CNLS-d using the
median approach for the direction, for different ratios of Major Therapeutic Procedures over Major Diagnostic
Procedures

The marginal cost results for Major Diagnostic Procedures are presented in Table 11 and Figure

8 (left) and the marginal cost results for Major Therapeutic Procedures in Table 12 and Figure 8

(right). Again, as in Table 10, reporting MPSS levels, CNLS-d is more flexible and its marginal

cost estimates vary significantly across percentiles. The CNLS-d with difference directions provides

very similar marginal costs estimates. However, the CNLS-d estimates differ significantly from the

marginal cost estimates from the parametric estimator. It seems that the direction choice is not as

critical as long as the direction contains a non-zero component in all the netputs that contribute to
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Table 11. Marginal Cost of Major Diagnostic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal)

MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 0.08 1.26 0.92 0.02 0.03 0.03 0.05 0.07 0.06
25 50 0.08 1.26 0.92 0.09 0.02 0.03 0.02 0.03 0.06
25 75 0.08 1.26 0.92 0.02 0.04 0.04 0.03 0.01 0.06
50 25 0.24 1.25 0.92 2.09 2.86 2.30 2.56 1.51 2.15
50 50 0.24 1.25 0.92 2.03 1.00 2.05 1.85 0.99 1.62
50 75 0.24 1.25 0.92 0.36 0.14 0.04 0.03 0.01 0.06
75 25 0.56 1.21 0.93 4.85 4.98 4.73 4.38 4.97 4.54
75 50 0.56 1.21 0.93 4.85 4.99 4.74 4.33 4.95 4.61
75 75 0.56 1.21 0.93 2.72 2.70 1.83 2.27 2.39 2.28

Note: The values displayed are the measured values multiplied by 10

Table 12. Marginal Cost of Major Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal)

MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 2.64 2.57 1.97 0.05 0.03 0.04 0.03 0.10 0.09
25 50 2.96 2.91 2.18 2.79 1.78 2.02 2.36 1.73 1.12
25 75 3.82 3.86 2.92 4.99 4.97 4.97 4.99 4.89 4.84
50 25 2.64 2.57 1.97 0.09 0.04 0.10 0.01 0.03 0.09
50 50 2.96 2.91 2.18 0.95 1.73 0.34 1.73 1.59 0.76
50 75 3.82 3.86 2.92 4.99 4.94 4.97 4.99 4.89 4.84
75 25 2.64 2.57 1.97 0.03 0.08 0.03 0.01 0.01 0.07
75 50 2.96 2.91 2.18 0.03 0.11 0.07 0.03 0.03 0.20
75 75 3.82 3.86 2.92 4.40 4.03 4.60 4.24 3.71 4.80

Note: The values displayed are the measured values multiplied by 10

the noise. For all estimators, the marginal costs results are in line with the theory that marginal

costs are increasing with scale. This property can be violated if using a non-parametric estimator

without any shape constraints imposed. This can be seen in the marginal cost estimates for the

Local Linear Kernel regression estimator in Appendix C, Table C.17 and Table C.18.

Our data set which combines AHA cost data with AHRQ output data for a broad sample of

hospitals from across the US is unique to the best of our knowledge. However, the marginal cost

estimates are broadly in line with marginal cost estimates for US hospitals for similar time periods.

Gowrisankaran et al. (2015) studied considerable smaller set of hospitals located in Northern Vir-

ginia and observed in 2006 that on average are larger than the hospitals in our sample. Due to the

difference in outputs the marginal cost levels are not directly comparable. However, conditional

on the size variation, the variation in marginal costs is similar to the variation we observe for the
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Figure 8. Marginal Cost of the Major Diagnostic Procedures (left) and Marginal Cost of the Major Therapeutic
Procedures (right) (“CNLS-d (Med)” corresponds to CNLS-d using the median approach for the direction and
“CNLS-d (Eq)” corresponds to CNLS-d using the direction with equal components in all netputs

parametric (quadratic) regression specification applied to our data. Boussemart et al. (2015) ana-

lyzed data on nearly 150 hospitals located in Florida observed in 2005. The authors use a different

output specification and a trans-log model. The distribution of the size of the hospitals is similar

to our dataset and we observe similar variances in marginal costs as the parametric (quadratic)

regression specification applied to our data.

8. Conclusions

This paper investigated the improvement in functional estimates when specifying a particular

direction in CNLS-d. From our Monte Carlo experiments, two primary findings emerged. First,

directions close to the average orthogonal direction to the true function performed well. Second,

when the data are noisy, selecting a direction that matched the noise direction of the DGP improves

estimator performance. Our simulations indicate that CNLS-d with a direction orthogonal to the

data is preferable if the noise level is not too large or a direction that matches the noise direction of

the DGP if the noise level is large. Thus if the users know the shape of the data or the characteristics

of the noise, they can use CNLS-d with a direction orthogonal to the data if the noise coefficient

is small. Or if the noise coefficient is large, the user can select a direction close to the true noise

direction, with non-zero components in all variables that potentially have noise. Our application

to US hospital data shows that CNLS-d performs similarly across different directions which all

include non-zero components of the direction vector for variables which potentially have noise in

their measurement.

In future research, we propose developing an alternative estimator that incorporates multiple
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directions in CNLS-d while maintaining the concavity axiom. This would allow dealing with

subgroups within the data, permitting different assumptions across groups.
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Appendices

The appendix is composed of the following parts:

• Properties of Directional Distance Functions and CNLS-d (Appendix A)

• Monte Carlo, Additional Experiments (Appendix B)

• Detailed results for the Hospital Application (Appendix C)
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Appendix A. Properties of Directional Distance Functions and CNLS-d

Appendix A.1. Direction Selection in Directional Distance Functions

In this appendix we prove that the direction vector affects the functional estimates. Let gx,y =

(gx, gy) then we can state the following Theorem.

Theorem 1. Suppose that two direction vectors exist, gx,ya and gx,yb , such that gx,ya 6= gx,yb .

Then the directional distance function estimates using these two different directions are not equal,

D(X,Y ; gx,ya ) 6= D(X,Y ; gx,yb ).

Proof. Rewrite Problem (10) as

min
α,β,γ

n∑
i=1

(αi + β′i xi − γi
′
yi)

2 (A.1)

s.t. αi + β′i xi − γ ′i yi ≤ αj + β′j xi − γ ′j yi, for i, j = 1, . . . , n, i 6= j (A.1a)

βi,γi ≥ 0, for i = 1, . . . , n (A.1b)

β′i g
x + γ ′i g

y = 1, for i = 1, . . . , n (A.1c)

Observe that all decision variables appear in the objective function and that the objective function

is a quadratic function while the constraints define a convex solution space, i.e., this optimization

problem has a unique solution (Bertsekas (1999)). If we solve Problem (A.1) with gx,ya , then

the resulting solution vector is (αa,βa,γa). Changing the direction vector from gx,ya to gx,yb the

normalization constraint β′i g
x
b + γ ′i g

y
b = 1 no longer holds for βa and γa. However, the previous

argument holds for the uniqueness of (αb,βb,γb). Thus, (αa,βa,γa) 6= (αb,βb,γb).

Appendix A.2. Details of CNLS-d

An alternative expression for CNLS-d (cf. Equations (16)-(16c)) is given by:

min
α,β,γ

n∑
i=1

ε2i (A.2)

s.t. − εj + εi + β′i (xi − xj)− γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (A.2a)

β′i g
x + γ ′i g

y = 1, for i = 1, . . . , n (A.2b)

βi, γi ≥ 0, for i = 1, . . . , n. (A.2c)
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It is possible to recover αi, i = 1, . . . , n, and the final estimates using the following relations:

x̂i = xi + εi g
x, for i = 1, . . . , n (A.3)

ŷi = yi − εi gy, for i = 1, . . . , n (A.4)

αi = −β′i xi + γ ′i yi + εi, for i = 1, . . . , n. (A.5)

Appendix A.3. Different Directions for Different Groups in CNLS-d

Consider the case where all observations have the same input level and produce two outputs

and estimate the isoquant. Define two groups of observations G1 and G2 such that |G1 ∪G2| = n

and G1 ∩G2 = ∅.15 Using the notation in Section Appendix A.1, the direction vector for the first

group of observations G1 is gyG1 and it’s gyG2 for the second group of observations G2.

For either a fixed input vector, X, or a fixed cost level, c, formulate the iso-cost estimator for

G1 and G2 with different directions vectors as:

min
α,β,γ,ε

n∑
i=1

ε2i (A.6)

s.t. − εj + εi − γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j (A.6a)

γ ′i g
yG1 = 1, for i ∈ G1 (A.6b)

γ ′i g
yG2 = 1, for i ∈ G2 (A.6c)

γi ≥ 0, for i = 1, . . . , n. (A.6d)

Note that using more than one direction for CNLS-d can lead to violations on convexity. Only

under very limiting conditions can we allow for multiple directions in CNLS-d and guarantee that

the resulting estimated function will maintain convexity. The following theorem formalizes the

conditions.

Theorem 2. If a CNLS-d estimator is calculated using two groups of observations with different

direction vectors as shown in Equation (A.6), and the following condition holds regarding the

direction vectors and the noise direction:(
εi
gyk(i)

‖gyk(i)‖

)′ [ gyk(j)
‖gyk(j)‖

− gyk(i)

‖gyk(i)‖

]
≥ 0, for i, j = 1, . . . , n, i 6= j, (A.7)

15The notation |·| corresponds to the cardinality of the set.
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where

k(i) =

1, if i ∈ G1

2, if i ∈ G2,

then, the resulting CNLS-d estimate is a concave function.

Proof. Consider the Afriat inequalities in the context of cost isoquant estimation. One of the

conditions of Equation (16) is:

εi − εj − γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.8)

Knowing that εi
g
yk(i)

‖gyk(i)‖ = ŷi − yi means that εi = (ŷi − yi)′ g
yk(i)

‖gyk(i)‖ .

Substituting εi and εj in the inequalities (A.8) obtains:

(ŷi − yi)′
gyk(i)

‖gyk(i)‖
− (ŷj − yj)′

gyk(j)

‖gyk(j)‖
− γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.9)

Next, consider the case where both observations have the same direction. Then the expression

is:

[(ŷi − yi)− (ŷj − yj)]′
gyk(i)

‖gyk(i)‖
− γ ′i (yi − yj) ≤ 0, for i, j = 1, . . . , n, i 6= j. (A.10)

If Equation (A.10) is satisfied, we know that the CNLS-d constraints hold. By comparison

observe that the condition listed below is a sufficient condition for Equation (A.10) being satisfied

when Equation (A.9) holds:

[(ŷi − yi)− (ŷj − yj)]′
gyk(i)

‖gyk(i)‖
− γ ′i (yi − yj) −−from eq.(A.10)

≤ (ŷi − yi)′
gyk(i)

‖gyk(i)‖
− (ŷj − yj)′

gyk(j)

‖gyk(j)‖
− γ ′i (yi − yj) −−from eq.(A.9)

for i, j = 1, . . . , n, i 6= j,

which, after simplifying, becomes:

(ŷi − yi)′
[
gyk(j)

‖gyk(j)‖
− gyk(i)

‖gyk(i)‖

]
≥ 0 for i, j = 1, . . . , n, i 6= j (A.11)

Thus Theorem 2 is proved and a sufficient condition is found that, if verified, ensures the

concavity property of the estimator even when multiple directions are used in the estimation of

the directional distance function.

The following corollary, concerning the convex case, is directly infered from Theorem 2:
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Corollary 1. If a CNLS-d estimator is calculated using two groups of observations with different

direction vectors as shown in Equation (A.6), and the following condition holds regarding the

direction vectors and the noise direction:(
εi
gyk(i)

‖gyk(i)‖

)′ [ gyk(j)
‖gyk(j)‖

− gyk(i)

‖gyk(i)‖

]
≤ 0, for i = 1, . . . , n, i 6= j, (A.12)

where

k(i) =

1, if i ∈ G1

2, if i ∈ G2,

then, the resulting CNLS-d estimate is a convex function.

Proof. Invert the sign from Equation (A.8):

−εj + εi − γ ′i (yi − yj) ≥ 0, for i, j = 1, . . . , n, i 6= j, (A.13)

and follow the logic of the proof of Theorem 2 to obtain Corollary 1 and Equation (A.12).

Theorem 2 clarifies that if the directions for each respective group are orthogonal to each other,

then condition A.7 is verified. This means that if the direction for group 1 has a single nonzero

component in the output 1 dimension and group 2 has a single nonzero component in the output

2 dimension, then we will not observe violations of the convexity property.

We state a second Corollary that follows from Theorem 2 and is useful when there are more

than two groups each with their own estimation direction in CNLS-d.

Corollary 2. Let n ∈ N the total number of observation. Let Q the number of outputs considered.

Let Y = {yi ∈ RQ+, i = 1, . . . , n} the set of observed outputs. Let Pg a partition of Y of cardinal

Ng ∈ N. Let gy = {gyk , k = 1, . . . , Ng} the set of directions used for each respective group of the

partition. If a CNLS-d estimator is calculated using the directions from gy based on partition Pg,

and the following condition holds regarding the direction vectors and the noise direction:(
εi
gyk(i)

‖gyk(i)‖

)′ [ gyk(j)
‖gyk(j)‖

− gyk(i)

‖gyk(i)‖

]
≥ 0, for i, j = 1, . . . , n, i 6= j, (A.14)

where for each i = 1, . . . , n, k(i) corresponds to the indicator of the part of the partition Pg, in

which yi belongs. Then the resulting CNLS-d estimate is a concave function.

Proof. We can follow the proof of Theorem 2, as the condition does not change. The condition

still concerns observations pairwise, the only difference is that now the partition of observations

corresponds to more than two groups. This does not affect the proof of the condition.
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Corollary 2 extends the statement of Theorem 2 to provide sufficient conditions to avoid viola-

tions of the shape constraints in a scenario where there are more than two groups each with their

own estimation direction in CNLS-d estimation.

Simulations to investigate the frequency in which multiple directions leads to violations. We run

simulations to investigate the effects of using multiple directions. We use the same DGP as stated

in Section 5, Example 1. However, we define two groups and assign different directions for each

one of them:

G1 = {i ∈ {1, 2, ..., n}| arctan (ỹi2/ỹi1) ≤ π/4} (A.15)

G2 = {i ∈ {1, 2, ..., n}| arctan (ỹi2/ỹi1) > π/4}, (A.16)

and,

gy =

gyG1 , if i ∈ G1

gyG2 , if i ∈ G2,
(A.17)

where gyG1 = [cos(π/8), sin(π/8)] and gyG2 = [cos(3π/8), sin(3π/8)].

We run a total of 100 simulations. For comparison, for each simulation, we also record the

estimates when using only the direction based on π/8 and 3π/8 only for all observations. We

identify violations of the monotonicity and concavity by sorting the estimates by y1. We identify

all adjacent pairs and triplets, which means 99 pairs and 98 triplets given that we consider 100

observations for each simulation.

As expected, there are no violations when we use a single direction for the estimation. However,

when we use two directions we do observe violations. For monotonicity, we observe no violations

for pairs of observations that are part of the same group. However, for pairs with one member

from each group we observe violations of monotonicity for 6% of the pairs. We use the triplets to

analyze concavity. When the members of the triplet are from the same group, we observe violations

of concavity for 2% of the triplets. When one member of the triplet is from a different group, the

violations of concavity increase to 45%. These results indicate that for one instance when the

conditions of Theorem 2 do not hold, we see a significant number of violations of the imposed

assumptions.
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Appendix B. Additional Experiments

Measuring MSE Example, Section 4.1 - Noise Generated in a Common and Prespecified Direction

θf .

This section describes the simulations and the results for the fixed noise direction case referenced

in Section 4.1.

The Data Generation Process (DGP) for observations (yi, ci) , i = 1, . . . , n, is as follows:

1. The output, ỹi, is drawn from the continuous uniform distribution U [0, 1]

2. The cost is calculated as c̃i = β0 ỹi, where β0 = 1.

3. In the case of fixed direction, the noise term is determined as:

(a) lεi is the scalar length that is drawn from a normal distribution, N (0, λ ε0), λ is

prespecified and an initial value for the standard deviation, ε0, is calculated as in

Equation (11) in Section 4.1.:

ε0 =
1

2

√√√√ 1

n− 1

n∑
i=1

(ỹi − ȳ)2 +

√√√√ 1

n− 1

n∑
i=1

(c̃i − c̄)2
 , (B.1)

where ȳ = 1
n

∑n
i=1 ỹi and c̄ = 1

n

∑n
i=1 c̃i are the mean of the output and the mean

of the cost without noise, respectively.

(b) vf = [cos(θf ), sin(θf )] is the fixed noise direction that is inferred from the prespec-

ified angle θf .

(c) (εyi , εci) = lεi vf , i = 1, . . . , n.

4. The observations with noise are obtained by adding the noise term:(
yi
ci

)
=

(
ỹi
c̃i

)
+

(
εyi
εci

)
, i = 1, . . . , n. (B.2)

Figure B.9. Linear function data generation process with fixed noise direction

Apply the DGP described above to generate a training set, (ytri , ctri) , i = 1, . . . , ntr, and a

testing set (ytsi , ctsi) , i = 1, . . . , nts. Consider 100 repetitions of the simulation and set the number

of observations in each group to ntr = nts = 100. Set the scaling coefficient for the noise to λ = 0.6.

Consider different DGP since data is generated for the following values of noise direction angles,

θf ∈ {0, π/8, π/4, 3π/8, π/2}.
We test the set of directions corresponding to the angle θt ∈ {0, π/8, π/4, 3π/8, π/2}. If the
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direction of the noise, θf , matches the direction used in the DDF, θt, then the smallest MSE results

for all cases.

Results: Fixed Noise Direction. Table B.13 reports the MSE computed by comparing the estimated

function to the true function and Table B.14 reports the MSE computed by comparing the estimated

function to the testing set.

Table B.13. Average MSE over 100 simulations for the Linear Estimator compared to the true function with a DGP
using random noise directions

Average MSE: Estimator
compared to the true function

DDF Direction Angle θt

Noise Dir Angle θf MSE Dir Ang θMSE 0 π/8 π/4 3π/8 π/2

0 0 0.55 1.59 3.49 6.35 12.06
0 π/8 0.32 0.86 1.81 3.17 5.70
0 π/4 0.27 0.69 1.42 2.44 4.23
0 3π/8 0.32 0.77 1.54 2.58 4.36
0 π/2 0.54 1.21 2.37 3.86 6.28

π/8 0 3.22 1.00 2.66 7.79 22.92
π/8 π/8 2.16 0.59 1.39 3.80 9.98
π/8 π/4 2.04 0.50 1.10 2.88 7.09
π/8 3π/8 2.67 0.59 1.21 3.02 7.02
π/8 π/2 5.40 1.03 1.88 4.45 9.68

π/4 0 8.95 2.92 1.18 2.95 15.94
π/4 π/8 6.46 1.93 0.70 1.53 7.21
π/4 π/4 6.49 1.81 0.61 1.20 5.24
π/4 3π/8 9.10 2.35 0.74 1.31 5.30
π/4 π/2 20.84 4.70 1.32 2.03 7.48

3π/8 0 9.65 4.44 1.90 1.13 5.70
3π/8 π/8 6.99 3.00 1.22 0.65 2.83
3π/8 π/4 7.05 2.86 1.11 0.55 2.17
3π/8 3π/8 9.92 3.76 1.40 0.64 2.30
3π/8 π/2 22.76 7.71 2.66 1.09 3.45

π/2 0 6.15 3.76 2.29 1.16 0.50
π/2 π/8 4.25 2.50 1.49 0.73 0.29
π/2 π/4 4.11 2.36 1.37 0.66 0.25
π/2 3π/8 5.52 3.06 1.74 0.81 0.29
π/2 π/27 11.62 6.10 3.33 1.50 0.49

Note: Displayed are the measured values multiplied by 103

In Table B.13, the direction for the DDF corresponding to the smallest MSE always matches

the noise direction in the DGP. Further for more than 70% of the cases tested there is more than a

38



Table B.14. Average MSE over 100 simulations for the Linear Estimator compared to an out-of-sample testing set
with a DGP using fixed noise directions

Average MSE: Estimator
compared to testing set data

DDF Direction Angle θt

Noise Dir Angle θf MSE Dir Ang θMSE 0 π/8 π/4 3π/8 π/2

0 0 30.02 31.22 33.23 36.21 42.08
0 π/8 17.53 17.13 17.46 18.24 20.01
0 π/4 14.95 13.99 13.86 14.10 14.92
0 3π/8 17.51 15.70 15.15 15.03 15.42
0 π/2 29.93 25.30 23.55 22.64 22.32

π/8 0 49.89 52.78 58.59 68.39 91.28
π/8 π/8 32.41 30.88 31.71 34.14 40.37
π/8 π/4 29.93 26.38 25.69 26.27 28.92
π/8 3π/8 38.15 31.00 28.66 27.92 28.88
π/8 π/2 74.19 53.30 45.83 41.93 40.19

π/4 0 51.54 53.79 59.55 70.76 101.99
π/4 π/8 36.65 34.53 35.21 38.14 47.22
π/4 π/4 36.39 31.60 30.32 30.83 34.75
π/4 3π/8 50.32 39.87 35.91 34.32 35.52
π/4 π/2 112.21 76.31 62.47 54.76 50.83

3π/8 0 39.37 41.09 45.01 52.54 73.64
3π/8 π/8 28.28 27.35 28.14 30.56 37.89
3π/8 π/4 28.30 25.72 25.22 26.01 29.73
3π/8 3π/8 39.47 33.40 31.11 30.42 32.19
3π/8 π/2 89.14 66.84 57.41 51.96 49.51

π/2 0 22.47 22.94 23.97 25.85 30.66
π/2 π/8 15.44 15.16 15.36 15.99 17.91
π/2 π/4 14.89 14.17 14.01 14.21 15.27
π/2 3π/8 19.88 18.27 17.59 17.35 17.88
π/2 π/2 41.52 36.04 33.31 31.51 30.54

Note: Displayed are the measured values multiplied by 103

50% decrease in MSE by using the correctly specified direction compared to the next best direction

tested, which was not as large in the random direction case in Table 1 of Section 4.1. In other

words, when endogeneity is severe, the benefits of using a DDF with a well-selected direction are

potentially large.

Table B.14 is consistent with the results observed in the random noise case, in Table 2 of

Section 4.1. The DDF directions corresponding to the smallest MSE values are those matching the

directions used for the MSE computation. Thus, the proposed radial MSE measure addresses the
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challenge of measuring performance in applications with a testing dataset.

Monte Carlo Simulations - Experiments, Section 5.2 - Experiment 3. Base case with fixed noise

direction and different noise levels.

This section summarizes results Experiment 3 with lambda = 0.2.

Table B.15. Experiment 3–More Noise: Values of radial MSE relative to the true function varying the DGP noise
direction and the CNLS-d direction. In the DGP, the standard deviation of the noise distribution, λ, is 0.2.

CNLS-d Direction Angle

Noise Direction Angle 0 π/8 π/4 3π/8 π/2

0 8.15 15.62 37.66 82.16 183.39
π/8 50.60 11.59 20.68 67.88 206.46
π/4 145.21 29.40 11.89 33.89 149.24
3π/8 220.24 69.87 22.28 11.66 53.66
π/2 165.84 72.13 33.27 14.25 7.41

Note: Displayed are measured values multiplied by 104
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Appendix C. U.S. Hospital Dataset Application

We describe the functional estimates provided by Quadratic Regression, CNLS-d using the

median direction, and Local Linear Kernel. Table C.16 provides most productive scale size (MPSS)

measurements in units of normalized cost. The values reported in Table C.16 are normalized costs

on the scale of 0 to 1. Tables C.17 and C.18 provide marginal cost of Major Diagnostic procedures

and marginal cost of Major Therapeutic procedures, respectively. The units for Tables C.17 and

C.18 are normalized cost over normalized Major Diagnostic procedures and Major Therapeutic

procedures, respectively.

Our conclusions are the same as stated in the body of the paper, CNLS-d provides the ad-

vantage of being more flexible than the parametric estimator (Quadratic regression), while having

shape constraints that maintain the interpretability of the results. The interpretability issue for a

nonparametric estimator without any axiomatic shape constraints imposed is illustrated by the LL

Kernel estimates, for which we observe several negative marginal costs for Major Diagnostic pro-

cedures in 2008 and 2009. These negative values often appear in consecutive 25 and 50 percentiles.

This is because most hospitals are small, which implies the corresponding output levels are close for

25 and 50 percentiles and the LL Kernel estimator uses relatively large bandwidth values making

estimates relatively smooth. Thus, if there is a negative marginal cost for 25 percentile estimate,

then the 50th percentile will often be negative too.
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Table C.16. Most Productive Scale Size (c)

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 2.84 0.84 3.66 0.40 0.30 0.35 8.40 2.24 6.69 1.41 1.11 3.60
25 25 25 50 0.46 0.42 0.39 2.01 0.45 1.45 4.91 1.57 1.76 0.99 0.69 0.93
25 25 25 75 0.42 0.39 0.32 7.04 0.46 3.48 8.38 1.47 1.56 0.93 0.60 0.78
25 25 50 25 0.40 2.93 2.30 0.97 0.45 0.98 2.53 3.60 3.05 1.22 0.53 0.79
25 25 50 50 0.69 0.80 0.73 0.43 0.39 0.42 2.29 2.11 2.25 1.18 0.93 1.10
25 25 50 75 0.40 0.41 0.33 1.00 0.44 1.47 3.22 1.52 1.67 1.42 0.66 0.89
25 25 75 25 0.26 1.73 1.34 0.99 0.47 2.53 1.99 2.42 2.67 0.91 0.57 0.11
25 25 75 50 0.41 1.01 0.70 0.95 0.45 1.01 2.95 2.18 1.97 1.66 0.54 0.75
25 25 75 75 0.66 0.38 0.63 0.44 0.39 0.43 2.28 2.03 2.05 1.18 0.87 0.99
25 50 25 25 0.36 0.16 0.30 2.02 0.40 0.45 4.33 3.58 5.51 2.34 1.14 4.46
25 50 25 50 6.18 0.81 5.60 0.46 0.33 0.37 12.62 2.42 6.92 5.90 1.31 0.82
25 50 25 75 1.00 0.43 0.41 1.51 0.43 1.43 3.98 1.55 1.73 1.00 0.69 0.88
25 50 50 25 1.40 1.39 1.62 0.45 0.36 0.42 4.31 3.96 3.99 2.14 1.25 1.46
25 50 50 50 1.79 1.21 5.67 0.39 0.30 0.35 7.98 2.05 10.91 5.03 0.98 4.74
25 50 50 75 0.96 0.45 0.42 0.97 0.42 0.94 3.43 1.95 1.85 1.52 1.08 1.00
25 50 75 25 0.69 2.07 3.01 0.97 0.44 0.50 2.70 3.20 3.98 1.13 0.73 0.33
25 50 75 50 0.59 2.90 4.48 0.92 0.42 0.47 3.25 3.03 6.17 1.82 0.71 1.09
25 50 75 75 0.79 0.84 0.79 0.43 0.38 0.42 2.49 2.15 2.33 1.29 0.96 1.14
25 75 25 25 0.40 0.22 0.39 5.03 0.41 0.47 7.39 2.07 4.48 1.37 0.40 3.86
25 75 25 50 0.11 0.97 0.65 1.01 0.39 0.45 4.33 4.97 6.13 3.05 1.83 4.74
25 75 25 75 6.55 0.80 6.48 0.46 0.33 0.38 12.90 2.40 5.22 5.83 1.30 0.76
25 75 50 25 0.30 0.08 0.23 1.04 0.40 0.46 2.56 2.42 4.20 1.60 0.44 3.72
25 75 50 50 0.12 1.31 0.94 0.98 0.39 0.44 4.26 5.35 6.25 2.95 1.96 4.58
25 75 50 75 6.64 0.83 6.56 0.45 0.32 0.37 13.24 2.43 4.95 6.10 1.31 0.81
25 75 75 25 0.34 0.92 1.18 0.46 0.36 0.43 2.83 2.99 3.06 1.67 0.83 1.18
25 75 75 50 1.73 2.04 2.05 0.45 0.35 0.42 5.19 5.04 4.33 2.68 1.72 1.84
25 75 75 75 1.84 1.22 6.43 0.39 0.30 0.35 8.13 2.05 4.49 5.55 0.97 0.91
50 25 25 25 0.86 0.89 0.57 1.01 0.41 0.77 2.70 2.56 1.88 0.79 0.59 0.56
50 25 25 50 0.46 0.41 0.33 0.52 0.43 0.45 3.33 1.22 1.66 1.39 0.35 0.88
50 25 25 75 0.42 0.39 0.30 1.52 0.45 1.98 3.37 1.50 1.56 1.41 0.63 0.79
50 25 50 25 0.43 3.13 0.72 0.49 0.46 1.02 1.50 4.05 2.15 0.79 0.83 0.38
50 25 50 50 0.70 0.79 0.64 0.42 0.37 0.40 2.66 2.22 1.76 1.53 1.05 1.03
50 25 50 75 0.41 0.41 0.31 1.00 0.44 0.98 3.24 1.55 1.68 1.43 0.69 0.91
50 25 75 25 0.28 1.81 0.93 0.99 0.47 2.05 1.64 2.54 2.31 0.88 0.57 0.11
50 25 75 50 0.42 1.02 0.66 0.95 0.45 1.00 1.59 2.05 1.80 0.73 0.38 0.60
50 25 75 75 0.66 0.39 0.61 0.44 0.39 0.43 2.29 2.08 2.04 1.19 0.92 0.99
50 50 25 25 0.05 0.59 0.89 0.52 0.38 0.43 3.33 4.24 5.87 2.72 1.52 4.34
50 50 25 50 6.65 0.80 5.54 0.45 0.32 0.36 13.77 2.55 7.13 6.52 1.44 1.14
50 50 25 75 1.01 0.43 0.40 1.01 0.43 0.95 4.01 1.59 1.72 1.51 0.72 0.88
50 50 50 25 2.03 1.63 1.90 0.45 0.34 0.40 5.27 4.21 3.29 2.48 1.32 0.80
50 50 50 50 1.82 1.21 5.58 0.38 0.29 0.34 3.54 2.20 8.63 1.35 1.12 2.58
50 50 50 75 0.97 0.45 0.41 0.97 0.42 0.94 3.46 2.02 1.84 1.54 1.15 1.00
50 50 75 25 0.70 2.14 2.94 0.48 0.44 0.50 2.03 3.16 3.74 1.25 0.71 0.14
50 50 75 50 0.60 2.63 4.38 0.92 0.42 0.47 3.38 3.83 5.23 1.90 1.48 0.88
50 50 75 75 0.80 0.84 0.77 0.43 0.37 0.42 2.51 2.20 2.30 1.30 1.01 1.13
50 75 25 25 0.04 0.05 0.36 1.54 0.41 0.46 3.31 2.28 4.52 1.66 0.47 3.91
50 75 25 50 0.23 1.03 0.62 1.01 0.39 0.45 4.28 5.19 6.14 3.33 1.93 4.76
50 75 25 75 6.64 0.80 6.39 0.46 0.33 0.38 13.21 2.45 4.69 6.03 1.34 1.11
50 75 50 25 0.38 0.14 0.21 1.03 0.40 0.45 2.93 2.67 4.23 1.86 0.56 3.75
50 75 50 50 0.24 1.37 0.90 0.98 0.38 0.44 4.22 5.62 6.22 3.20 2.12 2.93
50 75 50 75 6.73 0.83 6.48 0.44 0.32 0.37 13.60 2.48 4.85 6.35 1.35 1.23
50 75 75 25 0.47 0.97 1.13 0.46 0.36 0.43 3.16 3.14 2.86 1.87 0.82 1.02
50 75 75 50 1.84 2.09 2.00 0.45 0.35 0.42 5.52 5.01 4.03 2.88 1.82 1.33
50 75 75 75 1.85 1.23 6.36 0.39 0.30 0.35 8.01 2.10 8.51 5.35 1.01 4.95
75 25 25 25 0.55 0.42 0.08 3.14 1.43 0.88 4.32 2.72 2.16 0.06 0.11 0.82
75 25 25 50 0.38 0.52 0.15 0.54 0.46 0.86 2.03 1.23 1.47 0.64 0.23 0.36
75 25 25 75 0.42 0.37 0.25 0.53 0.45 0.46 2.18 1.14 1.43 1.20 0.30 0.72
75 25 50 25 0.47 0.52 0.20 1.14 0.47 0.93 2.35 2.64 2.56 0.29 0.28 0.69
75 25 50 50 0.67 0.56 0.34 0.50 0.43 0.85 2.38 1.56 2.41 0.67 0.52 0.41
75 25 50 75 0.41 0.38 0.26 0.51 0.44 0.45 3.05 1.17 1.57 1.68 0.33 0.85
75 25 75 25 0.32 2.25 0.23 0.53 0.50 1.08 1.71 2.69 2.11 0.35 0.45 0.09
75 25 75 50 0.45 0.97 0.33 0.50 0.47 1.04 2.06 2.30 1.92 0.61 0.59 0.66
75 25 75 75 0.68 0.74 0.53 0.43 0.36 0.41 2.60 1.46 1.59 1.47 0.33 0.62
75 50 25 25 1.18 2.50 0.49 1.08 0.85 0.81 2.88 5.64 4.18 0.59 2.28 2.83
75 50 25 50 0.97 0.93 0.59 0.99 0.40 0.76 2.93 2.32 1.84 0.93 0.62 0.55
75 50 25 75 0.99 0.41 0.34 0.52 0.43 0.44 2.86 1.21 1.94 1.31 0.36 0.81
75 50 50 25 1.07 2.83 0.51 0.52 0.41 0.42 2.82 3.96 3.36 0.70 1.24 1.73
75 50 50 50 0.88 0.98 0.61 0.93 0.38 0.77 2.82 2.02 1.99 0.97 0.66 0.60
75 50 50 75 0.96 0.42 0.35 0.50 0.41 0.43 3.32 1.68 2.09 1.84 0.39 0.95
75 50 75 25 0.50 2.56 0.69 0.51 0.47 1.02 2.31 3.41 2.75 0.79 0.74 0.27
75 50 75 50 0.62 1.42 0.81 0.49 0.45 0.98 2.41 4.03 2.40 1.08 1.15 0.72
75 50 75 75 0.81 0.81 0.68 0.43 0.35 0.40 2.86 2.30 1.81 1.62 1.13 1.06
75 75 25 25 0.19 0.22 0.62 0.53 0.37 0.43 2.63 3.04 4.82 2.23 0.91 3.67
75 75 25 50 0.26 1.57 1.60 0.51 0.36 0.42 4.41 5.73 6.57 3.56 2.33 4.43
75 75 25 75 4.16 0.78 1.73 0.44 0.32 0.36 4.95 2.57 3.10 1.37 1.47 1.02
75 75 50 25 0.19 0.56 0.87 0.51 0.37 0.42 2.85 3.56 4.98 2.25 1.18 3.64
75 75 50 50 0.42 1.86 1.81 0.48 0.36 0.41 4.40 6.27 6.70 3.68 2.66 4.41
75 75 50 75 3.09 0.81 1.75 0.43 0.31 0.36 4.44 2.65 3.22 1.42 1.54 1.12
75 75 75 25 1.68 1.38 1.75 0.45 0.34 0.40 4.53 3.39 3.14 2.10 0.98 0.89
75 75 75 50 2.90 2.39 2.50 0.43 0.33 0.39 6.97 5.12 3.81 3.33 1.84 0.75
75 75 75 75 1.42 1.21 2.16 0.38 0.29 0.34 3.16 2.26 5.67 1.36 1.18 3.11

Note: The values displayed are the measured values multiplied by 10
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Table C.17. Marginal Cost of Major Diagnostic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 0.08 1.26 0.92 0.63 0.49 0.24 1.52 3.14 2.58 1.06 1.48 0.91
25 25 25 50 0.08 1.26 0.92 0.02 0.03 0.03 0.98 2.78 1.62 0.81 1.67 0.74
25 25 25 75 0.08 1.26 0.92 0.25 0.11 0.04 0.93 3.19 2.73 0.79 2.12 1.69
25 25 50 25 0.24 1.25 0.92 3.80 4.27 4.13 4.74 5.34 5.36 0.94 0.94 0.64
25 25 50 50 0.24 1.25 0.92 2.41 2.36 2.45 2.71 3.35 3.59 0.79 1.11 0.39
25 25 50 75 0.24 1.25 0.92 0.41 0.26 0.04 1.09 2.74 2.50 0.83 1.62 1.41
25 25 75 25 0.56 1.21 0.93 4.77 4.87 4.99 4.99 6.13 6.67 0.48 0.15 0.47
25 25 75 50 0.56 1.21 0.93 4.84 4.98 4.91 5.01 6.14 6.28 0.49 0.16 0.34
25 25 75 75 0.56 1.21 0.93 2.93 2.70 1.90 3.49 3.93 3.47 0.63 0.75 0.02
25 50 25 25 0.08 1.26 0.92 0.14 0.01 0.08 1.30 2.72 2.85 1.14 1.62 1.64
25 50 25 50 0.08 1.26 0.92 0.02 0.02 0.02 1.09 2.93 2.52 0.96 1.88 1.56
25 50 25 75 0.08 1.26 0.92 0.02 0.06 0.04 1.08 3.23 3.03 0.97 2.15 1.98
25 50 50 25 0.24 1.25 0.92 2.09 2.27 2.68 3.83 3.57 4.78 1.09 0.92 1.34
25 50 50 50 0.24 1.25 0.92 1.84 1.29 2.71 2.37 3.05 3.49 0.98 1.14 1.13
25 50 50 75 0.24 1.25 0.92 0.36 0.26 0.04 1.24 2.74 2.65 0.99 1.73 1.59
25 50 75 25 0.56 1.21 0.93 4.85 4.98 4.77 4.89 5.72 6.75 0.50 -0.25 1.02
25 50 75 50 0.56 1.21 0.93 4.85 4.99 4.83 4.93 5.77 6.70 0.52 -0.19 0.75
25 50 75 75 0.56 1.21 0.93 2.93 2.70 1.83 3.46 3.65 3.89 0.76 0.44 0.57
25 75 25 25 0.08 1.26 0.92 0.07 0.02 0.01 1.53 2.97 4.47 1.44 1.85 3.42
25 75 25 50 0.08 1.26 0.92 0.01 0.02 0.02 1.31 2.86 4.46 1.18 1.79 3.59
25 75 25 75 0.08 1.26 0.92 0.02 0.02 0.04 1.23 2.79 3.54 1.02 1.57 2.61
25 75 50 25 0.24 1.25 0.92 0.38 0.08 0.04 2.21 2.20 4.65 1.25 1.01 3.01
25 75 50 50 0.24 1.25 0.92 0.38 0.11 0.08 1.46 2.22 4.83 1.20 1.12 3.33
25 75 50 75 0.24 1.25 0.92 0.02 0.16 0.04 1.40 2.13 3.56 1.15 1.32 2.78
25 75 75 25 0.56 1.21 0.93 3.16 3.05 2.38 4.42 3.20 5.43 0.79 -0.85 1.70
25 75 75 50 0.56 1.21 0.93 3.16 3.05 2.38 4.18 3.46 5.50 0.88 -0.66 1.91
25 75 75 75 0.56 1.21 0.93 1.79 2.83 2.33 2.66 2.96 5.24 0.83 0.09 2.52
50 25 25 25 0.08 1.26 0.92 0.04 0.03 0.27 1.22 2.82 2.28 1.05 1.54 1.10
50 25 25 50 0.08 1.26 0.92 0.01 0.02 0.15 0.95 2.88 1.83 0.79 1.75 0.94
50 25 25 75 0.08 1.26 0.92 0.17 0.11 0.04 0.93 3.26 2.87 0.82 2.17 2.05
50 25 50 25 0.24 1.25 0.92 3.54 4.27 3.92 4.33 5.45 5.36 0.94 0.97 0.71
50 25 50 50 0.24 1.25 0.92 1.90 1.68 0.60 2.90 3.43 2.38 0.77 1.16 0.55
50 25 50 75 0.24 1.25 0.92 0.41 0.36 0.04 1.07 2.81 2.35 0.81 1.78 1.32
50 25 75 25 0.56 1.21 0.93 4.80 4.84 4.98 5.14 5.99 5.75 0.46 0.08 0.24
50 25 75 50 0.56 1.21 0.93 4.85 4.98 4.73 5.20 6.19 5.58 0.49 0.19 0.04
50 25 75 75 0.56 1.21 0.93 2.93 2.70 1.90 3.57 3.98 3.34 0.74 0.63 0.12
50 50 25 25 0.08 1.26 0.92 0.02 0.03 0.03 1.30 2.83 2.77 1.14 1.70 1.81
50 50 25 50 0.08 1.26 0.92 0.09 0.02 0.03 1.09 3.05 2.66 0.95 1.98 1.74
50 50 25 75 0.08 1.26 0.92 0.02 0.04 0.04 1.10 3.29 3.16 0.96 2.23 2.20
50 50 50 25 0.24 1.25 0.92 2.09 2.86 2.30 3.83 3.54 4.45 1.05 0.99 1.38
50 50 50 50 0.24 1.25 0.92 2.03 1.00 2.05 3.03 3.25 3.71 0.96 1.21 1.20
50 50 50 75 0.24 1.25 0.92 0.36 0.14 0.04 1.20 2.87 2.66 0.96 1.84 1.75
50 50 75 25 0.56 1.21 0.93 4.85 4.98 4.73 5.35 5.81 5.99 0.47 -0.22 0.39
50 50 75 50 0.56 1.21 0.93 4.85 4.99 4.74 5.33 5.83 6.07 0.49 -0.13 0.32
50 50 75 75 0.56 1.21 0.93 2.72 2.70 1.83 3.45 3.85 3.83 0.73 0.46 0.77
50 75 25 25 0.08 1.26 0.92 0.07 0.02 0.01 1.47 2.89 4.42 1.33 1.79 3.58
50 75 25 50 0.08 1.26 0.92 0.01 0.02 0.02 1.33 3.04 4.53 1.24 1.93 3.73
50 75 25 75 0.08 1.26 0.92 0.02 0.02 0.03 1.12 2.79 3.76 1.16 1.71 2.92
50 75 50 25 0.24 1.25 0.92 0.38 0.08 0.01 2.20 2.34 4.68 1.34 0.86 3.16
50 75 50 50 0.24 1.25 0.92 0.38 0.08 0.08 1.48 2.38 4.86 1.26 1.15 3.33
50 75 50 75 0.24 1.25 0.92 0.02 0.02 0.03 1.47 2.44 3.95 1.07 1.39 2.65
50 75 75 25 0.56 1.21 0.93 3.16 3.05 2.38 4.40 3.78 4.97 0.73 -0.83 1.36
50 75 75 50 0.56 1.21 0.93 3.16 3.05 2.38 4.12 3.62 5.05 0.70 -0.78 1.56
50 75 75 75 0.56 1.21 0.93 1.79 2.83 2.33 2.54 3.07 5.00 0.82 0.10 2.17
75 25 25 25 0.08 1.26 0.92 0.01 0.13 0.04 1.26 2.75 2.46 0.93 1.65 1.57
75 25 25 50 0.08 1.26 0.92 0.01 0.02 0.16 0.91 2.90 2.91 0.70 1.80 1.61
75 25 25 75 0.08 1.26 0.92 0.04 0.03 0.04 0.94 3.21 3.28 0.81 2.09 2.06
75 25 50 25 0.24 1.25 0.92 2.44 0.13 3.04 3.43 2.84 5.66 0.78 1.10 0.89
75 25 50 50 0.24 1.25 0.92 0.81 1.18 2.52 1.75 3.02 5.00 0.61 1.39 0.88
75 25 50 75 0.24 1.25 0.92 0.09 0.03 0.12 1.02 3.01 2.42 0.77 1.82 1.47
75 25 75 25 0.56 1.21 0.93 3.92 4.28 4.36 4.64 5.19 4.67 0.56 0.25 -0.56
75 25 75 50 0.56 1.21 0.93 3.92 4.28 4.36 4.79 5.27 4.59 0.57 0.34 -0.60
75 25 75 75 0.56 1.21 0.93 1.97 3.35 1.57 2.43 3.03 2.44 0.78 0.90 0.03
75 50 25 25 0.08 1.26 0.92 0.03 0.09 0.04 1.17 2.84 3.36 1.06 1.66 2.16
75 50 25 50 0.08 1.26 0.92 0.03 0.02 0.03 1.08 3.09 3.01 0.84 1.87 2.05
75 50 25 75 0.08 1.26 0.92 0.04 0.03 0.04 1.08 3.29 3.32 0.94 2.11 2.06
75 50 50 25 0.24 1.25 0.92 1.09 0.75 2.53 2.32 2.26 5.84 0.87 1.14 1.29
75 50 50 50 0.24 1.25 0.92 1.02 1.18 2.71 1.64 3.00 4.99 0.76 1.32 1.17
75 50 50 75 0.24 1.25 0.92 0.09 0.03 0.10 1.12 3.09 2.80 0.89 1.85 1.61
75 50 75 25 0.56 1.21 0.93 3.94 4.28 4.47 4.75 4.90 5.00 0.51 0.13 -0.56
75 50 75 50 0.56 1.21 0.93 3.94 4.28 4.43 4.77 4.87 4.90 0.49 0.07 -0.33
75 50 75 75 0.56 1.21 0.93 1.96 3.35 1.32 2.33 2.93 2.93 0.66 0.71 0.13
75 75 25 25 0.08 1.26 0.92 0.07 0.02 0.02 1.35 2.66 4.40 1.28 1.64 3.42
75 75 25 50 0.08 1.26 0.92 0.07 0.02 0.02 1.31 2.92 4.41 1.26 1.91 3.44
75 75 25 75 0.08 1.26 0.92 0.06 0.07 0.03 1.32 3.11 4.10 1.05 2.21 3.19
75 75 50 25 0.24 1.25 0.92 0.07 0.02 0.02 1.57 2.10 3.70 1.22 1.00 2.70
75 75 50 50 0.24 1.25 0.92 0.07 0.02 0.04 1.44 2.38 3.83 1.12 1.20 2.88
75 75 50 75 0.24 1.25 0.92 0.06 0.20 0.07 1.33 2.74 3.95 1.13 1.69 3.01
75 75 75 25 0.56 1.21 0.93 3.49 3.63 3.64 4.17 3.83 4.54 0.76 -0.47 0.32
75 75 75 50 0.56 1.21 0.93 3.49 3.71 3.64 4.05 3.96 4.72 0.67 -0.53 -0.03
75 75 75 75 0.56 1.21 0.93 1.83 2.32 1.56 2.88 3.08 4.53 0.67 0.20 0.98

Note: The values displayed are the measured values multiplied by 10
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Table C.18. Marginal Cost of Major Therapeutic Procedures

Percentile Quadratic Regression CNLS-d (median) CNLS-d (equal) LL Kernel

MinDiag MinTher MajDiag MajTher 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009

25 25 25 25 2.64 2.57 1.97 0.42 0.62 0.88 8.19 6.40 7.64 4.65 3.20 4.62
25 25 25 50 2.96 2.91 2.18 4.36 3.82 4.03 11.70 9.06 9.69 4.43 2.51 3.72
25 25 25 75 3.82 3.86 2.92 4.90 4.99 4.97 12.74 11.18 10.30 3.85 2.30 2.57
25 25 50 25 2.64 2.57 1.97 0.01 0.01 0.05 7.14 6.10 6.42 4.39 3.29 4.38
25 25 50 50 2.96 2.91 2.18 2.42 2.39 2.71 10.12 8.21 8.60 4.26 2.73 3.66
25 25 50 75 3.82 3.86 2.92 4.99 4.98 4.97 12.87 11.18 10.60 4.00 2.26 2.80
25 25 75 25 2.64 2.57 1.97 0.02 0.20 0.03 7.14 6.18 5.61 4.39 3.36 3.47
25 25 75 50 2.96 2.91 2.18 0.34 0.39 0.27 8.13 6.31 6.75 4.34 3.15 3.47
25 25 75 75 3.82 3.86 2.92 4.07 4.03 4.75 12.34 10.32 10.57 4.24 2.79 2.85
25 50 25 25 2.64 2.57 1.97 0.01 0.02 0.04 7.25 5.63 6.18 4.53 2.82 4.03
25 50 25 50 2.96 2.91 2.18 3.27 1.78 1.64 9.89 6.89 6.85 4.34 2.18 3.39
25 50 25 75 3.82 3.86 2.92 4.99 4.99 4.97 12.64 10.79 10.24 3.78 1.92 2.43
25 50 50 25 2.64 2.57 1.97 0.09 0.05 0.08 7.09 5.93 5.92 4.37 3.00 3.81
25 50 50 50 2.96 2.91 2.18 1.31 1.16 0.28 9.88 7.44 6.72 4.20 2.41 3.33
25 50 50 75 3.82 3.86 2.92 4.99 4.98 4.97 12.72 10.75 10.31 3.87 1.91 2.55
25 50 75 25 2.64 2.57 1.97 0.02 0.08 0.01 7.18 5.98 5.06 4.39 3.17 3.16
25 50 75 50 2.96 2.91 2.18 0.03 0.11 0.18 7.38 6.08 6.26 4.26 2.90 3.28
25 50 75 75 3.82 3.86 2.92 4.07 4.03 4.60 12.08 10.02 10.61 3.99 2.34 2.89
25 75 25 25 2.64 2.57 1.97 0.01 0.01 0.02 7.09 4.85 3.88 4.30 2.08 2.00
25 75 25 50 2.96 2.91 2.18 0.40 0.01 0.06 7.25 4.65 4.14 3.96 1.50 1.97
25 75 25 75 3.82 3.86 2.92 4.62 2.77 4.22 11.73 7.82 7.30 3.83 1.34 1.35
25 75 50 25 2.64 2.57 1.97 0.05 0.01 0.05 6.92 5.04 3.91 4.11 2.36 1.89
25 75 50 50 2.96 2.91 2.18 0.05 0.06 0.09 7.18 4.66 4.07 3.92 1.58 1.69
25 75 50 75 3.82 3.86 2.92 4.62 2.88 4.22 11.81 7.74 7.13 3.69 1.36 1.17
25 75 75 25 2.64 2.57 1.97 0.03 0.02 0.02 6.84 5.23 4.03 4.06 2.57 1.98
25 75 75 50 2.96 2.91 2.18 0.03 0.02 0.02 7.12 5.06 4.07 3.94 2.01 1.95
25 75 75 75 3.82 3.86 2.92 3.90 2.33 3.98 11.92 7.93 7.80 3.71 1.70 1.62
50 25 25 25 2.64 2.57 1.97 0.07 0.01 0.01 7.44 6.04 6.89 4.69 3.17 4.32
50 25 25 50 2.96 2.91 2.18 4.50 3.97 3.42 11.71 9.16 9.62 4.56 2.56 3.48
50 25 25 75 3.82 3.86 2.92 4.84 4.99 4.97 12.71 11.38 10.34 3.83 2.49 2.64
50 25 50 25 2.64 2.57 1.97 0.02 0.01 0.02 7.20 6.12 6.16 4.43 3.28 4.10
50 25 50 50 2.96 2.91 2.18 2.85 2.64 3.17 10.07 8.28 8.63 4.35 2.80 3.47
50 25 50 75 3.82 3.86 2.92 4.99 4.95 4.97 12.86 11.37 10.49 4.00 2.50 2.73
50 25 75 25 2.64 2.57 1.97 0.02 0.21 0.07 7.17 6.19 5.64 4.35 3.37 3.39
50 25 75 50 2.96 2.91 2.18 0.22 0.34 0.43 7.52 6.50 5.87 4.36 3.27 3.40
50 25 75 75 3.82 3.86 2.92 4.07 4.03 4.75 12.39 10.55 10.48 4.26 2.83 2.89
50 50 25 25 2.64 2.57 1.97 0.05 0.03 0.04 7.34 5.76 5.91 4.60 2.86 3.75
50 50 25 50 2.96 2.91 2.18 2.79 1.78 2.02 9.86 7.18 6.53 4.46 2.31 3.18
50 50 25 75 3.82 3.86 2.92 4.99 4.97 4.97 12.62 11.01 10.20 3.77 2.15 2.43
50 50 50 25 2.64 2.57 1.97 0.09 0.04 0.10 7.16 5.89 5.67 4.43 3.06 3.55
50 50 50 50 2.96 2.91 2.18 0.95 1.73 0.34 9.07 7.30 6.12 4.28 2.56 3.14
50 50 50 75 3.82 3.86 2.92 4.99 4.94 4.97 12.69 10.99 10.33 3.82 2.13 2.57
50 50 75 25 2.64 2.57 1.97 0.03 0.08 0.03 7.15 6.09 4.93 4.41 3.28 2.97
50 50 75 50 2.96 2.91 2.18 0.03 0.11 0.07 7.38 6.21 5.50 4.30 3.06 3.08
50 50 75 75 3.82 3.86 2.92 4.40 4.03 4.60 12.11 10.24 10.61 4.01 2.48 2.99
50 75 25 25 2.64 2.57 1.97 0.01 0.01 0.02 7.13 5.02 3.84 4.24 2.20 1.92
50 75 25 50 2.96 2.91 2.18 0.40 0.01 0.06 7.32 4.90 4.00 4.04 1.74 1.26
50 75 25 75 3.82 3.86 2.92 4.62 2.77 4.00 11.59 7.98 6.99 3.85 1.63 1.31
50 75 50 25 2.64 2.57 1.97 0.05 0.01 0.02 6.95 5.24 3.87 4.19 2.22 1.79
50 75 50 50 2.96 2.91 2.18 0.05 0.04 0.09 7.27 4.88 4.00 3.96 1.73 1.63
50 75 50 75 3.82 3.86 2.92 4.62 2.77 4.00 11.71 7.97 7.10 3.75 1.56 1.06
50 75 75 25 2.64 2.57 1.97 0.03 0.02 0.02 6.89 5.66 3.94 4.07 2.56 1.94
50 75 75 50 2.96 2.91 2.18 0.03 0.02 0.02 7.09 5.31 4.08 3.94 2.12 1.84
50 75 75 75 3.82 3.86 2.92 3.90 2.33 3.98 11.60 8.25 7.70 3.69 1.92 1.45
75 25 25 25 2.64 2.57 1.97 0.09 0.01 0.06 7.64 6.17 5.24 4.79 3.33 3.02
75 25 25 50 2.96 2.91 2.18 0.60 2.17 0.80 9.34 7.64 5.75 4.56 3.16 2.80
75 25 25 75 3.82 3.86 2.92 4.95 4.37 4.97 12.74 11.01 10.33 3.94 2.94 2.22
75 25 50 25 2.64 2.57 1.97 0.02 0.01 0.03 7.39 6.27 4.97 4.54 3.46 2.98
75 25 50 50 2.96 2.91 2.18 0.97 1.24 0.16 8.65 7.05 5.65 4.43 3.33 2.79
75 25 50 75 3.82 3.86 2.92 4.94 4.37 4.97 12.89 11.24 10.16 4.15 3.03 2.40
75 25 75 25 2.64 2.57 1.97 0.01 0.01 0.07 7.09 6.50 4.90 4.35 3.67 2.82
75 25 75 50 2.96 2.91 2.18 0.01 0.01 0.07 7.45 6.86 5.19 4.34 3.68 2.88
75 25 75 75 3.82 3.86 2.92 4.93 2.60 4.71 13.18 11.58 10.30 4.38 3.48 3.33
75 50 25 25 2.64 2.57 1.97 0.07 0.02 0.10 7.84 6.08 4.78 4.70 3.17 2.65
75 50 25 50 2.96 2.91 2.18 0.23 1.66 0.28 8.35 7.20 5.42 4.42 3.01 2.53
75 50 25 75 3.82 3.86 2.92 4.95 4.37 4.98 12.63 11.08 9.93 3.83 2.75 2.20
75 50 50 25 2.64 2.57 1.97 0.12 0.03 0.03 7.45 6.26 4.66 4.50 3.42 2.57
75 50 50 50 2.96 2.91 2.18 0.18 1.24 0.17 8.07 6.92 5.38 4.34 3.17 2.46
75 50 50 75 3.82 3.86 2.92 4.94 4.37 4.98 12.70 11.27 10.18 3.99 2.75 2.47
75 50 75 25 2.64 2.57 1.97 0.04 0.01 0.04 7.18 6.42 4.50 4.36 3.65 2.44
75 50 75 50 2.96 2.91 2.18 0.04 0.01 0.05 7.43 6.73 4.77 4.28 3.59 2.61
75 50 75 75 3.82 3.86 2.92 4.84 2.60 4.88 12.88 11.49 9.95 4.18 3.36 3.12
75 75 25 25 2.64 2.57 1.97 0.02 0.05 0.02 6.99 5.49 3.48 4.24 2.65 1.38
75 75 25 50 2.96 2.91 2.18 0.02 0.10 0.02 7.16 5.48 3.60 4.10 2.28 1.31
75 75 25 75 3.82 3.86 2.92 4.71 2.83 3.09 11.53 9.43 6.69 3.52 2.37 0.91
75 75 50 25 2.64 2.57 1.97 0.02 0.05 0.02 7.02 5.72 3.36 4.19 2.86 1.46
75 75 50 50 2.96 2.91 2.18 0.02 0.10 0.03 7.19 5.64 3.47 4.01 2.38 1.45
75 75 50 75 3.82 3.86 2.92 4.71 3.00 3.20 11.55 9.66 6.71 3.74 2.26 1.06
75 75 75 25 2.64 2.57 1.97 0.02 0.03 0.02 6.73 5.99 3.73 3.98 3.14 1.71
75 75 75 50 2.96 2.91 2.18 0.02 0.05 0.02 6.96 6.11 3.91 3.88 2.95 1.50
75 75 75 75 3.82 3.86 2.92 3.41 1.62 2.86 10.66 9.38 7.00 3.68 2.89 1.60

Note: The values displayed are the measured values multiplied by 10
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